Math 30

Practice for Exam 1

1) Use the definition of the derivative to determine whether or not the function $f(x)=2 x|x|+3$ is differentiable at $x=0$. If it is differentiable at $x=0$, find $f^{\prime}(0)$.
2) The graph of $f(x)$ is given below. Draw the graph of $f^{\prime}(x)$. Label all the coordinates of all relevant points.

3) Let $f(x)=\frac{(2 x-1)^{2}}{(x-2)(x+2)}$. Evaluate the following limits. For each limit either show your work or write a sentence explaining how you arrived at your answer.
a) $\lim _{x \rightarrow-2^{-}} f(x)$
b) $\lim _{x \rightarrow-2^{+}} f(x)$
c) $\lim _{x \rightarrow \infty} f(x)$
d) $\lim _{x \rightarrow-\infty} f(x)$
4) Evaluate the limit.

$$
\lim _{t \rightarrow 0} \frac{\sin ^{3}(5 t) \cos (7 t)}{t^{2} \tan (4 t)}
$$

5) Find the derivative of the function

$$
\sqrt{\frac{1-\sec (x)}{1+\tan (x)}}
$$

6) Find $y^{\prime \prime}$ at the point $(3,2)$ for the function given implicitly by the equation $y^{3}+y=x^{2}+1$.
7) Let

$$
f(x)=\frac{3}{\sqrt{1+x+\sqrt{5 x}}}
$$

and suppose that $h(x)$ is a differentiable function such that $h(0)=1, h(1)=$ $0, h(2)=5, h^{\prime}(0)=2, h^{\prime}(1)=-1, h^{\prime}(2)=2$. Find the derivative of the function $f(h(x))$ at $x=2$.
8) Find the equation (or equations) of all lines through the point $(0,2)$ which are tangent to the curve $y=x^{3}$.

