Homework 2: Topological Spaces

"Point set topology is a disease from which later generations will regard themselves as having recovered." - Henri Poincaré

1. Let X be a topological space and let A and B be subsets of X. Prove or disprove the following statements.

- a) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- b) $\overline{A \cap B} = \overline{A} \cap \overline{B}$

2. Let X be a topological space and let U be an open set in X. Is $U = \text{Int}(\overline{U})$? Give a proof or a counterexample.

3a) Consider (\mathbb{R}, F) where $U \in F$ iff U is a union of intervals (a, b) where a, $b \in \mathbb{Q}$. Is F the usual topology on \mathbb{R} ? Prove your answer.

b) Consider (\mathbb{R}, F) where $U \in F$ iff U is the union of intervals [a, b) where $a, b \in \mathbb{Q}$. Is F the half-open interval topology? Prove your answer.

4. Let X be a topological space and let $A \subseteq X$ such that $\overline{A} = X$. Let O be open in X. Prove that $O \subseteq \overline{A \cap O}$.

5. Let (X, d) denote a metric space, and let S and T be disjoint closed subsets of X. Prove that there exist disjoint open sets U and V such that $S \subseteq U$ and $T \subseteq V$.