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The Automorphisms of The Sphere

Definition
The real sphere of radius r is the surface

S2(R) =
{

(u, v,w) ∈ R3
∣∣∣∣u2+v2+w2 = r2

}

What are the automorphisms of the
sphere?

1 Dilations / Contractions?
2 Translations?
3 Rotations?

We are only concerned with the rigid
rotations of the unit sphere, that is, r = 1.
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The Sphere as The Extended Complex Plane

Through stereographic projection, we can
establish a bijection between the unit
sphere S2(R) and the extended complex
plane P1(C) = C ∪ {∞}.

Definition
Define the stereographic projection from the unit sphere S2(R) σ→ P1(C):

S2(R) ∼−→ P1(C)(
u, v, w

)
7→ u + i v

1− w(
2x

x2+y2+1 ,
2y

x2+y2+1 ,
x2+y2−1
x2+y2+1

)
←[ x + i y
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Automorphisms of The Sphere via Möbius Transformations

Definition
A Möbius Transformation of the extended complex plane P1(C) is a
rational function of the form

f (z) = a z + b
c z + d

of one complex variable z with a, b, c, and d complex numbers satisfying
a d − b c 6= 0. We denote the collection of such transformations by
Aut

(
P1(C)

)
.

1 The set Aut
(
P1(C)

)
is a group under composition which maps

P1(C) to P1(C).
2 Any point (u, v,w) on the unit sphere corresponds to a complex

number z = x + i y, there is a one-to-one correspondence with rigid
rotations of the sphere and Möbius transformations.
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Automorphism of The Sphere via Möbius Transformation

Theorem

Let SO3(R) denote the group of rigid rotations S2(R) γ−→ S2(R) of the
unit sphere, and let Aut(P1(C)) denote the group of Möbius
transformations P1(C) f−→ P1(C). Then stereographic projection
S2(R) σ−→ P1(C) induces a bijection:

SO3(R) ∼−→ Aut(P1(C))

Sphere C ∪ {∞}

S2(R) σ−−→ P1(C)yγ yf
S2(R) σ−1

←−−− P1(C)
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Examples
1 Fix an angle θ. For z ∈ P1(C) = C ∪ {∞}, the function f (z) = eiθz

is a Möbius transformation. Geometrically, this function represents a
rotation along the w-axis via an angle θ

2 When θ = 2π
n we rotate by a fraction of 2π. The Möbius

transformation is f (z) = ζn z, where ζn = e2πi/n is an nth root of
unity.

3 Similarly, the function f (z) = 1/z is also a Möbius transformation.
Geometrically, this function represents a flip along the v-axis.
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Finite Automorphism Groups of The Sphere

Proposition (Felix Klein)
The following groups are finite subgroups of Aut

(
P1(C)

)
:

Zn = 〈r |rn = 1〉 : r(z) = ζnz

Dn = 〈r , s|s2 = rn = (sr)2 = 1〉 : r(z) = ζnz s(z) = 1
z

A4 = 〈r , s|s2 = r3 = (sr)3 = 1〉 : r(z) = z + 2 ζ3
z − ζ3

s(z) = z + 2
z − 1

S4 = 〈r , s|s2 = r3 = (sr)4 = 1〉 : r(z) = z + ζ4
z − ζ4

s(z) = z + 1
z − 1

A5 = 〈r , s|s2 = r3 = (sr)5 = 1〉 : r(z) = ϕ− ζ5
3 z

ϕ ζ5
3 z + 1

s(z) = ϕ− z
ϕ z + 1

where ζn = e2πi/n is a root of unity, and ϕ = 1+
√

5
2 is the golden ratio.

Conversely, if G is a finite subgroup of Aut
(
P1(C)

)
, then G is isomorphic

to one of the five types of groups above.
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What Are The Solids
Invariant Under

The Finite Automorphism
Groups ?
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Solids Invariant Under Finite Automorphism Groups

Definition
1 A Platonic solid is a regular, convex polyhedron. Its faces are congruent,

regular polygons, with the same number of faces meeting at each vertex.
They are named after Plato (424 BC – 348 BC). There are 5 solids with
these criteria.

2 An Archimedean solid is a highly symmetric, semi-regular convex
polyhedron composed of two or more types of regular polygons meeting in
identical vertices. Discovered by Johannes Kepler (1571 – 1630) in 1620,
they are named after Archimedes (287 BC – 212 BC).There are 13
Archimedean solids.

3 A Catalan solid is a dual of an Archimedean solid. They are named after
Eugéne Catalan (1814 – 1894) who discovered them in 1865. There are 13
Catalan solids.

4 A Johnson solid is a strictly convex polyhedron, each face of which is a
regular polygon. They are named after Norman Johnson (1930 - ) who
discovered them in 1966. There are 92 Johnson solids.
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Solids Invariant: The Platonic Solids

Rotation Groups

A4 = 〈r , s|s2 = r3 = (sr)3 = 1〉

A5 = 〈r , s|s2 = r3 = (sr)5 = 1〉

S4 = 〈r , s|s2 = r3 = (sr)4 = 1〉

Tetrahedron

Icosahedron/ Dodecahedron

Octahedron/Cube
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Solids Invariant: The Archimedean/Catalan Solids

Truncated Tetrahedron Cuboctahedron Truncated Icosahedron

A4 = 〈r , s|s2 = r3 = (sr)3 = 1〉
S4 = 〈r , s|s2 = r3 = (sr)4 = 1〉
A5 = 〈r , s|s2 = r3 = (sr)5 = 1〉

1 The Truncated Tetrahedron is the only Archimedean solid associated with
A4. The Triakis Tetrahedron is the only Catalan Solid associated with A4.

2 They are 6 Archimedean solids and 6 Catalan solids associated with the
rotations group S4.

3 They are 6 Archimedean solids and 6 Catalan solids associated with the
rotations group A5.
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Solids Invariant: The Johnson Solids

Pentagonal Rotunda Triaugmented Hexagonal Prism Pentagonal Bicopula

Zn = 〈r |rn = 1〉 Dn = 〈r , s|s2 = rn = (sr)2 = 1〉

1 All 92 Johnson solids have either Cyclic symmetry or Dihedral symmetry.
2 Families of solids with cyclic symmetry: Pyramids/Wheels, Rotundas,

Cupolas, Elongated Pyramid, Gyroelongated Pyramid.
3 Families of solids with dihedral symmetry: Elongated Bypyramids,

Truncated Bipyramids, Gyroelongated Bipyramids, Birotundas, Bicupolas,
Truncated Trapezohedron, Dipoles/Hosohedron.

4 There are some Johnson solids that do not fit into the aforementioned
families of solids.
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Can We Embed These Solids In
The Riemann Sphere?
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Bely̆ı Maps

Definition

Fix a finite subgroup G ⊆ Aut
(
P1(C)

)
. A Bely̆ı map P1(C) β−→ P1(C)

associated to G is a function satisfying the following:
1 It is a rational function, ie β(z) = p(z)/q(z) for two relatively prime

polynomials p(z) and q(z).

2 It has at most three critical values, which lie within {0, 1,∞}:{
w ∈ P1(C)

∣∣∣∣∣ w = β(z0) for some z0 ∈ P1(C)
such that β′(z0) = 0

}
⊆ {0, 1,∞}.

3 The function is invariant precisely under G−action:{
γ ∈ Aut

(
P1(C)

) ∣∣∣∣ β(γ(z)
)

= β(z)
}

= G.
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Dessins d’Enfants

Definition

Given a Bely̆ı map P1(C) β−→ P1(C), a Dessin d’Enfants ∆β is a
connected, bipartite, planar graph with the following properties.

1 The “black” vertices are B = β−1(0).

2 The “white” vertices are W = β−1(1).

3 The edges are E = β−1([0, 1]).

4 The midpoints of the faces are F = β−1(∞).

Remark: The phrase “Dessins d’Enfants” originated from Alexander
Grothendieck. He viewed this construction as simple as “Children’s
Drawings.” The graph ∆β has symmetry reflected by G.
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Example

Dessin for the Bely̆ı function β(z) = z5

Dessin d'Enfant for the Belyi Map Iz Æ z5 M

#Vertices = 6 #Edges = 5 #Faces = 1
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Can The Platonic,
Archimidean, And Catalan

Solids Be Realized As
Dessins d’Enfants ?
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Solids As Dessins: Rotation Group A4

Tetrahedron
Platonic Solid

β(z) = −64z3(z3 − 1)3

(8z3 + 1)3

Truncated Tetrahedron
Archimedean Solid

β(z) = (1− 232z3 + 960z6 − 256z9 + 256z12)3

1728z3(z3 − 1)3(8z3 + 1)6

Triakis Tetrahedron
Catalan Solid

β(z) = 1728z3(z3 − 1)3(8z3 + 1)6

(1− 232z3 + 960z6 − 256z9 + 256z12)3
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Solids As Dessins: Rotation Group S4

Cube
Platonic Solid

β(z) = (1 + 14z4 + z8)3

108z4(−1 + z4)4

Truncated Octahedron
Archimedean Solid
β(z) =

(1− 390z4 + 2319z8 + 236z12 + 2319z16 − 390z20 + z24)3

2916z4(−1 + z4)4(1 + 14z4 + z8)6

Tetrakis Hexahedron
Catalan Solid
β(z) =

2916z4(−1 + z4)4(1 + 14z4 + z8)6

(1− 390z4 + 2319z8 + 236z12 + 2319z16 − 390z20 + z24)3
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Solids As Dessins: Rotation Group A5

Dodecahedron
Platonic Solid

β(z) = (1− 228z5 + 494z10 + 228z15 + z20)3

1728z5(−1− 11z5 + z10)5

Truncated Dodecahedron
Archimedean Solid

β(z) =

(
1− 252z5 + 181194z10 − 12006900z15 + 83115375z20

− 100628424z25 + 25004828z30 + 100628424z35

+ 83115375z40 + 12006900z45 + 181194z50 + 252z55 + z60

)3

1259712z10(−1−11z5+z10)10(1−228z5+494z10+228z15+z20)3

Triakis Icosahedron
Catalan Solid
β(z) = 1259712z10(−1−11z5+z10)10(1−228z5+494z10+228z15+z20)3(

1− 252z5 + 181194z10 − 12006900z15 + 83115375z20

− 100628424z25 + 25004828z30 + 100628424z35

+ 83115375z40 + 12006900z45 + 181194z50 + 252z55 + z60

)3
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How Did We Find Such
Bely̆ı Maps ?
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Bely̆ı Maps: Platonic Solids

Proposition (Felix Klein, 1875)
Let Γ denote the vertices of a Platonic solid. Then there exists a Bely̆ı
map P1(C) β−→ P1(C) such that Γ ' ∆β is the Dessin d’Enfants of β.

βtetrahedron(z) = 64(z3 − 1)3

z3(z3 + 8)3

βcube(z) = (1 + 14z4 + z8)3

108z4(−1 + z4)4

βoctahedron(z) = 1
βcube(z)

βdodecahedron(z) = (1− 228z5 + 494z10 + 228z15 + z20)3

1728z5(−1− 11z5 + z10)5

βicosahedron(z) = 1
βdodecahedron(z)
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Bely̆ı Maps: Platonic Solids

Klein’s Approach
1 Embed the vertices of a Platonic solid in the unit sphere, then use

Stereographic Projection to write them as complex numbers.

2 Find a homogeneous polynomial which vanishes at these vertices.

3 Use Invariant Theory to list three more polynomials c4, c6, and ∆
with a syzygy among them.

4 Define the Bely̆ı map as:

β(z) = c4(z)3 − c6(z)2

c4(z)3
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Bely̆ı maps: Tetrahedron Example

Let B = {P∞,P0,P1,P2} ⊆ S2(R) denote the four vertices of a
tetrahedron embedded into the Riemann sphere. Explicitly:

P∞ = (0, 0, 1)

Pk =
(

2
√

2
3 cos 2πk

3 ,
2
√

2
3 sin 2πk

3 , −1
3

)
k = 0, 1, 2.

Mapping them through σ, we obtain images of four points in P1(C).

σ(B) = {∞, ζ3, ζ
2
3 , 1},

A homogeneous polynomial which vanishes on the vertices
σ(B) ⊆ P1(C) is given by,

δ(τ1, τ0) = 3τ0(τ3
1 − τ3

0 ).
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Example

Using Invariant Theory, we list three more homogeneous
polynomials

c4(τ1, τ0) = (constant) ·Hess(δ)(τ1, τ0) = 9τ1(τ3
1 + 8τ3

0 )
c6(τ1, τ0) = (constant) · Cov(δ, c4)(τ1, τ0) = 27(τ6

1 − 20τ3
1 τ

3
0 − 8τ6

0 )
∆(τ1, τ0) = δ(τ1, τ0)3 = 27τ3

0 (τ3
1 − τ3

0 )3

Where

Hess(δ)(τ1, τ0) = ∂2δ

∂τ2
1
· ∂

2δ

∂τ2
0
−
( ∂2δ

∂τ1∂τ0

)2

Cov(δ, c4) = ∂δ

∂τ1
· ∂c4

∂τ0
− ∂δ

∂τ1
· ∂c4

∂τ0

The syzygy relation among the three polynomials:

c4(τ1, τ0)3 − c6(τ1, τ0)2 = 1728 ∆(τ1, τ0)
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Example

The Bely̆ı map for the Tetrahedron is

β(z) = c4(τ1, τ0)3 − c6(τ1, τ0)2

c4(τ1, τ0)3 = 64(z3 − 1)3

z3(z3 + 8)3 where z = τ1
τ0
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Bely̆ı Maps: Archimedean and Catalan Solids

Proposition
The 13 Archimedean Solids and the 13 Catalan Solids can be derived
from the 5 Platonic solids by 7 geometric operations:

Truncation
Bitruncation

Rectification
Birectification
Snubification

Rhombification
Rhombitruncation

Proposition (N. Magot and A. Zvonkin, 2001)
These seven operations can be algebraically recognized as Bely̆ı maps
P1(C) φ−→ P1(C). In particular, all of the Archimedean and Catalan
solids can be realized as Dessins d’Enfants.
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Geometric Operations: Definitions

1 Truncation: a face in place of each vertex (vertices → faces)

2 Rectification: truncation at the midpoints of all edges (edges → vertices)

3 Birectification: faces ↔ vertices

4 Bitruncation: truncation after birectification

5 Rhombitruncation: a truncation after rectification

6 Rhombification: a rectification after rectification

7 Snubification: “alternation” after truncation. (“Alternating” is the
process of removing opposites vertices.
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Geometric Operations: Examples
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Geometric Operations: Examples

Rhombification: Cuboctahedron → Rhombicuboctahedron

Snubification: Cube → Snub Cube
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Bely̆ı Maps: Archimedean and Catalan Solids

Approach (N. Magot and A. Zvonkin, 2001)
1 Determine the hypermap corresponding to a given geometric

operation.

2 Deduce the Bely̆ı map of this operation.

3 Compose this new function with a Platonic solid’s Bely̆ı map
to get an Archimedean solid’s Bely̆ı map.

4 The Bely̆ı map of a Catalan solid is the reciprocal of the
corresponding Archimedean solid’s Bely̆ı map.

PRiME 2013



Example

1 Hypermap of Truncation

2 Corresponding Bely̆ı map

φtruncation(w) = (4 w − 1)3

27 w

3 Truncated Tetrahedron Bely̆ı map

β = φtruncation ◦ βtetrahedron

β(z) = (1− 232z3 + 960z6 − 256z9 + 256z12)3

1728z3(z3 − 1)3(8z3 + 1)6
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Can We Realize
Other Solids As Dessins?
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The Johnson Solids

Definition
A Johnson Solid is a convex polyhedron with regular polygons as faces
but which is not a Platonic or Archimedean.

Proposition
There are 92 distinct Johnson solids. All Johnson Solids have rotational
symmetry groups isomorphic to either the cyclic group Zn or the dihedral
group Dn .
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The Johnson Solids

Proposition
Most of the 92 Johnson Solids can be realized via “operations” on:

Platonic Solids
Archimedean and Catalan Solids
Prisms and Antiprisms

Cupolae
Pyramids
Rotunda

These six operations are:
Bi: to take two copies of the solid and join them base-to-base.
Elongate: to attach a prism to the base of the solid.
Gyroelongate: to attach an antiprism to the base of the solid.
Augment: to join a pyramid or cupola to a face.
Diminish: to remove a pyramid or cupola from the solid.
Gyrate: to take a cupola on the solid and rotate it such that
different edges match up.

PRiME 2013



Prisms and Bipyramid

Prism
Rotation Group Dn

β(z) = (z2n + 14 zn + 1)3

108 zn (zn − 1)4

Bipyramid
Rotation Group Dn

β(z) = 108 zn (zn − 1)4

(z2n + 14 zn + 1)3
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Antiprisms and Trapezohedron

Antiprism
Rotation Group Dn

β(z) =

− (8 z2n − 20 zn − 1)4

256 zn (zn + 1)3 (8 zn − 1)3

Trapezohedron
Rotation Group Dn

β(z) =

−256 zn (zn + 1)3 (8 zn − 1)3

(8 z2n − 20 zn − 1)4
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New Results

Gyroelongated Bipyramid
Rotation Group Dn
β(z) =

1728 zn (z2n − 11 zn − 1)5

(z4n + 228 z3n + 494 z2n − 228 zn + 1)3

Truncated Trapezohedron
Rotation Group Dn
β(z) =
(z4n + 228 z3n + 494 z2n − 228 zn + 1)3

1728 zn (z2n − 11 zn − 1)5
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New Results (Continued)

Cupola
Rotation Group Zn

β(z) =
27 (zn − 1)4 (3 z2n − 16 zn + 1728)3

4 zn (5 zn − 54)3 (9 zn + 40)4

Elongated Pyramid
Rotation Group Zn
β(z) = 4 (−665857 + 470832

√
2) ·

zn (zn−1)4
[

zn−4 (41+29
√

2)
]3[

(−24+17
√

2) zn +1
]4 [

4 (2+
√

2) zn +1
]3
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Future Work

Meta-goal: Find Bely̆ı maps in order to realize all the Johnson solids as a
Dessin d’Enfants.

Partial result: we have found the Bely̆ı maps β for all the building
blocks of Johnson solids.
Write down factorizations β′ = φ ◦ β of the Bely̆ı maps β′ for all the
Johnson solids in terms of the Bely̆ı maps β for our building blocks
and functions φ associated to the operations.
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