Associating Finite Groups with Dessins d'Enfants

Katrina Biele, Yuan Feng, David Heras, Ahmed Tadde
Purdue Research in Mathematics Experience (PRiME)
Department of Mathematics
Purdue University
2013

Overview

1. Stereographic Projection
2. Solids invariant under $\operatorname{Aut}\left(\mathbb{P}^{1}(\mathbb{C})\right)$
3. Belyı̆ maps/Dessins d'Enfants
4. Platonic/Archimedean solids as Dessins d'Enfants
5. Some Johnson solids as Dessins d'Enfants

The Automorphisms of The Sphere

Definition

The real sphere of radius r is the surface
$S^{2}(\mathbb{R})=\left\{(u, v, w) \in \mathbb{R}^{3} \mid u^{2}+v^{2}+w^{2}=r^{2}\right\}$

What are the automorphisms of the sphere?
(1) Dilations / Contractions?
(2) Translations?
(3) Rotations?

We are only concerned with the rigid rotations of the unit sphere, that is, $r=1$.

The Sphere as The Extended Complex Plane

Through stereographic projection, we can establish a bijection between the unit sphere $S^{2}(\mathbb{R})$ and the extended complex plane $\mathbb{P}^{1}(\mathbb{C})=\mathbb{C} \cup\{\infty\}$.

Definition

Define the stereographic projection from the unit sphere $S^{2}(\mathbb{R}) \xrightarrow{\sigma} \mathbb{P}^{1}(\mathbb{C})$:

$$
\begin{aligned}
& S^{2}(\mathbb{R}) \stackrel{\sim}{\longrightarrow} \mathbb{P}^{1}(\mathbb{C}) \\
&(u, v, w) \mapsto \\
&\left(\frac{2 x}{x^{2}+y^{2}+1}, \frac{2 y}{x^{2}+y^{2}+1}, \frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1}\right) \hookrightarrow \\
& x+i y
\end{aligned}
$$

Automorphisms of The Sphere via Möbius Transformations

Definition

A Möbius Transformation of the extended complex plane $\mathbb{P}^{1}(\mathbb{C})$ is a rational function of the form

$$
f(z)=\frac{a z+b}{c z+d}
$$

of one complex variable z with a, b, c, and d complex numbers satisfying $a d-b c \neq 0$. We denote the collection of such transformations by $\operatorname{Aut}\left(\mathbb{P}^{1}(\mathbb{C})\right)$.
(1) The set $\operatorname{Aut}\left(\mathbb{P}^{1}(\mathbb{C})\right)$ is a group under composition which maps $\mathbb{P}^{1}(\mathbb{C})$ to $\mathbb{P}^{1}(\mathbb{C})$.
(2) Any point (u, v, w) on the unit sphere corresponds to a complex number $z=x+i y$, there is a one-to-one correspondence with rigid rotations of the sphere and Möbius transformations.

Automorphism of The Sphere via Möbius Transformation

Theorem

Let $\mathrm{SO}_{3}(\mathbb{R})$ denote the group of rigid rotations $S^{2}(\mathbb{R}) \xrightarrow{\gamma} S^{2}(\mathbb{R})$ of the unit sphere, and let $\operatorname{Aut}\left(\mathbb{P}^{1}(\mathbb{C})\right)$ denote the group of Möbius transformations $\mathbb{P}^{1}(\mathbb{C}) \xrightarrow{f} \mathbb{P}^{1}(\mathbb{C})$. Then stereographic projection $S^{2}(\mathbb{R}) \xrightarrow{\sigma} \mathbb{P}^{1}(\mathbb{C})$ induces a bijection:

$$
S O_{3}(\mathbb{R}) \xrightarrow{\sim} \operatorname{Aut}\left(\mathbb{P}^{1}(\mathbb{C})\right)
$$

$$
\begin{array}{ccc}
\text { Sphere } & & \mathbb{C} \cup\{\infty\} \\
& & \\
S^{2}(\mathbb{R}) & \stackrel{\sigma}{\longrightarrow} & \mathbb{P}^{1}(\mathbb{C}) \\
\downarrow \gamma & & \downarrow f \\
S^{2}(\mathbb{R}) & \sigma^{-1} & \mathbb{P}^{1}(\mathbb{C})
\end{array}
$$

Examples

(1) Fix an angle θ. For $z \in \mathbb{P}^{1}(\mathbb{C})=\mathbb{C} \cup\{\infty\}$, the function $f(z)=e^{i \theta} z$ is a Möbius transformation. Geometrically, this function represents a rotation along the w-axis via an angle θ
(2) When $\theta=\frac{2 \pi}{n}$ we rotate by a fraction of 2π. The Möbius transformation is $f(z)=\zeta_{n} z$, where $\zeta_{n}=e^{2 \pi i / n}$ is an nth root of unity.
(3) Similarly, the function $f(z)=1 / z$ is also a Möbius transformation. Geometrically, this function represents a flip along the v-axis.

Finite Automorphism Groups of The Sphere

Proposition (Felix Klein)

The following groups are finite subgroups of $\operatorname{Aut}\left(\mathbb{P}^{1}(\mathbb{C})\right)$:

$$
\begin{array}{lll}
Z_{n}=\left\langle r \mid r^{n}=1\right\rangle: & r(z)=\zeta_{n} z & \\
D_{n}=\left\langle r, s \mid s^{2}=r^{n}=(s r)^{2}=1\right\rangle: & r(z)=\zeta_{n} z & s(z)=\frac{1}{z} \\
A_{4}=\left\langle r, s \mid s^{2}=r^{3}=(s r)^{3}=1\right\rangle: & r(z)=\frac{z+2 \zeta_{3}}{z-\zeta_{3}} & s(z)=\frac{z+2}{z-1} \\
S_{4}=\left\langle r, s \mid s^{2}=r^{3}=(s r)^{4}=1\right\rangle: & r(z)=\frac{z+\zeta_{4}}{z-\zeta_{4}} & s(z)=\frac{z+1}{z-1} \\
A_{5}=\left\langle r, s \mid s^{2}=r^{3}=(s r)^{5}=1\right\rangle: & r(z)=\frac{\varphi-\zeta_{5}^{3} z}{\varphi \zeta_{5}^{3} z+1} & s(z)=\frac{\varphi-z}{\varphi z+1}
\end{array}
$$

where $\zeta_{n}=e^{2 \pi i / n}$ is a root of unity, and $\varphi=\frac{1+\sqrt{5}}{2}$ is the golden ratio. Conversely, if G is a finite subgroup of $\operatorname{Aut}\left(\mathbb{P}^{1}(\mathbb{C})\right)$, then G is isomorphic to one of the five types of groups above.

What Are The Solids Invariant Under

The Finite Automorphism Groups?

Solids Invariant Under Finite Automorphism Groups

Definition

(1) A Platonic solid is a regular, convex polyhedron. Its faces are congruent, regular polygons, with the same number of faces meeting at each vertex. They are named after Plato ($424 \mathrm{BC}-348 \mathrm{BC}$). There are 5 solids with these criteria.
(2) An Archimedean solid is a highly symmetric, semi-regular convex polyhedron composed of two or more types of regular polygons meeting in identical vertices. Discovered by Johannes Kepler (1571-1630) in 1620, they are named after Archimedes (287 BC - 212 BC). There are 13 Archimedean solids.
(3) A Catalan solid is a dual of an Archimedean solid. They are named after Eugéne Catalan (1814-1894) who discovered them in 1865 . There are 13 Catalan solids.
(4) A Johnson solid is a strictly convex polyhedron, each face of which is a regular polygon. They are named after Norman Johnson (1930-) who discovered them in 1966. There are 92 Johnson solids.

Solids Invariant: The Platonic Solids

Tetrahedron

Icosahedron

Dodecahedron

Octahedron

Cube

Rotation Groups

$A_{4}=\left\langle r, s \mid s^{2}=r^{3}=(s r)^{3}=1\right\rangle$
$A_{5}=\left\langle r, s \mid s^{2}=r^{3}=(s r)^{5}=1\right\rangle$
$S_{4}=\left\langle r, s \mid s^{2}=r^{3}=(s r)^{4}=1\right\rangle$

Tetrahedron
Icosahedron/ Dodecahedron
Octahedron/Cube

Solids Invariant: The Archimedean/Catalan Solids

Truncated Tetrahedron

Cuboctahedron

Truncated Icosahedron

$$
\begin{aligned}
& A_{4}=\left\langle r, s \mid s^{2}=r^{3}=(s r)^{3}=1\right\rangle \\
& S_{4}=\left\langle r, s \mid s^{2}=r^{3}=(s r)^{4}=1\right\rangle \\
& A_{5}=\left\langle r, s \mid s^{2}=r^{3}=(s r)^{5}=1\right\rangle
\end{aligned}
$$

(1) The Truncated Tetrahedron is the only Archimedean solid associated with A_{4}. The Triakis Tetrahedron is the only Catalan Solid associated with A_{4}.
(2) They are 6 Archimedean solids and 6 Catalan solids associated with the rotations group S_{4}.
(3) They are 6 Archimedean solids and 6 Catalan solids associated with the rotations group A_{5}.

Solids Invariant: The Johnson Solids

Pentagonal Rotunda
Triaugmented Hexagonal Prism
Pentagonal Bicopula

$Z_{n}=\left\langle r \mid r^{n}=1\right\rangle$

$$
D_{n}=\left\langle r, s \mid s^{2}=r^{n}=(s r)^{2}=1\right\rangle
$$

(1) All 92 Johnson solids have either Cyclic symmetry or Dihedral symmetry.
(2) Families of solids with cyclic symmetry: Pyramids/Wheels, Rotundas, Cupolas, Elongated Pyramid, Gyroelongated Pyramid.
(3) Families of solids with dihedral symmetry: Elongated Bypyramids, Truncated Bipyramids, Gyroelongated Bipyramids, Birotundas, Bicupolas, Truncated Trapezohedron, Dipoles/Hosohedron.
(1) There are some Johnson solids that do not fit into the aforementioned families of solids.

Can We Embed These Solids In The Riemann Sphere?

Belyĭ Maps

Definition

Fix a finite subgroup $G \subseteq \operatorname{Aut}\left(\mathbb{P}^{1}(\mathbb{C})\right)$. A Belyı̆ map $\mathbb{P}^{1}(\mathbb{C}) \xrightarrow{\beta} \mathbb{P}^{1}(\mathbb{C})$ associated to G is a function satisfying the following:
(1) It is a rational function, ie $\beta(z)=p(z) / q(z)$ for two relatively prime polynomials $p(z)$ and $q(z)$.
(2) It has at most three critical values, which lie within $\{0,1, \infty\}$:

$$
\left\{\begin{array}{l|l}
w \in \mathbb{P}^{1}(\mathbb{C}) & \begin{array}{c}
w=\beta\left(z_{0}\right) \text { for some } z_{0} \in \mathbb{P}^{1}(\mathbb{C}) \\
\text { such that } \beta^{\prime}\left(z_{0}\right)=0
\end{array}
\end{array}\right\} \subseteq\{0,1, \infty\}
$$

(3) The function is invariant precisely under G-action:

$$
\left\{\gamma \in \operatorname{Aut}\left(\mathbb{P}^{1}(\mathbb{C})\right) \mid \beta(\gamma(z))=\beta(z)\right\}=G .
$$

Dessins d'Enfants

Definition

Given a Belyı̆ map $\mathbb{P}^{1}(\mathbb{C}) \xrightarrow{\beta} \mathbb{P}^{1}(\mathbb{C})$, a Dessin d'Enfants Δ_{β} is a connected, bipartite, planar graph with the following properties.
(1) The "black" vertices are $B=\beta^{-1}(0)$.
(2) The "white" vertices are $W=\beta^{-1}(1)$.
(3) The edges are $E=\beta^{-1}([0,1])$.
(4) The midpoints of the faces are $F=\beta^{-1}(\infty)$.

Remark: The phrase "Dessins d'Enfants" originated from Alexander Grothendieck. He viewed this construction as simple as "Children's Drawings." The graph Δ_{β} has symmetry reflected by G.

Example

Dessin for the Belyı̆ function $\beta(z)=z^{5}$

\#Vertices $=6 \quad$ \#Edges $=5 \quad$ \#Faces $=1$

Can The Platonic,

Archimidean, And Catalan Solids Be Realized As Dessins D'Enfants?

Solids As Dessins: Rotation Group A_{4}

- Tetrahedron
- Platonic Solid
- $\beta(z)=-\frac{64 z^{3}\left(z^{3}-1\right)^{3}}{\left(8 z^{3}+1\right)^{3}}$
- Truncated Tetrahedron
- Archimedean Solid
- $\beta(z)=\frac{\left(1-232 z^{3}+960 z^{6}-256 z^{9}+256 z^{12}\right)^{3}}{1728 z^{3}\left(z^{3}-1\right)^{3}\left(8 z^{3}+1\right)^{6}}$
- Triakis Tetrahedron
- Catalan Solid
- $\beta(z)=\frac{1728 z^{3}\left(z^{3}-1\right)^{3}\left(8 z^{3}+1\right)^{6}}{\left(1-232 z^{3}+960 z^{6}-256 z^{9}+256 z^{12}\right)^{3}}$

Solids As Dessins: Rotation Group S_{4}

- Cube
- Platonic Solid
- $\beta(z)=\frac{\left(1+14 z^{4}+z^{8}\right)^{3}}{108 z^{4}\left(-1+z^{4}\right)^{4}}$
- Truncated Octahedron
- Archimedean Solid
- $\beta(z)=\frac{\left(1-390 z^{4}+2319 z^{8}+236 z^{12}+2319 z^{16}-390 z^{20}+z^{24}\right)^{3}}{2916 z^{4}\left(-1+z^{4}\right)^{4}\left(1+14 z^{4}+z^{8}\right)^{6}}$
- Tetrakis Hexahedron
- Catalan Solid
- $\beta(z)=\frac{2916 z^{4}\left(-1+z^{4}\right)^{4}\left(1+14 z^{4}+z^{8}\right)^{6}}{\left(1-390 z^{4}+2319 z^{8}+236 z^{12}+2319 z^{16}-390 z^{20}+z^{24}\right)^{3}}$

Solids As Dessins: Rotation Group A_{5}

- Dodecahedron
- Platonic Solid
- $\beta(z)=\frac{\left(1-228 z^{5}+494 z^{10}+228 z^{15}+z^{20}\right)^{3}}{1728 z^{5}\left(-1-11 z^{5}+z^{10}\right)^{5}}$
- Truncated Dodecahedron
- Archimedean Solid
$\beta \beta(z)=\frac{\left(\begin{array}{c}1-252 z^{5}+181194 z^{10}-12006900 z^{15}+83115375 z^{20} \\ -100628424 z^{25}+25004828 z^{30}+100628424 z^{35} \\ +83115375 z^{40}+12006900 z^{45}+181194 z^{50}+252 z^{55}+z^{60}\end{array}\right)^{3}}{1259712 z^{10}\left(-1-11 z^{5}+z^{10}\right)^{10}\left(1-228 z^{5}+494 z^{10}+228 z^{15}+z^{20}\right)^{3}}$
- Triakis Icosahedron
- Catalan Solid
- $\beta(z)=\frac{1259712 z^{10}\left(-1-11 z^{5}+z^{10}\right)^{10}\left(1-228 z^{5}+494 z^{10}+228 z^{15}+z^{20}\right)^{3}}{\left(\begin{array}{c}1-252 z^{5}+181194 z^{10}-12006900 z^{15}+83115375 z^{20} \\ -100628424 z^{25}+25004828 z^{30}+100628424 z^{35} \\ +83115375 z^{40}+12006900 z^{45}+181194 z^{50}+252 z^{55}+z^{60}\end{array}\right)^{3}}$

How Did We Find Such Belyĭ Maps?

Bely̌̆ Maps: Platonic Solids

Proposition (Felix Klein, 1875)

Let Γ denote the vertices of a Platonic solid. Then there exists a Belyy $\operatorname{map} \mathbb{P}^{1}(\mathbb{C}) \xrightarrow{\beta} \mathbb{P}^{1}(\mathbb{C})$ such that $\Gamma \simeq \Delta_{\beta}$ is the Dessin d'Enfants of β.

$$
\begin{aligned}
\beta_{\text {tetrahedron }}(z) & =\frac{64\left(z^{3}-1\right)^{3}}{z^{3}\left(z^{3}+8\right)^{3}} \\
\beta_{\text {cube }}(z) & =\frac{\left(1+14 z^{4}+z^{8}\right)^{3}}{108 z^{4}\left(-1+z^{4}\right)^{4}} \\
\beta_{\text {octahedron }}(z) & =\frac{1}{\beta_{\text {cube }}(z)} \\
\beta_{\text {dodecahedron }}(z) & =\frac{\left(1-228 z^{5}+494 z^{10}+228 z^{15}+z^{20}\right)^{3}}{1728 z^{5}\left(-1-11 z^{5}+z^{10}\right)^{5}} \\
\beta_{\text {icosahedron }}(z) & =\frac{1}{\beta_{\text {dodecahedron }}(z)}
\end{aligned}
$$

Bely̌̆ Maps: Platonic Solids

Klein's Approach

(1) Embed the vertices of a Platonic solid in the unit sphere, then use Stereographic Projection to write them as complex numbers.
(2) Find a homogeneous polynomial which vanishes at these vertices.
(3) Use Invariant Theory to list three more polynomials c_{4}, c_{6}, and Δ with a syzygy among them.
(9) Define the Belyĭ map as:

$$
\beta(z)=\frac{c_{4}(z)^{3}-c_{6}(z)^{2}}{c_{4}(z)^{3}}
$$

Belyĭ maps: Tetrahedron Example

- Let $B=\left\{P_{\infty}, P_{0}, P_{1}, P_{2}\right\} \subseteq S^{2}(\mathbb{R})$ denote the four vertices of a tetrahedron embedded into the Riemann sphere. Explicitly:

$$
\begin{aligned}
P_{\infty} & =(0,0,1) \\
P_{k} & =\left(\frac{2 \sqrt{2}}{3} \cos \frac{2 \pi k}{3}, \frac{2 \sqrt{2}}{3} \sin \frac{2 \pi k}{3},-\frac{1}{3}\right) \quad k=0,1,2 .
\end{aligned}
$$

Mapping them through σ, we obtain images of four points in $\mathbb{P}^{1}(\mathbb{C})$.

$$
\sigma(B)=\left\{\infty, \zeta_{3}, \zeta_{3}^{2}, 1\right\}
$$

- A homogeneous polynomial which vanishes on the vertices $\sigma(B) \subseteq \mathbb{P}^{1}(\mathbb{C})$ is given by,

$$
\delta\left(\tau_{1}, \tau_{0}\right)=3 \tau_{0}\left(\tau_{1}^{3}-\tau_{0}^{3}\right)
$$

Example

- Using Invariant Theory, we list three more homogeneous polynomials

$$
\begin{aligned}
& c_{4}\left(\tau_{1}, \tau_{0}\right)=(\text { constant }) \cdot \operatorname{Hess}(\delta)\left(\tau_{1}, \tau_{0}\right)=9 \tau_{1}\left(\tau_{1}^{3}+8 \tau_{0}^{3}\right) \\
& c_{6}\left(\tau_{1}, \tau_{0}\right)=(\text { constant }) \cdot \operatorname{Cov}\left(\delta, c_{4}\right)\left(\tau_{1}, \tau_{0}\right)=27\left(\tau_{1}^{6}-20 \tau_{1}^{3} \tau_{0}^{3}-8 \tau_{0}^{6}\right) \\
& \Delta\left(\tau_{1}, \tau_{0}\right)=\delta\left(\tau_{1}, \tau_{0}\right)^{3}=27 \tau_{0}^{3}\left(\tau_{1}^{3}-\tau_{0}^{3}\right)^{3}
\end{aligned}
$$

Where

$$
\begin{aligned}
\operatorname{Hess}(\delta)\left(\tau_{1}, \tau_{0}\right) & =\frac{\partial^{2} \delta}{\partial \tau_{1}^{2}} \cdot \frac{\partial^{2} \delta}{\partial \tau_{0}^{2}}-\left(\frac{\partial^{2} \delta}{\partial \tau_{1} \partial \tau_{0}}\right)^{2} \\
\operatorname{Cov}\left(\delta, c_{4}\right) & =\frac{\partial \delta}{\partial \tau_{1}} \cdot \frac{\partial c_{4}}{\partial \tau_{0}}-\frac{\partial \delta}{\partial \tau_{1}} \cdot \frac{\partial c_{4}}{\partial \tau_{0}}
\end{aligned}
$$

The syzygy relation among the three polynomials:

$$
c_{4}\left(\tau_{1}, \tau_{0}\right)^{3}-c_{6}\left(\tau_{1}, \tau_{0}\right)^{2}=1728 \Delta\left(\tau_{1}, \tau_{0}\right)
$$

Example

- The Belyı̆ map for the Tetrahedron is

$$
\beta(z)=\frac{c_{4}\left(\tau_{1}, \tau_{0}\right)^{3}-c_{6}\left(\tau_{1}, \tau_{0}\right)^{2}}{c_{4}\left(\tau_{1}, \tau_{0}\right)^{3}}=\frac{64\left(z^{3}-1\right)^{3}}{z^{3}\left(z^{3}+8\right)^{3}} \quad \text { where } \quad z=\frac{\tau_{1}}{\tau_{0}}
$$

Bely̆̌ Maps: Archimedean and Catalan Solids

Proposition

The 13 Archimedean Solids and the 13 Catalan Solids can be derived from the 5 Platonic solids by 7 geometric operations:

- Rectification
- Birectification
- Snubification
- Rhombification
- Rhombitruncation

Proposition (N. Magot and A. Zvonkin, 2001)

These seven operations can be algebraically recognized as Belyı̆ maps $\mathbb{P}^{1}(\mathbb{C}) \xrightarrow{\phi} \mathbb{P}^{1}(\mathbb{C})$. In particular, all of the Archimedean and Catalan solids can be realized as Dessins d'Enfants.

Geometric Operations: Definitions

(1) Truncation: a face in place of each vertex (vertices \rightarrow faces)
(2) Rectification: truncation at the midpoints of all edges (edges \rightarrow vertices)
(3) Birectification: faces \leftrightarrow vertices
(4) Bitruncation: truncation after birectification
(5) Rhombitruncation: a truncation after rectification
(0) Rhombification: a rectification after rectification
(1) Snubification: "alternation" after truncation. ("Alternating" is the process of removing opposites vertices.

Geometric Operations: Examples

Geometric Operations: Examples

- Rhombification: Cuboctahedron \rightarrow Rhombicuboctahedron

- Snubification: Cube \rightarrow Snub Cube

Bely̆ Maps: Archimedean and Catalan Solids

Approach (N. Magot and A. Zvonkin, 2001)

(1) Determine the hypermap corresponding to a given geometric operation.
(2) Deduce the Belyĭ map of this operation.
(3) Compose this new function with a Platonic solid's Bely̆ map to get an Archimedean solid's Belyĭ map.
(9) The Belyĭ map of a Catalan solid is the reciprocal of the corresponding Archimedean solid's Belyı̆ map.

Example

(1) Hypermap of Truncation
(2) Corresponding Belyĭ map
$\phi_{\text {truncation }}(w)=\frac{(4 w-1)^{3}}{27 w}$

(3) Truncated Tetrahedron Belyı̆ map
$\beta=\phi_{\text {truncation }} \circ \beta_{\text {tetrahedron }}$
$\beta(z)=\frac{\left(1-232 z^{3}+960 z^{6}-256 z^{9}+256 z^{12}\right)^{3}}{1728 z^{3}\left(z^{3}-1\right)^{3}\left(8 z^{3}+1\right)^{6}}$

Can We Realize
Other Solids As Dessins?

The Johnson Solids

Definition

A Johnson Solid is a convex polyhedron with regular polygons as faces but which is not a Platonic or Archimedean.

Proposition

There are 92 distinct Johnson solids. All Johnson Solids have rotational symmetry groups isomorphic to either the cyclic group Z_{n} or the dihedral group D_{n}.

The Johnson Solids

Proposition

Most of the 92 Johnson Solids can be realized via "operations" on:

- Platonic Solids
- Archimedean and Catalan Solids
- Prisms and Antiprisms
- Cupolae
- Pyramids
- Rotunda

These six operations are:

- Bi: to take two copies of the solid and join them base-to-base.
- Elongate: to attach a prism to the base of the solid.
- Gyroelongate: to attach an antiprism to the base of the solid.
- Augment: to join a pyramid or cupola to a face.
- Diminish: to remove a pyramid or cupola from the solid.
- Gyrate: to take a cupola on the solid and rotate it such that different edges match up.

Prisms and Bipyramid

- Prism
- Rotation Group D_{n}
- $\beta(z)=\frac{\left(z^{2 n}+14 z^{n}+1\right)^{3}}{108 z^{n}\left(z^{n}-1\right)^{4}}$

- Bipyramid
- Rotation Group D_{n}
- $\beta(z)=\frac{108 z^{n}\left(z^{n}-1\right)^{4}}{\left(z^{2 n}+14 z^{n}+1\right)^{3}}$

Antiprisms and Trapezohedron

- Antiprism
- Rotation Group D_{n}
- $\beta(z)=$

$$
-\frac{\left(8 z^{2 n}-20 z^{n}-1\right)^{4}}{256 z^{n}\left(z^{n}+1\right)^{3}\left(8 z^{n}-1\right)^{3}}
$$

- Trapezohedron
- Rotation Group D_{n}
- $\beta(z)=$

$$
-\frac{256 z^{n}\left(z^{n}+1\right)^{3}\left(8 z^{n}-1\right)^{3}}{\left(8 z^{2 n}-20 z^{n}-1\right)^{4}}
$$

New Results

- Gyroelongated Bipyramid
- Rotation Group D_{n}
- $\beta(z)=$
$\frac{1728 z^{n}\left(z^{2 n}-11 z^{n}-1\right)^{5}}{\left(z^{4 n}+228 z^{3 n}+494 z^{2 n}-228 z^{n}+1\right)^{3}}$
- Truncated Trapezohedron
- Rotation Group D_{n}
- $\beta(z)=$

$$
\frac{\left(z^{4 n}+228 z^{3 n}+494 z^{2 n}-228 z^{n}+1\right)^{3}}{1728 z^{n}\left(z^{2 n}-11 z^{n}-1\right)^{5}}
$$

New Results (Continued)

- Cupola
- Rotation Group Z_{n}
- $\beta(z)=\frac{27\left(z^{n}-1\right)^{4}\left(3 z^{2 n}-16 z^{n}+1728\right)^{3}}{4 z^{n}\left(5 z^{n}-54\right)^{3}\left(9 z^{n}+40\right)^{4}}$

- Elongated Pyramid
- Rotation Group Z_{n}
- $\beta(z)=4(-665857+470832 \sqrt{2})$

$$
\frac{z^{n}\left(z^{n}-1\right)^{4}\left[z^{n}-4(41+29 \sqrt{2})\right]^{3}}{\left[(-24+17 \sqrt{2}) z^{n}+1\right]^{4}\left[4(2+\sqrt{2}) z^{n}+1\right]^{3}}
$$

Meta-goal: Find Belyı̆ maps in order to realize all the Johnson solids as a Dessin d'Enfants.

- Partial result: we have found the Belyı̆ maps β for all the building blocks of Johnson solids.
- Write down factorizations $\beta^{\prime}=\phi \circ \beta$ of the Bely̌̆ maps β^{\prime} for all the Johnson solids in terms of the Belyı̆ maps β for our building blocks and functions ϕ associated to the operations.

Acknowledgements

Thank you

We would like to acknowledge the following people for their support:
The National Science Foundation (NSF) and Professor Steve Bell, Dr. Joel Spira,
Andris "Andy" Zoltners, Professor Edray Goins, Matt Toeniskoetter.

