Introduction

The study of arboreal Galois representations can be traced back to the work of Odioni in the 1980s [3, 4, 5]. He established the relationship between prime divisor densities of sequences and understanding the Galois groups attached to these trees constructed from the backwards orbit of a point. For our purposes, \(f(x) = x^2 + 1 \) over \(\mathbb{F}_p \) for an odd prime.

The principle goal for this project was to better understand arboreal Galois trees over finite fields and their construction. Specifically, we would like to understand when the field extensions should occur in a given tree. We also get heuristic evidence towards a conjecture by Jones and Boston in [2] about how often \(f \) should be stable over \(\mathbb{F}_p \).

Arboreal Galois Tree

- One thing we can study in dynamics is the **backwards orbit** of a point \(\alpha \), that is the pre-images of \(\alpha \) via the function \(f \). Equivalently, we are looking for the roots of the iterated function \(f^n(x) - \alpha \).
- Backwards orbits are linked to the study of arboreal Galois representations of the tree. This is defined to be the action of the absolute Galois group, \(G_K \), of a global field on trees of iterated pre-images under rational functions.
- Another property we can study here is the stability of \(f \). We say \(f \) is stable if \(f^n \), the nth iterate of \(f \), is always irreducible over a field \(K \).

Tools

- Capelli’s Lemma [2]: For a field \(K \) and \(f, g \in K[x] \), let \(\beta \in \bar{K} \) where \(g(\beta) = 0 \). Then \(g(f(x)) \) is irreducible if and only if both \(g \) is irreducible over \(K \) and \(f(x) - \beta \) is irreducible over \(K(\beta) \).
- Theorem by Jones-Boston [2]: \(f \) is a polynomial of degree 2 is stable if and only if \(f^n(\alpha) \) is never a square in the adjusted critical orbit over \(\mathbb{F}_p \), \(p \) odd.
- \(a \) is a **quadratic residue** if \(x^2 \equiv a \pmod{p} \) has solutions.
 - Legendre Symbol \(\left(\frac{a}{p} \right) = 1 \) if \(a \) is a QR of \(p \)\text{.} \hspace{1cm} \left(\frac{a}{p} \right) = -1 \) if \(a \) is a non-QR of \(p \).
- Critical orbit of \(f \) is
 \[
 0 \rightarrow 1 \rightarrow 2 \rightarrow 5 \rightarrow 26 \rightarrow \cdots
 \]

Motivating Questions

1. Is the index \([\text{Aut}(T) : G_k] \) finite?
2. As we travel along the backwards orbit in the tree, we see that sometimes we go to an extension field. We can ask as we travel from \(L_n \) to \(L_{n+1} \) of the tree, when is this extension trivial?
3. Which primes are not stable for \(f \)?

Results

- If \(p \equiv 3 \pmod{4} \), then 0 will be a good pullback point for \(x^2 + 1 \).
- When 0 is a good pullback point we get the following properties:
 - The extension at \(L_4 \) is \(\mathbb{F}_p \).
 - If \(p \equiv 7 \pmod{8} \) then \(L_8 \) will have the extension \(\mathbb{F}_p \).
 - If \(p \equiv 3 \pmod{8} \) then \(L_8 \) will have the extension \(\mathbb{F}_p \).
- The first iterate that is reducible corresponds to when the first trivial extension occurs, but after that, every iterate is reducible.
- QRs show when this first trivial extensions occur
 - \(\left(\frac{2}{p} \right) = 1 \) if \(p \equiv 1 \pmod{4} \)
 - \(\left(\frac{2}{p} \right) = 1 \) if \(p \equiv \pm 1 \pmod{8} \)
 - \(\left(\frac{2}{p} \right) = 0 \) if \(p \equiv \pm 1 \pmod{8} \)
 - \(\left(\frac{2}{p} \right) = \left(\frac{2}{p} \right) \left(\frac{p}{2} \right) \)
 - \(\left(\frac{p}{2} \right) = \left(\frac{2}{p} \right) \left(\frac{p}{2} \right) \)

Heuristics

We can begin ruling out primes that we know \(x^2 + 1 \) is not stable for by looking at the adjusted critical orbit.

<table>
<thead>
<tr>
<th>Primes/Level</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity Ruled Out</td>
<td>4783</td>
<td>2399</td>
<td>1203</td>
<td>602</td>
<td>321</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumulative Number</td>
<td>4783</td>
<td>7182</td>
<td>8387</td>
<td>8989</td>
<td>9310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumulative Percentage</td>
<td>49.86%</td>
<td>74.87%</td>
<td>87.44%</td>
<td>93.41%</td>
<td>97.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No DMS-21153782. We would also like to thank Pomona Research in Mathematics Experience (PRiME) for this opportunity.

References