Adinkras as Origami

Arsh Chhabra 1 Xuehuai He 1 Elena O’Grady 2 Melinda Yang 1 Cameron Thomas 3 Edray Goins 3

1Pomona College 2Reed College 3University of Georgia

Abstract

Around 20 years ago, physicists Michael Farak and Jim Gates invented Adinkras as a way to better understand Supersymmetry. These are biparti-
tite graphs whose vertices represent bosons and fermions, and whose edges represent operators which relate the particles. Recently, Doran et al. 2023 determined that Adinkras are a type of Bruhat (Bruhat) by explicitly exhibiting a Belyĭ map as a composition \(f: S \to P^2(\mathbb{C}) \). We are interested in exhibiting the same Belyĭ map as a composition \(f: S \to E(\mathbb{C}) \).

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors, and do not necessarily reflect the views of the National Science Foundation.

Adinkras

Let \(F_2 = \{ 0, 1 \} \) be the finite field of 2 elements. Fix an integer \(n \geq 2 \). Denote \(\mathbb{F}_2^n \) as the n-dimensional vector space over this field, where a vector \(v = (v_1, v_2, ..., v_n) \) has components \(v_i \in \mathbb{F}_2 \).

An Adinkra is a bipartite graph constructed as follows. Define \(\mathbb{F}_2^n \to \mathbb{F}_2 \) via counting the number of non-zero components \(v_i \). Choose a subspace \(C \subset \mathbb{F}_2^n \) and \(\beta \in \mathbb{F}_2^n \). We form an Adinkra from the elliptic curve \(\mathbb{E}(C) \), which has dimension \(n = 0 \). We form an Adinkra from the elliptic curve \(E : y^2 = x^3 - x \).

Examples of Adinkras as Belyĭ maps

Consider \(n = 4 \) and the subspace \(C = \{ 0000 \} \), which has dimension \(n = 0 \).

For any positive integer \(n \), consider the map \(\beta: \mathbb{F}_2^n \to \mathbb{F}_2 \) given by \(\beta(1) = 1 \) and \(\beta(0) = 0 \).

This is a \(\beta \)-Adinkra of degree \(n \).

The corresponding Doran et al. 2023 has one “black” vertex \(B = \{ 0 \} \), one “white” vertex \(W = \{ 0 \} \), which \(\beta \)-edges, and \(|\beta| = n \) faces

Belyĭ Maps and Dessins d’Enfants

Every compact, connected Riemann surface \(S \) is a smooth curve, that is, can be defined by a single polynomial \(f(x) \). A Belyĭ map is a natural function \(\beta: S \to P^2(\mathbb{C}) \) which satisfies \(\beta(\mathbb{E}(C)) = 1 \).

A Dessin d’Enfant is a bipartite graph on \(S \) corresponding to the projimage of \(\{ 0, 1 \} \) on \(P^2(\mathbb{C}) \) under a Belyĭ map \(\beta: S \to P^2(\mathbb{C}) \).

Adinkras as Dessins d’Enfant

In Doran et al. 2023 proved the following. For an integer \(n \geq 2 \), fix a primitive congruent 2nd root of unity \(\xi \). Let \(s \to \mathbb{E}(C) \to \mathbb{P}^2(\mathbb{C}) \) be a Belyĭ map that identifies \(\beta = 0 \) and \(\beta = 1 \).

We may tile \(S \) by \(\mathbb{E}(C) \) and \(\xi \) is a root of unity of order \(2n \). Let \(\xi = \sqrt{-1} \).

Examples of Belyĭ Maps as Adinkras

Consider \(n = 4 \) and the subspace \(C = \{ 0000 \} \), which has dimension \(n = 0 \).

For any positive integer \(n \), consider the map \(\beta: \mathbb{F}_2^n \to \mathbb{F}_2 \) given by \(\beta(1) = 1 \) and \(\beta(0) = 0 \).

This is a \(\beta \)-Adinkra of degree \(n \).

The corresponding Doran et al. 2023 has one “black” vertex \(B = \{ 0 \} \), one “white” vertex \(W = \{ 0 \} \), which \(\beta \)-edges, and \(|\beta| = n \) faces

References

