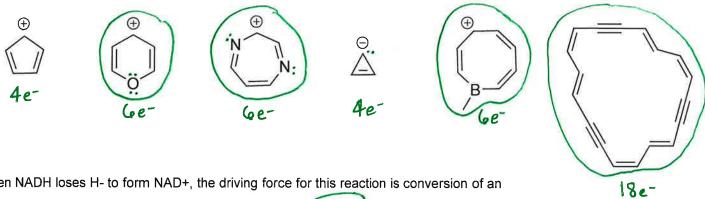

Chemistry 110B FIRST EXAM February 7, 2020

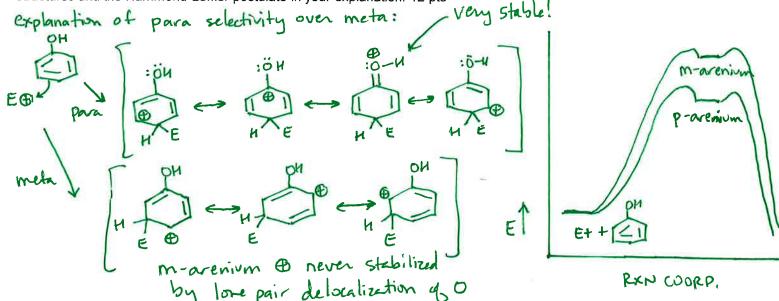
Name (print)	KEY
--------------	-----


Note: Your exam should consist of 5 pages including this cover sheet. There is a bonus question on page 5.

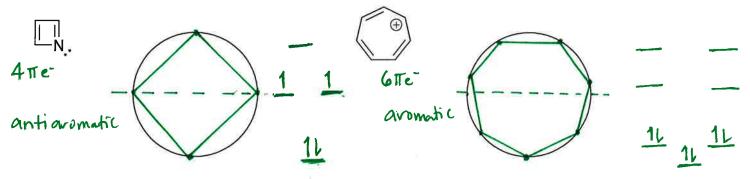
This huge molecular wheel has set a new record as the largest _____ ring Nature Chemistry 2020, DOI: 10.1038/s41557-019-0398-3. The outermost ring in this record-setter has a 162π electron count. The previous record-holder: 62π electrons.

DO NOT OPEN THIS EXAM UNTIL INSTRUCTED TO DO SO

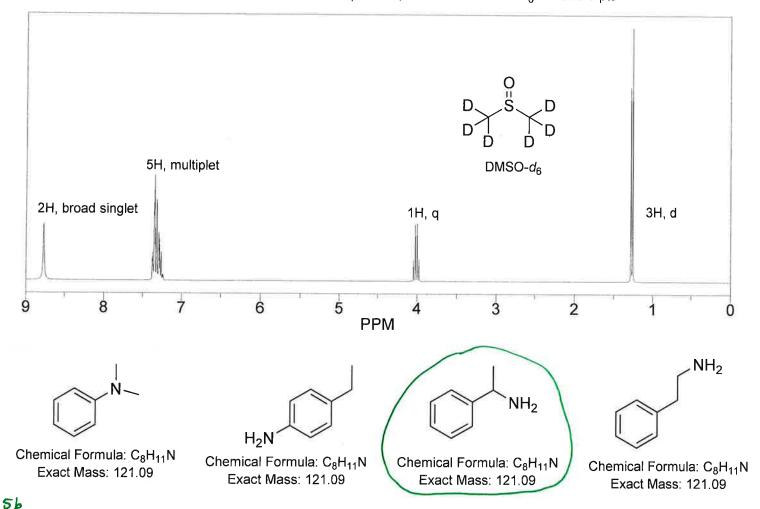
1a. Provide for each a count of the relevant electrons and circle the aromatic systems. 12 pts. 2 pts. حرم العام 12 pts. 2 علم 12 pts. 2 العام 12 pts. 3 العا



- 1b. When NADH loses H- to form NAD+, the driving force for this reaction is conversion of an antiaromatic molecule into an aromatic molecule. TRUE / (FALSE)Circle your answer. 4 pts
- 2. Predict the major product of each of the following reactions. Write "NR" if no reaction is expected. 20 pts 4pts each


3a. Which electrophilic aromatic substitution product is formed when 2-methylpropene is added to a large excess of phenol containing HF and BF₃? (circle your answer) 6 pts

3b. Write a mechanism to explain the formation of the product you circled. Hint: **Begin** this mechanism in a manner similar to that employed in the Br₂/FeBr₃ EAS reaction we learned in class. 12 pts


3c. Now explain the origin of the o,m,p selectivity you are proposing in your answer to 3a. Employ a number of resonance structures and the Hammond-Leffler postulate in your explanation. 12 pts

4. Using Hückel's rule and a magic circle analysis, characterize these systems as aromatic or antiaromatic. 12 pts

5. Circle the structure that is consistent with the 1 H NMR spectrum, recorded in DMSO- d_6 solvent. 6 pts

5d. With a few words and a fragment of the structure you circled in 5a, interpret the pattern at 4 ppm. 6 pts

pattern @ 4 ppm is a quartet 1:3:3:1

1H is coupling to 3H of methyl

Ph

HzN

HzN

H

6. Propose a synthesis of this compound, starting with benzene and using any necessary reagents. 10 pts

Chemistry 110b FIRST EXAM February 7, 2020

Name (print)	
--------------	--

Page	Points	Score
2	36	
3	42	
4	22	
bonus	2	
Total	100	

Bonus: Complete the sentence on the cover page of this exam.