Non-Trivial Arithmetic Progressions of Four Squares and Three Cubes Over \(\mathbb{Q} \sqrt{D} \)

Principal Investigator: Dr. Edray Herber Goins, Graduate Assistant: James Weigandt
Sergio García Currás, Ronald Archer, Han Liu, Benito Martinez, Stephen Mussmann, Lirong Yuan
Department of Mathematical Sciences, Purdue University, West Lafayette, IN 47907

Rational point on a curve whose \(x \)- and \(y \)-coordinates are both rational numbers.
Elliptic curve: Curve with an equation of the form
\[y^2 = x^3 + ax + b \]
where \(a, b \) are real numbers with \(\Delta = 4a^3 + 27b^2 \neq 0 \) that has at least one rational point.
(L. J. Mordell): "The set of rational points on an elliptic curve forms a finitely generated abelian group under the tangent-secant operation."

Arithmetic progression: sequence of terms such that
\[a_{n+1} = a_n + d \]
for any \(a(n), d(n) \) of a constant
Quadratic extension \(\mathbb{Q}(\sqrt{D}) \): the rational numbers plus the square root of the square-free integer \(D \).

---There are no non-constant arithmetic progressions of four squares and no non-trivial arithmetic progressions of three cubes over the rational numbers.
---Let \(D \) be a square-free integer with \(m \in \pm 1, \pm 2, \pm 3, \pm 6 \) and \(p \) being a prime equal to or greater than five. There may be non-constant arithmetic progressions of four squares and non-trivial arithmetic progressions of three cubes over the quadratic extension \(\mathbb{Q}(\sqrt{D}) \).

Procedure

Let \(p \) be a prime. We checked if we could sharpen the bounds on the ranks of \(X_0(24) \) twisted by values of \(D \) congruent to \(p \) modulo 24. The method employed for this was the following:

Consider the homomorphism
\[X_0^P(24)(\mathbb{Q}) \rightarrow \mathbb{Q}^* \times \mathbb{Q}^* \]
\[(x : y : 1) \rightarrow (x, x + D) \]
A pair \((d_1, d_2) \) is in \(\text{Im}(5) \) if and only if the system of equations
\[d_1 x^2 - d_2 x = -D \]
\[d_1 y^2 - d_2 x^2 = -4D \]
has a rational solution \((x, y) \).
Because \(\text{Im}(5) \) is a subgroup, this system has no solution for one of the pairs \((d_1, d_2) \) in a coset, then it has no solution for any pair in that coset. This way, we can narrow down the number of elements in \(\text{Im}(5) \), obtaining lower upper bounds on the rank. (Since the number of elements in \(\text{Im}(5) \) is \(2^{2+r} \), where \(r \) is the rank.)

---There exists a bijection between arithmetic progressions of four squares and rational progressions of four squares over \(\mathbb{Q} \sqrt{D} \) if and only if the rank of \(X_0(D)(\mathbb{Q}) \):
\[y^2 = x^3 + 5Dx^2 + 4D^2x \]

Results

| \(D \) | 1 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| \(X_0(36)(\mathbb{Q}) \) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 |
| \(X_0(36)(\mathbb{Q}) \) & 0 & 1 | 0 & 1 | 0 & 1 | 0 & 1 | 0 & 1 | 0 & 1 |

This table shows the ranks of \(X_0^P(24)(\mathbb{Q}) \) with \(D \) being congruent with \(p \) modulo 24.

By (1), there are no non-constant arithmetic progressions of four squares over \(\mathbb{Q}(\sqrt{D}) \) for values of \(D \) with a 0 in the table above.

We lowered the upper bound in 5 cases and raised the lower bounds in 30 cases.

Current Research Situation

We are currently working on the proof of certain theorems which, if true, would lower the upper bounds on the ranks of \(X_0^P(36)(\mathbb{Q}) \) for all congruence classes \(p \) mod 36 of \(D \). Our focus is now on raising the lower bounds on the ranks of \(X_0^P(36)(\mathbb{Q}) \) for these congruence classes. If the truth of these theorems can be proved, the table of the ranks of \(X_0^P(36)(\mathbb{Q}) \) for values of \(D \) congruent with \(p \) mod 36 would be the following:

Acknowledgements

Dr. Edray Herber Goins
The National Science Foundation