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Abstract. We show that the edges of every 3-connected planar
graph except K4 can be colored with two colors so that every em-
bedding of the graph in S3 is asymmetric, and we characterize all
planar graphs whose edges can be 2-colored so that every embed-
ding of the graph in S2 is asymmetric.

1. Introduction

The study of graphs embedded in S3 is a natural extension of knot
theory. However, the motivation for the field came from the use of
topology to understand the symmetries of non-rigid molecules. While
the symmetries of most molecules can be represented by their isome-
tries in R

3, large molecules have greater flexibility and hence some of
their symmetries may be the result of homeomorphisms that cannot
be achieved by isometries. For large molecules, different colored edges
can be used to represent different types of molecular chains or differ-
ent types of bonds (see for example the representation of a molecular
Möbius ladder in [8]). Thus results about topological symmetries of col-
ored graphs embedded in R

3 have potential applications to the study
of molecular symmetries of large molecules.
For example, Liang and Mislow [5] used colored edges to distin-

guish molecular chains in their proof that certain families of proteins
are chiral (i.e., topologically distinct from their mirror images). After
observing that these proteins all contain the same embedding of the
complete graph K5 or the complete bipartite graph K3,3 in R

3, Liang
and Mislow [6] showed that by coloring some edges of the embedded K5

and K3,3 black and other edges grey they become topologically distinct
from their mirror image. They conjectured that their black and grey
graphs would remain topologically distinct from their mirror images
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even if they were embedded differently in R
3. Flapan and Li [3] proved

that in fact the edges of any non-planar graph can be colored black
and grey in such a way that every embedding of the graph in R

3 is
topologically distinct from its mirror image. Furthermore they showed
that, with the exception of the graphs K5 and K3,3, the edges of any
non-planar graph can be colored black and grey so that no embedding
of the graph in R

3 has any color preserving homeomorphisms.
Since the underlying abstract graphs of most molecules are planar, it

seems useful to extend the above results to planar graphs. In particular,
we would like to characterize those planar graphs whose edges can be
2-colored so that all of their embeddings in 2 or 3-dimensional space
are asymmetric.
In order to make our results precise, we begin with some definitions.

We use the term abstract graph to refer to any finite connected set of
vertices and edges such that every edge has two distinct vertices and
there is at most one edge between a given pair of vertices. A 2-coloring

of an abstract graph is an assignment of one of the words “black” or
“grey” to each edge of the graph. A color preserving automorphism of
a graph G is an automorphism of the graph taking grey edges to grey
edges and black edges to black edges. A color preserving homeomor-

phism of an embedding Γ of a 2-colored abstract graph in a space E is
a homeomorphism of (E,Γ) whose restriction to Γ is a color preserving
automorphism.
A 2-coloring of an abstract graph G is said to be intrinsically asym-

metric in a space E if for any embedding Γ of G in E every color pre-
serving homeomorphism of (E,Γ) restricts to the trivial automorphism
of Γ. A 2-coloring of an abstract graph G is said to be intrinsically chi-

ral in E if no embedding Γ of G in E has a color preserving orientation
reversing homeomorphism of (E,Γ). We use the word intrinsic in this
context to emphasize that the asymmetry or “chirality” depends only
on the 2-coloring of the abstract graph G and the space E and not on
the particular embedding of G in E.
Note that a 2-colored graph is intrinsically asymmetric (or intrin-

sically chiral) in R
3 if and only if it is intrinsically asymmetric (or

intrinsically chiral) in S3. However, symmetries are often easier to
work with in S3 than in R

3. Using the above terminology, Flapan and
Li proved the following:

Non-Planar Graph Theorem. [3] A non-planar 3-connected graph

has a 2-coloring which is intrinsically asymmetric in S3 if and only if

the graph is neither K3,3 nor K5. Furthermore, every non-planar graph

has a 2-coloring which is intrinsically chiral in S3.
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Observe that for planar graphs, regardless of how the edges are col-
ored, a planar embedding of the graph in S3 will have a color preserving
reflection through the plane containing the graph. Such a reflection re-
stricts to the trivial automorphism of the graph, and hence tells us
nothing about symmetries of the graph in S3. Hence we consider only
those orientation reversing homeomorphisms of S3 that restrict to a
non-trivial automorphism of the embedded graph. In particular, we
say that a 2-coloring of a graph G is intrinsically faithfully chiral in
a space E if for any embedding Γ of G in E, every color preserving
orientation reversing homeomorphism of (E,Γ) restricts to the trivial
automorphism on Γ. In Section 2, we prove the following:

Theorem 1. A 3-connected planar graph has an intrinsically asymmet-

ric 2-coloring in S3 if and only if the graph is not K4. A 3-connected

planar graph has an intrinsically faithfully chiral 2-coloring in S3 if and

only if the graph is not K4.

Combining our results about intrinsically asymmetric 2-colorings
from Theorem 1 and the Non-Planar Graph Theorem we have the fol-
lowing.

Corollary 1. A 3-connected graph has an intrinsically asymmetric 2-

coloring in S3 if and only if the graph is not K3,3, K5, or K4.

In order to state Theorem 2 we define some special graphs. A path

in a graph is a non-self-intersecting connected sequence of edges. The
double star graph Sn,m is the graph obtained by connecting the vertex
of degree n in K1,n and the vertex of degree m in K1,m by a path.
Observe that K1,1 is a single edge, K1,2 is a path of 2 edges, and S1,1

is a path consisting of at least 3 edges. In Section 3, we prove the
following:

Theorem 2. A planar graph has an intrinsically asymmetric 2-coloring

in S2 if and only if the graph is not a single vertex, a triangle, a square,

a pentagon, K4, K2,4, K1,n with n 6= 2, or Sn,m with n and m both odd

and not n = m = 1. A planar graph has an intrinsically faithfully chiral

2-coloring in S2 if and only if the graph is not a triangle, a square, a

pentagon, K1,n with n 6= 2, or Sn,m with n and m both odd and not

n = m = 1.

Before we begin, we briefly discuss a related (but different) concept
in graph theory. Albertson and Collins [1] defined an abstract graph
G to be r-distinguishable if the vertices of G can be colored with r
colors so that G has no non-trivial color preserving automorphisms.
The distinguishing number of an abstract graph G is then defined to
be the minimum value of r such that G is r-distinguishable.
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Whether or not a graph has an intrinsically asymmetric 2-coloring in
S3 (or S2) is distinct from whether the graph is 2-distinguishable both
because we are 2-coloring the edges rather than the vertices of the
graph and because we are considering homeomorphisms of embeddings
of the graph in S3 (or S2) rather than automorphisms of the abstract
graph. The distinction between considering homeomorphisms of em-
bedded graphs and automorphisms of abstract graphs is highlighted by
the observation that every complete graph Kn has distinguishing num-
ber n, whereas it follows from the Non-Planar Graph Theorem that
for all n > 5, Kn has an intrinsically asymmetric 2-coloring in S3. In
fact, relatively few automorphisms of Kn are the restriction of a home-
omorphism of (S3,Γ) for some embedding Γ of Kn in S3. See [2] for
a characterization of which automorphisms of Kn can be induced by a
homeomorphism of (S3,Γ) for some embedding Γ.
The distinction between coloring the vertices and the edges of a graph

is also relevant. For example, the graph consisting of a single edge is
2-distinguishable, yet no matter how the edge is colored and embedded
in S3 there will be a homeomorphism of S3 which restricts to a non-
trivial color preserving automorphism of the graph. On the other hand,
for a given graph G, one can define the line graph L(G) consisting of
a vertex for each edge of G and an edge between a pair of vertices
of L(G) if and only if the corresponding edges of G are adjacent. A
coloring of the vertices ofG which has no non-trivial coloring preserving
automorphism defines a coloring of the edges of L(G) which also has
no non-trivial coloring preserving automorphism. However, not every
graph is a line graph.
To further highlight the similarities and differences between these

concepts, the reader can compare our result of Theorem 1 that every
3-connected planar graph except K4 has an intriniscally asymmetric
2-coloring with the following result of Fukuda, Negami, and Tucker.

2-Distinguishability Theorem. [4] Every 3-connected planar graph

is 2-distinguishable except K4, K2,2,2, the 1-skeleton of a cube, the cone

over a 4-cycle, the cone over a 5-cycle, the double suspension over a

3-cycle, and the double suspension over a 5-cycle.

Thus while these concepts are related, a characterization of 2-distinguishable
graphs does not give a characterization of which graphs have an intrin-
sically asymmetric 2-coloring in S3 or S2.
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2. 3-Connected Planar Graphs in S3

Definition 2.1. Let Γ be an embedding of a graph G in S2. A com-
ponent A of S2 \ Γ is called a face of Γ. A cycle of Γ that lies in the
closure of A is called a boundary cycle of A.

Suppose that Γ is a planar embedding of a 3-connected graph. Then
every face of Γ has exactly one boundary cycle (hence in this case we
say the boundary cycle of the face rather than a boundary cycle of the
face). In addition, every edge of Γ lies in exactly two boundary cycles
and every vertex of Γ lies in at least three boundary cycles.

Lemma 2.1. Let G be a graph with a cycle C containing at least four

vertices, a, b, c, and d, in that order. Suppose for some embedding Γ
of G in S2, C is the boundary cycle of a face A whose closure is a disk.

Then there do not exist disjoint paths in G with endpoints a and c, and
b and d.

Proof. Since A is a component of S2 \ Γ, the interior of any path in Γ
is disjoint from A. Suppose that P is a path in Γ with endpoints a and
c. Since cl(A) is a disk and S2 is a sphere, B = S2 \ A is also a disk.
Thus P separates B into two regions, with vertex b in one region and
vertex d in the other. Now any path in Γ from b to d intersects P (see
Figure 1). �

a

b

d

c

P
A

Figure 1. A path in S2 \ A from b to d would intersect P .

Theorem 1. A 3-connected planar graph has an intrinsically asymmet-

ric 2-coloring in S3 if and only if the graph is not K4. A 3-connected

planar graph has an intrinsically faithfully chiral 2-coloring in S3 if and

only if the graph is not K4.

Proof. Let G be a 3-connected planar graph other than K4. By Whit-
ney’s Uniqueness Theorem [9], G has a unique embedding Γ in S2 and
every automorphism of G is induced by a homeomorphism of (S2,Γ).
Negami [7] proved that that any homeomorphism of (S2,Γ) that fixes
every vertex of the boundary cycle of some face of Γ induces the identity
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automorphism on Γ. Thus in order to prove that G has an intrinsically
asymmetric 2-coloring, it suffices to prove that we can 2-color G so that
every vertex of some face of Γ must be fixed by any color preserving
homeomorphism of (S2,Γ).

Case 1. Γ has a face A whose boundary cycle C has length n ≥ 4.

Label the vertices of C consecutively by 1, 2, . . . , n. Since G is 3-
connected, every vertex has degree at least 3. Thus there is a vertex
w adjacent to vertex 1 such that w 6= 2 and w 6= n. Suppose towards
a contradiction that w is one of the vertices 3, . . . , n − 1. By Lemma
2.1, every path in Γ from vertex 2 to vertex n must intersect 1w. This
means that every path in Γ from vertex 2 to vertex n must pass through
vertex 1 or vertex w. Removing the set {1, w} disconnects the graph,
contradicting our assumption that G is 3-connected. It follows that
w /∈ C.

 A

 
1 2

3

45

 A

 (a)  (b)

h(3)

h(4) h(5)

h(n)
h(A)

h(2)

h(1)

h(w)

w

n

Figure 2. If h(A) 6= A, vertex 2 would have degree 2.

We color the path w1234 grey as in Figure 2(a) and color the rest
of G black. Let h be a color preserving homeomorphism of (S2,Γ).
Then h fixes vertex 2 and either interchanges or fixes the edges 12 and
23. Suppose that h(A) 6= A. Then h(A) is a face of Γ containing the
edges 12 and 23 (see Figure 2(b)). However, this implies that vertex 2
only has degree 2, contradicting the assumption that G is 3-connected.
Thus h(A) = A, and since h takes the grey path to itself h fixes every
vertex in the boundary cycle of A.

Case 2. The boundary cycle of every face of Γ is a 3-cycle.

First observe that Γ must contain a vertex v of degree d ≥ 4, since
the only graph for which every face is a triangle and every vertex has
degree 3 is K4 [4], which we have excluded. Now the vertices adjacent
to v form a d-cycle with consecutive vertices, 1, 2, . . . , d. We color the



ASYMMETRIC 2-COLORINGS OF PLANAR GRAPHS IN S
3 AND S

2 7

1

2

34

d

v…

Figure 3. This 2-coloring of G fixes v23v.

edges v1, 12, 2v, v3 grey and color the remainder of the graph black
(see Figure 3).
Let h be a color preserving homeomorphism of (S2,Γ). Since vertex

3 is the only vertex of Γ adjacent to precisely one grey edge, h fixes
vertex 3. Also, since v is the only vertex adjacent to three grey edges, h
fixes vertex v. Since v is fixed, h must setwise fix the d-cycle 123 . . . d1
adjacent to v. However, h cannot interchange vertex 2 (which is ad-
jacent to two grey edges) with vertex 4 (which is not adjacent to any
grey edges). Thus h must fix every vertex of the face v23v.

It follows from Cases 1 and 2 that any 3-connected planar graph
other than K4 can be 2-colored so that it is intrinsically asymmetric,
and hence intrinsically faithfully chiral in S3.
Next we show that no 2-coloring of K4 is intrinsically faithfully chi-

ral in S3, from which it will follow that no 2-coloring is intrinsically
asymmetric in S3. We only need to consider 2-colorings of K4 with up
to three grey edges, since a 2-coloring with more than three grey edges
is equivalent to the coloring obtained by interchanging the grey and
black edges of K4. All such 2-colorings of K4 are displayed along with
a non-trivial color preserving automorphism in Figure 4.
The illustrations of K4 in Figure 4 can be viewed as the unique

embedding Γ of K4 in S2. Furthermore by Whitney’s Uniqueness The-
orem [9], each of the automorphisms listed in Figure 4 is induced by a
homeomorphism of (S2,Γ). Now each homeomorphism of (S2,Γ) can
be radially extended to obtain a homeomorphism g of (S3,Γ). Then if
necessary we can compose g with a reflection which pointwise fixes S2

to obtain an orientation reversing homeomorphism of (S3,Γ) inducing
the required automorphism of Γ. It follows that for each 2-coloring
illustrated in Figure 4 the given color preserving automorphism is in-
duced by an orientation reversing homeomorphism of (S3,Γ). Hence
there is no 2-coloring of K4 that is intrinsically faithfully chiral. It
follows that no 2-coloring of K4 is intrinsically asymmetric. �
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(23)

 1

2 3
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(12)(34)

 

 

1 grey edge 2 grey edges 3 grey edges

1

2 3
4

1

2 3
4

1

2 3
4

1

2 3
4

1

2 3
4

(23)

(24)

(23)

(12)

Figure 4. 2-colorings of K4.

3. Planar Graphs in S2

In this section, we classify the planar graphs that can be 2-colored
so that they are intrinsically asymmetric in S2. Observe that if h is a
homeomorphism of (S2,Γ) fixing a vertex v of degree at least 3, then
h either rotates or reflects the edges around v according to whether h
is orientation preserving or orientation reversing respectively.

Lemma 3.1. Let G be a 2-colored planar graph with a vertex v and

edges e1, e2, and e3 incident to v such that for any embedding Γ of G
in S2 the vertices of each ei are fixed by any color preserving homeo-

morphism of (S2,Γ). Then, G is intrinsically asymmetric in S2.

Proof. Suppose Γ is an embedding of G in S2 and h is a color preserving
homeomorphism of (S2,Γ). Since h fixes the vertices of e1, e2, and e3,
h cannot nontrivially rotate or reflect the edges around v. Thus h fixes
every edge incident to v. Now h a neighborhood N(v) to an isotopic
neighborhood h(N(v)). Thus h followed by an isotopy leaves N(v)
setwise invariant. We abuse notation and refer to the homeomorphism
obtained by composing h with the final stage of the isotopy as h.



ASYMMETRIC 2-COLORINGS OF PLANAR GRAPHS IN S
3 AND S

2 9

Define an orientation on ∂N(v) according to the order in which the
edges e1, e2, and e3 intersect ∂N(v). This gives us an orientation on
S2 which is preserved by h. Let w be a vertex which is adjacent to v.
Then h(w) = w and h(wv) = wv. Since h is orientation preserving,
h cannot reflect the edges incident to w. However, since vw is fixed,
h cannot rotate the edges around w. According to our definition of a
graph G is connected. Thus we can inductively conclude that h fixes
every vertex of Γ. Hence this 2-coloring of G is intrinsically asymmetric
in S2. �

Theorem 2. A planar graph has an intrinsically asymmetric 2-coloring

in S2 if and only if the graph is not a single vertex, a triangle, a square,

a pentagon, K4, K2,4, K1,n with n 6= 2, or Sn,m with n and m both odd

and not n = m = 1. A planar graph has an intrinsically faithfully chiral

2-coloring in S2 if and only if the graph is not a triangle, a square, a

pentagon, K1,n with n 6= 2, or Sn,m with n and m both odd and not

n = m = 1.

Proof. Suppose that G is a planar graph which is not a single vertex,
a triangle, a square, a pentagon, K4, K2,4, K1,n with n 6= 2, or Sn,m

where n and m are both odd and not n = m = 1.
Let Cd denote a cycle with d vertices. First suppose that G = Cd.

Then d > 5. Label the vertices of G consecutively by 1, 2, . . . , d. Now
color the paths 12 and 345 grey and color the rest of G black. Let h be
a color preserving automorphism of G. Then h(12) = 12 and h(345) =
345. Since d > 5, the black path 5 . . . d1 contains more than one edge
and thus cannot be interchanged with the black edge 23. Therefore
this 2-coloring has no non-trivial color preserving automorphisms, and
hence is intrinsically asymmetric.
Next suppose that G is a path of length n. Since G 6= K1,1, we must

have n > 1. Now color one of the edges which has a vertex of degree
1 grey, and color the rest of G black. Then this 2-coloring has no
non-trivial color preserving automorphisms, and hence is intrinsically
asymmetric. Thus we shall assume that G is neither a cycle nor a path.

Case 1. G contains a cycle, but has no cycle of length 3 or 4.

By the assumption of this case G contains a cycle. Thus G contains
a cycle C which, for some embedding of G in S2, bounds a face whose
closure is a disk. Since G is not a cycle, C contains a vertex with
valence at least 3. Label this vertex 1, and label the other vertices of
C consecutively by 2, . . . , n. Since G contains no cycle of length 3 or
4, n > 4. Let w be a vertex adjacent to vertex 1 such that w 6= 2 and
w 6= n.
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Subcase 1.1 w ∈ C

Then w is one of the vertices 3, . . . , n−1. Without loss of generality
we can assume that w is one of the vertices 3, . . . , ⌈n

2
⌉. Color the cycle

123 . . . w1 and the path 1n . . . (w + 1) grey (as in Figure 5) and color
the rest of G black.

1 2
 

 

3n

w+1 w

Figure 5. Every color preserving automorphism of G
fixes the vertices of the grey subgraph.

Let Γ be an embedding of G in S2 and let h be a color preserving
homeomorphism of (S2,Γ). Vertex 1 is fixed since it is the only vertex
with exactly three grey edges, and vertex w + 1 is fixed since it is the
only vertex with exactly one grey edge. It follows that h fixes the
vertices of the grey path 1n . . . (w + 1). Suppose that h reverses the

grey cycle 12 . . . w1. Since w(w + 1) is an edge of G, h(w(w + 1)) =

2(w + 1) must also be an edge of G. However since C is the boundary
cycle of a face whose closure is a disk for some (possibly different)
embedding of G in S2, by Lemma 2.1 G cannot contain both 1w and
2(w + 1). Therefore h must fix all of the vertices of the grey subgraph.
It then follows from Lemma 3.1 that this 2-coloring is intrinsically
asymmetric in S2.

Subcase 1.2 w /∈ C

In this case, we color the path w1 . . . n grey and color the rest of
G black. Let Γ be an embedding of G in S2 and let h be a color
preserving homeomorphism of (S2,Γ). If h exchanges vertices n and

w, then w(n− 1) would have to be an edge of G. However, this is
impossible since G has no cycle of length 4 (see Figure 6). Thus h fixes
the vertices of the grey path, and hence h fixes the edges 1w, 12, and
1n. It then follows from Lemma 3.1 that this 2-coloring is intrinsically
asymmetric in S2.

Case 2. G contains a cycle C of length 3.

Label the vertices of C by a, b, and c. Since G is connected but is not
a cycle, G contains an additional vertex x adjacent to C. Without loss
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1

2

n

w

n-1

Figure 6. If an automorphism inverted the grey path,
G would contain the edge w(n− 1).

of generality, G contains C ∪ax. If G = C ∪ax, then we color the path
xabc grey and color ac black. Now G has no non-trivial color preserving
automorphism, and hence this 2-coloring is intrinsically asymmetric.
Suppose that G has exactly four vertices and contains C ∪ax, but is

neither K4 nor C∪ax. Then without loss of generality, G = C∪ax∪bx.
In this case we color ax grey and color the rest of G black. Now G has
no non-trivial color preserving automorphism, and hence this 2-coloring
is intrinsically asymmetric.
Hence we assume that G contains at least 5 vertices. Then G has

a vertex y adjacent to the subgraph C ∪ ax. In Figure 7, we 2-color
all possible connected subgraphs H ≤ G spanned by the vertices a, b,
c, x and y which contain at least one 3-cycle. Since G is planar, H is
a proper subgraph of K5. Though there may be more than one way
of assigning letters to vertices, we list only one isomorphism class for
each subgraph.
At the bottom of each square in Figure 7, we list a pair of edges that

would need to be interchanged by any automorphism that exchanged
the endpoints of the grey path. However, in each case, the second edge
listed is not contained in the graph. Thus any color preserving auto-
morphism must fix all of the vertices of the grey path. In particular,
any such automorphism fixes vertex a and edges ab, ac and ax.
Now we color the subgraph H as above and color all of the remaining

edges of G black. Let Γ be an embedding of G in S2 and let g be a color
preserving homeomorphism of (S2,Γ). Then g fixes vertex a and edges
ab, ac and ax. Hence by Lemma 3.1 this 2-coloring of G is intrinsically
asymmetric in S2.

Case 3. G contains a cycle of length 4 but no cycle of length 3.

Let abcva be a 4-cycle of G. Since G is connected but is not a cycle,
without loss of generality G contains an additional vertex x which is
adjacent to a. Since G contains no 3-cycles, x is not adjacent to b or v.
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b

{ac, bx}

a a a

a a

a

a

a

a

a a

a

a

b b

b

b

b

b

b

b

b

b b

b

b

c c

c

c

c

c

c

c

c

c

c

c cx x

x

x

x

x

x

x

x

x

x

x x

y y

{ax, yb} {ax, yb}

y y

{ac, by} {ac, bx}

y

1 edge removed 2 edges removed 3 edges removed 4 edges removed 5 edges removed

{ab, xb}

y y y y

yyy

{ax, yb} {cx, cy} {ab, ay}

{ab, yb} {ab, xb} {ac, bx}

{ab, xc}

y

Figure 7. 2-colorings of subgraphs H ≤ G spanned by
a, b, c, x and y

Suppose that G does not contain the edge xc. Color the path vcbax
grey and color the rest of G black. Let Γ be an embedding of G in
S2 and let h be a color preserving homeomorphism of (S2,Γ). Since G
contains the edge av but not the edge cx, h must fix all of the vertices
on the grey path. Thus h fixes vertex a and the edges ax. av, and
ab. It now follows from Lemma 3.1 that this 2-coloring is intrinsically
asymmetric in S2. Thus we assume that G contains the edge xc.
By repeating the above argument for each of the other vertices of G

in place of x, we see that every vertex in G is either adjacent to both or
to neither of the vertices a and c. First suppose that all of the vertices
of G are adjacent to both a and c. Since G contains no 3-cycles, no pair
of vertices in G − {a, c} are adjacent. Thus G is isomorphic to K2,m

with m ≥ 3. Also, by the hypotheses of the theorem m 6= 4. If m = 3,
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then we color the graph as illustrated on the left in Figure 8. Since
a is the only degree 3 vertex incident to two grey edges, every color
preserving automorphism fixes every vertex on the grey path. Hence
this 2-coloring is intrinsically asymmetric in S2.

1

2

3

a c

1

2

3

4

a c

…

n

Figure 8. Intrinsically asymmetric 2-colorings of K2,3

and K2,n for n ≥ 5

In the case where m ≥ 5, we color every edge containing vertex a
grey except for a1 and a3 which are colored black, and we color every
edge containing vertex c black except for c2 and c3 which are colored
grey, as illustrated on the right in Figure 8. Let Γ be an embedding of G
in S2 and let h be a color preserving homeomorphism of (S2,Γ). Since
a is the only vertex adjacent to at least three grey edges h(a) = a, and
hence h(c) = c. Now by the uniqueness of their colorings, h(a1c) = a1c,
h(a2c) = a2c, and h(a3c) = a3c. Thus we can apply Lemma 3.1 to
conclude that this 2-coloring is intrinsically asymmetric in S2.
Hence we can assume that G contains abcva ∪ ax ∪ cx as well as

at least one vertex y which is adjacent to either b, v, or x and is not
adjacent to a or c. Let V = {a, c, y} and W = {x, b, v}. Since G has
no 3-cycles, G has no edges with both vertices in V or both vertices in
W . Consider the subgraph H of G spanned by the vertices in V ∪W
containing no additional vertices. ThenH is a subgraph of the bipartite
graph K3,3 with vertex sets V and W . Since G is a planar graph with
no 3-cycles, it follows that H is a proper subgraph of K3,3. All of the
possibilities for H are depicted in Figure 9.
We color the subgraphH as in the table and color all of the remaining

edges of G black. Now let Γ be an embedding of G in S2, and let g be
a color preserving homeomorphism of (S2,Γ). We label each endpoint
of the grey path with a number denoting the number of incident black
edges in H whose other vertex is incident to a grey edge. Note that any
edge of G with both vertices in H is itself in H . Thus the numbers in
the table at the endpoints of the grey path also represent the number
of black edges whose other vertex is incident to a grey edge in G. For
each entry in our table the two endpoints of the grey path have different
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1 edge removed 2 edges removed 3 edges removed

2

1

2

1 1

0

1

0

1

2

p p p

p

p

Figure 9. 2-colorings of the proper subgraphs of K3,3

numbers. Hence g fixes every vertex on the grey path. It follows that
in each case the vertex labeled p together with three incident edges
in H must be fixed by g. Thus by Lemma 3.1 this 2-coloring of G is
intrinsically asymmetric in S2.

Case 4. G contains no cycles.

Since G is not a single vertex, a path, or Sn,m with n and m both
odd, G contains some vertex with degree at least 3.

Subcase 4.1 There is a vertex v of degree at least 3 that is adjacent

to at least two vertices a and b of degree at least 2.

Since v has degree at least 3, there exists a vertex e adjacent to v such
that e 6= a, b. Let c and d be vertices adjacent to a and b respectively
such that c 6= v and d 6= v. Let cave, and bd be colored grey and the
rest of G be colored black (see Figure 10).

e

c a v b d

Figure 10. A 2-coloring of Subcase 4.1.
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Observe that since G has no cycles, the edge vb is the only black
edge which goes between the two grey paths. Thus any color preserv-
ing automorphism fixes vb and hence fixes every vertex on both grey
paths. Thus for any embedding Γ of G in S2, any color preserving
homeomorphism of (S2,Γ) fixes edges va, ve, and vb. Now by Lemma
3.1 this 2-coloring of G is intrinsically asymmetric in S2.

Subcase 4.2 Every vertex of degree at least 3 is adjacent to at most

one vertex of degree at least 2.

First suppose there are at least three vertices, a, b, and c of degree
at least 3. Since G is connected, there must exist a path between every
pair of vertices. Let P1 be a path in G from a to b and let P2 be a path
in G from a to c. If the interiors of P1 and P2 share a vertex, then
there is a vertex of degree at least 3 which is adjacent to more than
one vertex of degree at least 2 (see the left side of Figure 11). If the
interiors of P1 and P2 are disjoint, then the same can be said about
vertex a (see the right side of Figure 11). As this is contrary to this
subcase, G has at most two vertices of degree at least 3.

a

b c

a

b c

Figure 11. A vertex of degree at least 3 contained in
P1 ∩ P2.

It now follows from the assumption of this subcase that G = Sn,m.
Since n and m are not both odd, without loss of generality we can
assume that n is even. Let v be a vertex of degree n + 1, let a be the
unique vertex adjacent to v with degree at least 2, and let b be a vertex
of degree 1 adjacent to v. We color vb grey (as in Figure 12) and color
the rest of G black. Let Γ be an embedding of G in S2 and let h be a
color preserving homeomorphism of (S2,Γ).

v

b

a

Figure 12. A faithfully intrinsically chiral 2-coloring of Sn,m.
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By the choice of v, a, and b, each of these vertices must be fixed by
h. Now either h fixes all of the vertices adjacent to v or h reflects the
vertices incident to v on either side of the path avb. However, vertex v
is of odd degree so there cannot be the same number of vertices adjacent
to v on either side of avb. Thus h fixes all of the vertices adjacent to v
and hence by Lemma 3.1 this 2-coloring of G is intrinsically asymmetric
in S2.

The exceptional cases:

First suppose G = K4. Each of the possible 2-colorings ofK4 is listed
in Figure 4 together with a non-trivial color preserving automorphism.
We saw in the proof of Theorem 1 that each of these automorphisms
is induced by a homeomorphism of the pair (S2,Γ) where Γ is the
embedding ofK4 as the 1-skeleton of a tetrahedron. Thus, no 2-coloring
of K4 is intrinsically asymmetric.

1

2

3

4

a c
2 1

a

c

3

4

Figure 13. All paths from a to c have distinct colorings.

Next suppose that G = K2,4. Then G consists of four paths of length
2 between the vertices a and c. First, we consider the case where the
four paths have distinct colorings. Without loss of generality, K2,4 is
colored as on the left in Figure 13. If we embed the colored K2,4 in S2

as on the right in Figure 13, then the color preserving automorphism
(34)(ac) is induced by rotating S2 by 90◦ around a horizontal axis.
Now suppose that at least two paths between vertices a and c have

the same coloring, say a4c and a3c. If we embed the colored K2,4 in S2

as in Figure 14, then the automorphism (34) is induced by the color pre-
serving reflection through the plane containing 1c2a1. It follows from
these two cases that there is no 2-coloring of K2,4 which is intrinsically
asymmetric in S2.
For the remaining exceptional graphs we will prove that there is no

faithfully intrinsically chiral 2-coloring in S2, from which it will follow
that there is no intrinsically asymmetric 2-coloring in S2. If G is a
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1

2

3

4

a c 2 1
a

c

3

4

Figure 14. a4c and a3c have the same coloring.

single vertex, then G has no edges to color, and thus there is no 2-
coloring that is intrinsically faithfully chiral. If G is a single edge (i.e.,
G = K1,1) then G has no faithfully intrinsically chiral 2-coloring in
S2. We begin by considering Cd with d ≤ 5. Figure 15 illustrates all
colorings of C3, C4, and C5 (up to switching black and grey). In each
case, we list a color preserving automorphism which is induced by a
reflection of S2 when Cd is embedded as a great circle. It follows that
no 2-coloring of C3, C4, or C5 is faithfully intrinsically chiral in S2.
Next, we consider 2-colorings of K1,n. Let m be the number of grey

edges in the coloring. Let Γ be an embedding of the 2-colored graph in
S2 such that the grey edges are grouped together and the black edges
are grouped together, as in Figure 16. Regardless of whether n or m is
even or odd, a reflection through the middle of the group of grey edges
and the middle of the group of black edges is an orientation reversing
color preserving homeomorphism of (S2,Γ). Hence, no 2-coloring of
K1,n is faithfully intrinsically chiral in S2.
Now consider a 2-colored Sn,m with n and m odd where vertex v1

has degree n+ 1 and vertex v2 has degree m+ 1. We will refer to the
edges with a vertex of degree 1 as “pendant” edges. Since m and n
are odd the number of pendant edges adjacent to each vi is odd. Thus
at each vi there are an odd number of pendant edges of one color and
an even number of pendant edges of the other color. We embed Sn,m

in S2 as Γ so that at vertex vi the odd number of pendant edges of
a single color are in the center and the remaining pendant edges are
divided evenly on either side (see Figure 17). Then there is a reflection
of (S2,Γ) inducing a non-trivial color preserving automorphism of Γ.
Hence, no 2-coloring of Sn,m is faithfully intrinsically chiral in S2.

Intrinsically faithfully chiral 2-colorings of K4 and K2,4 in S2
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Figure 15. 2-colorings of C3, C4, and C5.

…
…

…
…

m n-m

Figure 16. An embedding of a 2-colored K1,n with re-
flectional symmetry.

We now prove that the 2-coloring ofK4 in the lower right hand corner
of Figure 4 is faithfully intrinsically chiral. By Whitney’s Uniqueness
Theorem [9], the embedding Γ illustrated in Figure 18 is the only em-
bedding of K4 in S2 up to homeomorphism. Suppose that h is an
orientation reversing homeomorphism of (S2,Γ) inducing a non-trivial
color preserving automorphism on Γ. Since h must take the grey path
to itself, it follows that h restrict to the automorphism (12)(34) on Γ.
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…
…

…

…
v
2

v
1

…

Figure 17. An embedding of a 2-colored Sn,m with re-
flectional symmetry.

However, by composing h with the rotation illustrated in Figure 18
we obtain an orientation reversing homeomorphism of (S2,Γ) which
restricts to the identity automorphism on Γ. However, such a homeo-
morphism could not be orientation reversing since it would preserve the
orientation of a disk around each vertex in S2. Hence this 2-coloring is
indeed faithfully intrinsically chiral.

2
1

3

4

Figure 18. A rotation inducing (12)(34) on Γ.

Finally, we consider a 2-coloring of K2,4 where the four paths be-
tween vertex a and vertex c are distinctly colored (as in Figure 13).
We illustrate all possible embeddings of this colored K2,4 (up to home-
omorphism) in Figure 19. Suppose that there is an orientation revers-
ing homeomorphism h of some (S2,Γi) which restricts to a non-trivial
color preserving automorphism on Γi. Because of the coloring, this
automorphism must be (34)(ac).
However, no homeomorphism of (S2,Γ1) or (S

2,Γ2) can interchange
vertices a and c because the edges around one of these vertices alternate
between black and grey while the edges around the other vertex do not.
Thus K2,4 must be embedded in S2 as Γ3. Now composing h with a
rotation by 180◦ about an axis through vertices 1 and 2, we obtain an
orientation reversing homeomorphism of (S2,Γ3) inducing the trivial
automorphism on Γ3. However, again such a homeomorphism could
not be orientation reversing since it would preserve the orientation of
a disk around each vertex in S2. It follows that this 2-coloring of K2,4

is faithfully intrinsically chiral in S2. �
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2 1
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c

3

4

2

1

a

c

3

4

2

1
a

c

3
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Γ
1

Γ
2

Γ
3

Figure 19. The embeddings of K2,4 in S2.

4. Conclusion

Theorem 1 characterizes which 3-connected planar graphs have a
2-coloring which is intrinsically asymmetric or intrinsically faithfully
chiral in S3. Theorem 2 characterizes which planar graphs have a
2-coloring which is intrinsically asymmetric or intrinsically faithfully
chiral in S2. Observe that if a planar graph has a 2-coloring which is
intrinsically asymmetric in S3, then that 2-coloring is also intrinsically
asymmetric in S2. Thus the exceptions in Theorem 2, are examples of
1-connected and 2-connected planar graphs which have no 2-coloring
that is intrinsically asymmetric in S3. However, the problem of char-
acterizing all 1-connected and 2-connected planar graphs which have
an intrinsically asymmetric or intrinsically faithfully chiral 2-coloring
in S3 remains open.

References

[1] Albertson, M.O., Collins, K.L., Symmetry breaking in graphs, Electron. J.

Combin, 3 (1996), 1-17.
[2] Flapan, E., Rigidity of graph symmetries in the 3-sphere, J. Knot Theory and

its Ramifications, 4 (1995), 373-388.
[3] Flapan E., Li, D.L., Asymmetric two-colourings of graphs in S3. Math. Proc.

Camb. Phil. Soc., 132 (2002), 267-280.
[4] Fukuda, T., Negami, S., Tucker T.W., 3-connected planar graphs are 2-

distinguishable with few exceptions Yokohama Math. J. 54 (2008), 143-153.
[5] Liang, C., Mislow, K., Topological chirality of proteins, J. Am. Chem. Soc.

116 (1994), 3588-3592.
[6] Liang, C., Mislow, K., Topological chirality of minimally colored Kuratowski

graphs, Croatica Chemica Acta 70 (1997), 735-744.
[7] Negami, S., The distinguishing number of graphs on closed surfaces, Discrete

Math. 312 (2012), 973-991.
[8] Simon, J., Topological chirality of certain molecules, Topology 25 (1986), 229-

235.
[9] Whitney, H., Congruent graphs and the connectivity of graphs, Amer. J. Math

54 (1932), 150-168.



ASYMMETRIC 2-COLORINGS OF PLANAR GRAPHS IN S
3 AND S

2 21

Department of Mathematics, Pomona College, Claremont, CA 91711,

USA

Department of Mathematics and Computer Science, Denison Univer-

sity, Granville, OH 43023, USA

Department of Mathematics, Pomona College, Claremont, CA 91711,

USA


