Math 29

Homework problems for Exam 1
(1) Scaling and Units: Monarch butterflies fly 4500 kilometers when they migrate from Southern Canada to Mexico. On average, the body of a monarch is 9 centimeters long. On average, an American male is $5^{\prime} 9^{\prime \prime}$. If Monarchs were scaled up to the size of men, how many miles would their scaled up migration be?
(2) Concentrations: You need a 15% acid solution for a certain test, but your supplier only ships a 10% solution and a 30% solution. Rather than pay the hefty surcharge to have the supplier make a 15% solution, you decide to mix 10% solution with 30% solution, to make your own 15% solution. You need 10 liters of the 15% acid solution. How many liters of 10% solution and 30% solution should you use?
(3) Sampling: I want to estimate how many m \& m's I have in a jar. I add 30 skittles to the jar without removing any m \& m's. Then I take a sample of 35 candies and find that it contains 6 skittles. How many $\mathrm{m} \& \mathrm{~m}$'s were originally in the jar?
(4) Significant figure arithmetic Compute the following, rounding to the nearest significant digit: $(0.0766-0.0123)+\left(1.245 \times 10^{-3}\right)-$ $\left(4.998 \times 10^{-4}\right)$
(5) Percent: A hot air balloon in the shape of a sphere has a radius of 12 yards. If the radius of the balloon is increased by 1 meter, by what percent is the enclosed volume increased?
(6) Big and small numbers: Estimate $18^{-10,000}$.
(7) Estimation: A single strand of DNA can be represented by a string of bases. Each base is chosen from among the letters A, C, G, and T. Estimate how many distinct single strands of DNA there are which each contain 2 million bases where the first one million bases are chosen just from the letters A and C. Give your answer in scientific notation.
(8) Experimental error A student analyzing a sample obtains the results: $84.1,87.2,83.8$, and 80.3 . The theoretical value is 82.2 . Calculate the mean, error, percent error, deviation, and percent deviation of the student's results.
(9) Equations with logs Solve the following equation for x,

$$
\log _{2}(17.6)+3 \log (x)-2 \log (.067)=6 \log _{2}(104)
$$

