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ABSTRACT

Motivated by proposed entangled molecular structures known as ravels, we introduce
a method for constructing such entanglements from 2-string tangles. We then show that
for most (but not all) arborescent tangles this construction yields either a planar θ4

graph or contains a knot.
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1. Introduction

The geometry of a molecule determines many of its properties, and for non-rigid
molecules the topology can play a role as well. In order to better understand the
effects of topology on molecular behavior, chemists have targeted topologically
complex molecular structures for synthesis. Knotted and linked molecules, which
were once such targets, have been successfully synthesized. However, chemists con-
tinue to develop new techniques to synthesize different types of knotted and linked
molecules as well as other non-planar structures. Castle, Evans, and Hyde [2] define
a ravel as a “local entanglement” of edges around a vertex which contains no knots
or links (see for example Fig. 1), and propose such structures as targets of molecular
synthesis. They assert that ravels may eventually be found within metal organic
frameworks as well as within other extended molecular frameworks. Furthermore,
since knotting and linking have been found in proteins and DNA-protein complexes,
they suggest that it is reasonable to look for ravels in biochemical structures as well.

The informal definition of a ravel given above can be formalized in several ways.
We give the following definition. Note that when we say a graph embedded in
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Fig. 1. An example of a ravel.

S3 is “planar” we mean that the embedding of the graph is isotopic to a planar
embedding.

Definition 1.1. Let B be a ball containing a graph G consisting of a vertex with n

edges whose second vertices lie in ∂B. Let Γ denote the graph obtained by bringing
these n vertices together within ∂B. If Γ is a θn graph which is non-planar but
contains no knots then the pair (B, G) is said to be an n-ravel and the embedded
graph Γ is said to be raveled.

Consider the relationship between a raveled graph and an almost unknotted
graph defined below.

Definition 1.2. Let Γ denote an abstractly planar graph embedded in S3. Suppose
that Γ is non-planar, yet for any edge e, the embedded graph Γ− e is planar. Then
we say Γ is almost unknotted (equivalently, almost trivial, minimally knotted,
or Brunnian).

If a θn graph embedded in S3 is almost unknotted, then it is also raveled.
Conversely, any raveled θ3 graph is almost unknotted. However, if n > 3, then the
definition of a raveled θn graph is weaker than that of an almost unknotted θn

graph. In fact, for any n, starting with a raveled θn we can obtain a raveled θn+1

which is not almost unknotted by adding an edge which is isotopic to an existing
edge.

Suzuki [7] gave the first example of an almost unknotted graph in 1970 by
finding a non-planar embedding of a handcuff graph which contained no knots or
links. Shortly afterward, Kinoshita [5] created an example of an almost unknotted
θ3 graph, which has since been known as Kinoshita’s θ-curve. Later, Suzuki [8]
generalized Kinoshita’s θ-curve by defining a family of almost unknotted θn graphs
for all n ≥ 3. More recently Kawauchi [4] and Wu [9] have independently shown
that every planar graph with no vertices of valence one has an almost unknotted
embedding in S3.

There is a natural relationship between 4-ravels and 2-string tangles. In
particular, by starting with a projection of a 2-string tangle B and replacing a
crossing with a vertex we obtain a pair (B, G) where G consists of a vertex with 4
edges. For example, we replace a crossing of the tangle in Fig. 2 by a vertex and
bring the endpoints together within ∂B to get a raveled θ4 graph. Note, we color
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B

Fig. 2. We obtain a ravel from this tangle by replacing a crossing by a vertex as indicated.

B
…

…

2n

2n

Fig. 3. An infinite family of ravels can be obtained from this infinite family of tangles.

the strings with different colors to make it easier to see. We can obtain infinitely
many similar raveled θ4 graphs by starting with any of the tangles in the family
illustrated in Fig. 3.

The general question that we are interested in here is which families of 2-string
tangles can produce a 4-ravel in this way. We show that (in spite of the above
examples) in most cases a projection of an arborescent tangle does not yield a ravel
in this way.

2. Background

A 2-string tangle (B, T ) is said to be rational if it is homeomorphic to a trivial tangle
by an orientation preserving map of pairs. Given a tangle (B, T ), the numerator
closure N(T ) is obtained by joining the North endpoints of (B, T ) and joining
the South endpoints of (B, T ) both within ∂B. The denominator closure D(T ) is
obtained by joining the East endpoints of (B, T ) and joining the West endpoints of
(B, T ) both within ∂B.

Definition 2.1. A projection of a rational tangle A is said to be in alternating 3-
braid form if it looks like Fig. 4, where each box labeled Ai contains ai horizontal
twists with ai �= 0 for i > 1, and the signs of the rows of twists alternate.

It follows from Kauffman and Lambropoulou [3] that any projection of a rational
tangle can be isotoped fixing its endpoints to a projection which is in alternating
3-braid form.

Definition 2.2. Let A be a projection of a 2-string tangle. We let A′ denote the
graph obtained by replacing a crossing of A by a vertex. We define the vertex
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Fig. 4. A projection of a rational tangle in 3-braid form.

closure V (A′) as the graph obtained by joining all four endpoints to a vertex
within the boundary of the tangle ball.

Observe that V (A′) is only a θ4 graph if the crossing of A replaced by a vertex
is between two different strings (see Fig. 5). If V (A′) is not a θ4 graph, then by
definition A′ cannot be a ravel. In particular, if V (A′) contains a link then A′ is
not a ravel.

Definition 2.3. Let R and S be tangles. We define the sum R + S and product
R × S to be the tangles illustrated in Fig. 6.

Definition 2.4. A tangle of the form S = S1 + · · · + Sn where each Si is rational
is said to be Montesinos. The sum S1 + · · · + Sn is said to be in reduced form

if S cannot be written as a sum of fewer than n rational tangles.

A A'

Fig. 5. In this example, V (A′) is not a θ4 graph.

SR

R + S

S
R

R × S

Fig. 6. The sum and product of tangles R and S.
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Observe that if S1 + · · ·+ Sn is a Montesinos tangle in reduced form and n > 1,
then none of the Si is a horizontal tangle.

Definition 2.5. An arborescent tangle is a tangle obtained by addition and
multiplication of rational tangles. The algebraic expression for an arborescent tangle
S is said to be in reduced form if it contains a minimum number of rational tangles
and a minimum number of parentheses.

Note an arborescent tangle is also referred to as an algebraic tangle by some
authors.

3. Results

Proposition 3.1. Let A be a projection of a rational tangle in alternating 3-braid
form, and let A′ be obtained by replacing a crossing of A by a vertex v such that
V (A′) is a θ4 graph. Then V (A′) is either planar or contains a non-trivial knot,
and hence A′ cannot be a ravel.

Proof. We label the boxes of A as in Fig. 4. Let Ai be the box which contains
the vertex v. Let w be the vertex of V (A′) in the boundary of the tangle ball. By
isotoping the edges of V (A′) around w we can consecutively remove the crossings in
all of the Aj with j < i. Thus without loss of generality, we can assume that either
i = 1 or both i = 2 and a1 = 0. Furthermore, by isotoping the edges around v, we
can remove all of the crossings in Ai so that A′ looks like one of the illustrations in
Fig. 7.

Let R be the tangle obtained from Fig. 7 by replacing a neighborhood of v with
a 0-tangle as illustrated in Fig. 8. Then the two possibilities for R are illustrated in
Fig. 9. Observe that if i = 1, then the denominator closure D(R) is homeomorphic
to a subgraph of V (A′), and if i = 2 and a1 = 0, then the numerator closure N(R)
is homeomorphic to a subgraph of V (A′).

v

v

…

…
…

A' A'

An

An-1

A3

A2

An

An-1

…

…
…

A3

A4

Fig. 7. If i = 1 then A′ is illustrated on the left, and if i = 2 and a1 = 0 then A′ is illustrated
on the right.
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Fig. 8. We replace a neighborhood of v with this 0-tangle.
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R R

Fig. 9. If i = 1 then R is illustrated on the left, and if i = 2 and a1 = 0 then R is illustrated on
the right.

It follows from Schubert’s classification of 2-bridge knots and links [6] that for
any rational tangle R, D(R) is a trivial knot or link if and only if R is a horizontal
tangle and N(R) is a trivial knot or link if and only if R is a vertical tangle. However,
if either i = 1 and R is horizontal or i = 2, a1 = 0, and R is vertical, then V (A′)
is planar. Since V (A′) is a θ4 graph V (A′) cannot contain a link of more than one
component. Thus V (A′) is either planar or contains a non-trivial knot.

Proposition 3.2. Let S1, . . . , Sn be rational tangles and let S = S1 + · · ·+Sn be a
Montesinos tangle in reduced form with n > 1. Let S′ be obtained from a projection
of S by replacing a crossing by a vertex v such that V (S′) is a θ4 graph. Then V (S′)
contains a non-trivial knot, and hence S′ cannot be a ravel.

Proof. Let Si be the tangle in the sum S1 + · · ·+ Sn that contains v. Since n > 1,
S1 �= Sn. Hence, without loss of generality, we can assume that v is not contained in
Sn. Since S is in reduced form, Sn is a rational tangle which is not horizontal. Thus
it follows from Schubert [6] that D(Sn) is a non-trivial knot or link. Let e1 and e2

denote the edges of V (S′) which are disjoint from all Sj with j < i.
Then, we see from Fig. 10 that the simple closed curve e1 ∪ e2 contains D(Sn)

as a connected summand (possibly with a trivial knot). Since V (S′) is a θ4 graph,
it cannot contain a link with more than one component. Thus V (S′) contains a
non-trivial knot as required.
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Si
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e1

e2
v

Sn

Fig. 10. The black simple closed curve e1 ∪ e2 contains the knot D(Sn) as a connected summand.

By contrast with rational tangles and Montesinos tangles, replacing a crossing
in an arborescent tangle may create a ravel (see for example Fig. 2). Observe that
the arborescent tangles in Fig. 3 have the form (Q+P )×R where R, P , and Q are
rational tangles. To avoid arborescent tangles of this type, we make the following
definition.

Definition 3.3. Let S be an arborescent tangle written in reduced form such that
it contains one of the expressions: (R + (Q × P )), ((Q × P ) + R), (R × (Q + P )),
or ((Q + P ) × R), where R and at least one of P or Q is rational. Then we say S

contains a bad triangle.

Theorem 3.4. Let S be a non-rational arborescent tangle written in reduced form
with no bad triangles, and let S′ be obtained from a projection of S by replacing
a crossing by a vertex v such that V (S′) is a θ4 graph. Then V (S′) contains a
non-trivial knot, and hence S′ cannot be a ravel.

Proof. Since S is written in reduced form the number r of rational tangles in the
algebraic expression for S is minimal. Also, since S is not rational, r > 1. We prove
the theorem by strong induction on r. If r = 2, then S is a Montesinos tangle in
reduced form and hence the theorem follows from Proposition 3.2. Thus we assume
that r > 2.

Suppose the theorem is true for any arborescent tangle satisfying the hypotheses
which can be expressed algebraically with fewer than r rational tangles. Now with-
out loss of generality, we can assume that S = S1 + · · · + Sn where 2 ≤ n ≤ r

and each Si is a (possibly rational) arborescent tangle in reduced form containing
no bad triangles. Furthermore, without loss of generality, the vertex v replaces a
crossing in T = S1 + · · · + Sn−1.

Label the arcs of T as in Fig. 11. Since V (S′) is a θ4 graph, arc b cannot be
connected to arc e within Sn. Thus, without loss of generality, we can assume that
within Sn arc b is connected to arc c and arc e is connected to arc f . Hence the
four edges of V (S′) are a, d, b ∪ c, and e ∪ f . Since V (S′) is a θ4 graph, V (T ′)
must also be a θ4 graph, and by a slight abuse of notation the edges of V (T ′) are
the arcs a, b, d, and e.
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SnT

a
b

d
e

c

f

Fig. 11. Label the arcs of S as indicated.

First suppose that the tangle T = S1 + · · · + Sn−1 is not rational. Now T is
written in reduced form with no bad triangles. Since T is expressed with fewer than
r rational tangles, by our inductive hypothesis, V (T ′) contains a non-trivial knot
K. Without loss of generality, K is contained in one of the pairs of edges a ∪ d,
b ∪ e, or a ∪ b of V (T ′). Since a and d are also edges of V (S′), if K is in a ∪ d then
K is a non-trivial knot in V (S′). If K is in the pair of edges b ∪ e of V (T ′), then
K is a connected summand (possibly with a trivial knot) of a knot in the pair of
edges (b ∪ c) ∪ (e ∪ f) of V (S′). If K is in the pair of edges a ∪ b of V (T ′), then
K is a connected summand (possibly with a trivial knot) of a knot in the edges
a ∪ (b ∪ c) of V (S′). Thus if T is not rational, we are done.

Now suppose that T is a rational tangle. Since S = T + Sn and r > 2, Sn cannot
also be rational. Furthermore, since S is written in reduced form, Sn = R1×· · ·×Rq,
where q ≥ 2 and each Ri is an arborescent tangle. Since T is rational and S contains
no bad triangles, if q = 2 then neither R1 nor R2 is rational. Now, it follows from
Bonahon and Siebenmann [1] that for any arborescent tangle R1 × · · · × Rq with
either q > 2 or both q = 2 and neither R1 nor R2 rational, D(R1×· · ·×Rq) contains
a non-trivial knot or link. However, D(Sn) = D(R1 × · · · × Rq) cannot be a link
with more than one component since V (S′) is a θ4 graph. Thus V (S′) contains a
non-trivial knot in the pair of edges (b ∪ c) and (e ∪ f), and hence again we are
done.
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