Journal of Knot Theory and Its Ramifications, Vol. 10, No. 8 (2001) 1143-1154
© World Scientific Publishing Company

INTRISICALLY n-LINKED GRAPHS

ERICA FLAPAN* and JAMES POMMERSHEIM'

Department of Mathematics, Pomona College, Claremont, CA 91711, USA
* eflapan@pomona.edu
t jpommersheim@pomona.edu

JOEL FOISY

Department of Mathematics, SUNY Potsdam, Potsdam, NY 13676, USA
foisyjs@potsdam.edu

RAMIN NAIMI

Department of Mathematics, Occidental College, Los Angeles, CA 90041, USA
rnaimiQozy.edu

Received 6 May 2000
Revised 12 April 2001

ABSTRACT

For every natural number n, we exhibit a graph with the property that every em-
bedding of it in R3 contains a non-split n-component link. Furthermore, we prove that
our graph is minor minimal in the sense that every minor of it has an embedding in R3
that contains no non-split n-component link.

1. INTRODUCTION

Conway and Gordon [CG] and Sachs [Sa] proved that the complete graph on six vertices,
K, is intrinsically linked; that is, every embedding of K in R® contains a homologically
non-trivial link of two components. Furthermore, Sachs showed that every graph which
can be obtained from Kg by a finite sequence of AY moves (i.e., replacing a triangle by a
Y) and a finite sequence of YA moves (i.e., replacing a Y by a triangle) is also intrinsically
linked. The graph K together with the six graphs that can be obtained in this way are
known as the Petersen family of graphs. A graph H is said to be a minor of a graph G
if H can be obtained from G by deleting and/or contracting a finite number of edges. A
graph G is said to be minor minimal with respect to a property if G has the property, but
no minor of G has the property. Robertson, Seymour, and Thomas [RST] proved that a
graph is minor minimal with respect to being intrinsically linked if and only if it is in the
Petersen family.

The concept of an intrinsically linked graph has a natural generalization to links of n
components. We say that a link L is split if there is an embedding of a 2-sphere F in
R3 — L such that each component of R3 — F contains at least one component of L.

Definition. For any natural number n, we define a graph G to be intrinsically n-linked
if every embedding of G in R® contains a non-split link of » components.

As stated above, the results of [RST] completely characterize intrinsically 2-linked
graphs. Intrinsically 3-linked graphs were investigated in [FNP], where it was shown that
K is the smallest complete graph that is intrinsically 3-linked. However, the question of
whether Ko is minor minimal with respect to being intrinsically 3-linked was left open,
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and indeed no minor minimal intrinsically 3-linked graph was given. In this paper, for
each n > 2, we construct a graph that is intrinsically n-linked, and which is minor minimal
with respect to this property. In particular we prove the following theorems.

4, 1, 4, 1,

Yy

6, 3, 6, 3

FIGURE 1. The graph G(n) is intrinsically (n + 1)-linked

Theorem 1. For every natural number n, let G(n) denote the graph illustrated in Figure 1.
Then G(n) is intrinsically (n + 1)-linked.

Theorem 2. For every natural number n, the graph G(n) is minor minimal with respect
to being intrinsically (n + 1)-linked.

One particular type of non-split link resembles the chain of a necklace. Formally, we
define an n-necklace to be a link Ly U Lo U --- U L, such that foreachi=1, ... m —1,
L;UL;y, is non-split and L, U L, is non-split. For each n > 2, we construct a graph F(n)
which has the property that every embedding of F(n) in R® contains an n-necklace. In
particular the following is a corollary to the proof of Theorem 1.

Corollary. For everyn > 3, let F(n) denote the graph illustrated in Figure 2. Then every
embedding of F(n) in R3 contains an n-necklace.

FIGURE 2. Every embedding of the graph F(n) contains an n-necklace

By definition, a 3-necklace L; U Lp U L3 is pairwise non-split in the sense that for each
i#j, L;UL; is non-split. The graph F(3) is the first known example of a graph such that
every embedding of it contains a pairwise non-split link of 3-components. The existence of
such a graph suggests the problem of finding a graph Q(n) for each n > 3 such that every
embedding of Q(n) contains a pairwise non-split link of n-components.

Motwani, Raghunathan, and Saran [MRS] proved that if a graph G is intrinsically
linked, and a graph G’ is obtained from G by replacing a triangle in G by a Y, then G’
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is also intrinsically linked. It is easy to see that their proof can be modified to show that
the analogous statement is true for intrinsically n-linked graphs. Thus all of the graphs
that can be obtained from G(n) by replacing finitely many triangles by Y’s will also be
intrinsically (n + 1)-linked.

Since G(1) is one of the Petersen graphs (cf. [Sa]), it follows from results of [RST]
(stated above) that every minor minimal intrinsically 2-linked graph can be obtained from
G(1) by a finite sequence of AY and YA moves. One might ask if the analogous statement
holds for intrinsically n-linked graphs. That is, can every minor minimal intrinsically n-
linked graph be obtained from G(n — 1) by a finite sequence of AY and YA moves? This
is not the case in general. In the final section of this paper we exhibit a minor minimal
intrinsically 3-linked graph that cannot be obtained from G(2) by a finite sequence of
AY and YA moves. Nonetheless, it follows from [RS| that for every n € N, there are
only finitely many minor minimal intrinsically n-linked graphs. For n > 3, it would be
interesting to determine the complete list of such graphs.

2. CONSTRUCTION OF THE GRAPHS G(n)

Let E denote the graph that is illustrated in Figure 2. The reader will notice that this
graph is the same as G(1), which was introduced above. (Sachs [Sa] refers to this graph as
Ky 4)- This graph is one of the Petersen graphs and hence is minor minimal with respect
to being intrinsically 2-linked. Figure 3 illustrates a particular embedding of G(1) in R3,
which will be useful in the proof of Theorem 2.

4 1

FiGURE 3. The graph E is intrinsically linked

The graph G(n) can be constructed as follows. We start with n distinct copies of E,
which we will denote by E1,..., E,, where the vertices of E; are labelled by 1;,...,6;, z;
and y; corresponding to the labeling of the vertices of E. We create the graph G(n) from
U~, E; by identifying the pair of vertices x; and yi+1, and adding an edge between the
pair of vertices 1; and 4;1, between the pair of vertices 2; and 5;41, and between the pair
of vertices 3; and 6;,1, for each i = 1,...,n — 1. We illustrate an embedding of G(2) in
Figure 4. A non-split link of three components is highlighted.

Observe that in Figure 4, if we ignore the vertex labels then the embedding of F5 can
be obtained from the embedding of E; by performing a rotation by 180°. For any natural
number n, we create an embedding of G(n) as follows. Start with the embedding of E; that
is illustrated in Figure 3. Then for each ¢ = 2,...,n, sequentially embed E; by rotating
the embedding of E;_; by 180°. In Figure 5, we illustrate this embedding of G(3) with a
non-split link of four components highlighted.
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FIGURE 4. An embedding of G(2) with a non-split link of three components
highlighted

FIGURE 5. An embedding of G(3) with a non-split link of four components
highlighted

By inspection we can see that for any n, this embedding of G(n) contains a non-split
link of (n 4+ 1) components. In Section 3, we will prove that every embedding of G(n)
contains a non-split link of (n + 1) components.

3. G(n) IS INTRINSICALLY (7 + 1)-LINKED

To prove Theorem 1, we will actually prove a slightly stronger statement. We will show
that every embedding of G(n) contains a link L = Ly UL U---U L4, such that each L;
has non-zero mod 2 linking number with L; ;. For any pair of disjoint simple closed curves
A and B in R3, we denote the mod 2 linking number of A and B by w(A, B). With this
notation in hand, we prove the following lemma using an elementary homology argument.

Lemma 1. Let G be a graph embedded in R® containing simple closed curves C1, Cs, Cs,
and Cy such that the following properties hold.

a) C1 and Cy are disjoint from each other and from both C and Cj.

b) C> and Cs intersect in precisely one vertez .

C) w(Cl,Cz) =1 and w(C3, C4) =1.

d) There are vertices u# z in Ca and v# x in C3 and a path P in G with endpoints u
and v whose interior is disjoint from each of the C;.

Then there exists a simple closed curve S C (C2 U C3 U P) such that w(S,Cy) = 1 and
w(S, C4) =1.

Proof. We know that [Cs] is non-trivial in H;(R3 — Ci;Z,), and [Cs] is non-trivial in
Hi(R?® — Cy; Zsy). If either [C») is non-trivial in Hy(R® — Cy; Zsz), or [Cs] is non-trivial in
H1(R3 — Cy; Zy), then we are done. So we assume that this is not the case. Let D, denote
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a path in C; with endpoints u and z, and let D3 denote a path in C3 with endpoints v
and z. Let A= DyUD3UP. »

First suppose that [A] is non-trivial in either Hq(R3 — C1;Z2) or Hi(R3 — Cy;Zs).
Without loss of generality we assume that [A] is non-trivial in Hy(R3 — Cy; Z,). If [4] is
also non-trivial in H; (R3 — Cy; Z), then we can let S = A. So we assume that [A4] is trivial
in H,(R3—Cy;Zs). Let B denote the simple closed curve obtained from C3UA by omitting
the interior of the arc D3. In H;(R3 — Cy;Z3) we have the equation [Cs] + [A] = [Bs].
Thus [Bs] must be non-trivial in Hy(R3 — Cy;Z,). In Hi(R® — Cy;Z,) we also have the
equation [C3] + [A] = [Bs). Thus [Bs] must also be non-trivial in Hy(R® — Cy;Z3). So we
can let S = Bs.

So now we assume that [A] is trivial in both H;(R3 — C1;Z;) and H;(R® —C4; Z3). Let
S denote the simple closed curve obtained from C; U C3 U P by removing the interiors
of the arcs Dy and D3. Then we have the equation [C2] + [C3] + [A] + [S] = 0 in both
Hi(R3 — Cy;Z) and H;(R3 — Cy;Zs). It follows that [S] is non-trivial in both H;(R3 —
Cl;Zz) and Hl(R3 - C4;Z2). (]

We are now ready to prove Theorem 1, which states that the graph G(n) is intrinsically
(n + 1)-linked.

Proof of Theorem 1. We will use induction on n to prove the following more specific
statement, from which our theorem follows.

Claim: Every embedding of G(n) in R® contains an (n+1)-component link L = L, UL,U
-++U Lp1 such that L; contains vertex y1, Ln4+1 contains vertex z,, and w(L;, Liz1) =1
fori=1,...,n.

Proof of Claim: For n = 1, we know from Sachs’ Theorem [Sa] that every embedding
of G(1) in R® necessarily contains a link L = L; U Ly such that w(L1,Ls) = 1 and L,
contains y; and Lo contains z;.

We now assume the claim is true for G(n — 1) and show that it holds for G(n). Suppose
that G(n) is embedded in R3. Then G(n—1) C G(n) contains a link L = Ly ULyU---ULy,
such that L, contains the vertex y;, L, contains the vertex z,—1 and w(L;, L;+1) = 1 for
i=1,...,n—1. Also, E, contains a 2-component link, whose components we denote by
C3 and Cy, such that w(Cs3, C4) = 1 and Cj5 contains z,—; and Cy4 contains z,. Now since
L., is contained in G(n — 1) and contains z,_1, it must contain at least two of the vertices
1p-1, 2pn—1, Or 3,_1. Also since Cj is contained in F, and contains z,_; it must contain
at least two of the vertices 4,, 5., or 6,. Thus L, U C3 must contain one of the pairs of
vertices {1n—1,4n}, {2n-1,5n}, or {3n—1,6,}. Without loss of generality, L, UC3 contains
{1n-1 ) 477,}

Nowlet Cy = Lp_1, C2 = L, u = 11, v = 4,, and P = 1,_14,. We want to
apply Lemma 1 to C;, C5, Cs, and Cy, but first we make some observations. Since C} is
contained in G(n—1) — {z,—1} and C; and Cy are contained in E,, C is disjoint from Cj3
and Cy4. Also because C; and C, are components of L they are disjoint, and since Cs and
C, are components of a link they are disjoint. Finally since Cy is contained in E, — {Zn_1}
and C; is contained in G(n—1), C4 is disjoint from C,. Furthermore, since C3 is contained
in G(n — 1) and Cj is contained in E, they intersect only at the vertex z,-1. Thus we
can apply Lemma 1 to conclude that there is a simple closed curve S in C, UC3 U P such
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that w(Ln_l, S) = w(C’l, S)=1and w(C'4, S)=1.Let K=LiULU---ULp,_1USUCy4.
Then K is an (n + 1)-component link that satisfies our claim.
Hence we have proved our claim, and thus the theorem is proven as well. O

4. EVERY EMBEDDING OF F(n) CONTAINS AN n-NECKLACE

We now construct the graph F(n) as follows. We start with G(n) and identify the
vertices y; and z,, to a vertex which we still call z,,. Then we add edges between the pair
of vertices {1,,, 41}, between the pair of vertices {2,,51}, and between the pair of vertices
{3,,61}. The graph F(n) is illustrated in Figure 2. The corollary below follows from the
proof of Theorem 1.

Corollary. For n > 3, let F(n) denote the graph illustrated in Figure 2. Then every
embedding of F(n) in R® contains an n-necklace.

Proof. Let F(n) be embedded in R3. We choose an expansion of the vertex z, to an
edge e with vertices y; and z, such that y; is connected to vertices {41, 51,6:} and z, is
connected to vertices {1,,2x,3,}. This embedded expansion determines an embedding of
the subgraph G(n). By the proof of Theorem 1, G(n) contains an (n + 1)-component link
LyULyU---ULyy such that Ly contains the vertex y;, L4 contains the vertex z, and
w(L;y Liy1) = 1 fori=1,...,n. From here the proof is similar to that of Theorem 1. Since
L, contains ¥; it must contain two of the vertices {41, 51,61}, and since L, contains z,
it must contain two of the vertices {1,,2n,3,}. Thus without loss of generality, L1 U L4
contains the pair {51,2,}. By hypothesis n > 3, hence L, is disjoint from L.

We now collapse the edge e, so that we have our original embedding of the graph F(n).
In this embedding L, and L, share the vertex z,. Now we apply Lemma 1 where Cy = Lo,
Cy =1Ly, C3=Lpy1, Cy = Ly, u=51,v=2,, and p = 5:2,. Thus we get a simple closed
curve K, in Ly U L, 41 Up such that w(Ki, Ly) = w(K1,Lp,)=1. Now K1 ULy U---UL,
is an n-necklace. O

5. NoO MINOR OF G(n) IS INTRINSICALLY (n + 1)-LINKED

We shall begin by considering the particular embedding of G(n) that we described in
Section 2. So as to avoid confusing the abstract graph G(n) with this particular embedding
of it in R3, we shall refer to the embedded graph as H(n), and for each ¢, the particular
embedding of E; will be denoted by F;. In Figure 6, we illustrate H(n) where n is even
and a particular non-split link of (n + 1) components has been highlighted.

FIGURE 6. For n even, H(n) contains this non-split link of n 4+ 1 components
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In Figure 7, we illustrate H(n) where n is odd and the analogous non-split link of n +1
components has been highlighted.

FIGURE 7. For n odd, H(n) contains this non-split link of n + 1 components

For any n, we shall denote this link by L(n + 1) and the components of L(n + 1) by
Li,...,Lpt1, from left to right as they appear in Figures 6 and 7. Observe that L; is
contained in Fy, L,y is contained in F,, and for each ¢ = 2,...,n, the component L; is
contained in F;_, U F;.

We will first prove a lemma which shows that L; U -+ U L, is the only (n + 1)-
component non-split link in H(n). Then we will use this lemma to prove Theorem 2 by
showing that for any edge e in G(n) there is an automorphism of G(n) which takes e
to an edge f such that H(n) — f (ie. H(n) with the edge f removed) will contain no
(n + 1)-component link. Similarly, for any edge e in G(n), we will show that there is an
automorphism of G(n) which takes e to an edge f such that H(n)/f (i.e. H(n) with the
edge f contracted) will contain no (n + 1)-component link.

Lemma 2. For each natural number n, L(n + 1) is the only (n + 1)-component non-split
link in H(n), and H(n) contains no non-split link of more than n+ 1 components.

Proof. We use induction on n. Figure 8 illustrates H(1) with the link L(2) = L, U L
highlighted. Observe that each component of any link in H(1) must contain four vertices
since there are no triangles in G(1). Thus any link in H(1) must contain all eight vertices.
By inspection we can see that the highlighted simple closed curve y;513:4; is the only
4-edge cycle containing y; that does not bound a disk in R® — H(1). It follows that L(2)
is the unique non-split link of two components in H(1). Furthermore, it is clear that H(1)
contains no link of more than two components.

4, Ul

2 \/\

FIGURE 8. L(2) is the unique non-split link of two components in H(1)
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Now assume that L(n) is the unique n-component non-split link contained in H(n — 1),
and H(n — 1) contains no non-split link of more than n components. Suppose that H(n)
contains some non-split link K = K; U---U K,, where m > n+ 1. It suffices to show that
K =L(n+1).

From here our proof will proceed according to the following outline. First we will show
that K is isotopic to some non-split link J = J; U- - -U J;, no component of which contains
two edges of any triangle in H(n). Then we will prove that there is some component of
J that is not contained entirely in either H(n — 1) or F,. Next we will use the inductive
hypothesis to prove that there is a component which is entirely contained in F;,. Then we
will prove that if we remove the component of J which is contained in F,, we will obtain a
non-split link of » components. This, together with our inductive hypothesis, will enable
us to show that J = L(n + 1). Finally, we will prove that, in fact, K = J.

We begin by observing that in H(n), for every j = 2,...,n, the triangles 1;_,z;_14;,
2;_1%;-15;, and 3;_17;—16; each bound a disk whose interior is in R® — H(n). Thus none
of these triangles is a component of our non-split link K. Suppose that some component
K; of K contains two of the edges of one of these triangles. Let K| denote the simple closed
curve that is obtained from K; by replacing these two edges of a triangle by the third side
of the triangle. Note that K/ is ambient isotopic to K; in R® — (K — K;). Let J denote
the link we obtain from K by replacing each K; that contains two sides of a triangle by
K!. (If there are no components K; that contain two sides of a triangle, we let J = K.)
Let the components of J be denoted by Ji, ..., J,. Then J is an m-component non-split
link no component of which contains two sides of a single triangle. It follows that if any
component J; contains precisely one of the vertices 1;, 2;, 3;, then J; is contained in H(3).
Similarly if any component J; contains precisely one of the vertices 4;, 5;, or 6;, then J;
is disjoint from H(j — 1).

Now, since H(n — 1) contains no non-split link of more than n components, J cannot
be contained in H(n —1). Thus J has some component that is not contained in H(n — 1).
Suppose that every component J; that is not contained in H(n — 1) is contained in Fy,.
Then J would be split. Hence there is some component, say J, that is not contained
entirely in either H(n — 1) or in F,,. Thus J, contains at least two of the vertices 1,_1,
2.-1, and 3,_1, and at least two of the vertices 4, 5,, and 6,.

Since at most one of the vertices 4,,, 5,, and 6, is not contained in J, and no component
of J contains two sides of a triangle, every component of J — J,, must be contained in either
H(n —1) or in F,. Also, since at most one of the vertices 1,1, 21, and 3, is not
contained in J,,, no component of J—.J,, can contain the vertex z,_; because no component
contains two sides of a triangle. Suppose that no component of J is entirely contained in
F,. Then J — J, is contained in H(n — 1) — {z,—1}. Therefore, J,, is ambient isotopic in
R3 — (J — J,,) to a simple closed curve in H(n — 1). This implies that there is a non-split
link of m > n 4 1 components in H(n — 1). As this contradicts our inductive hypothesis,
we can conclude that there must be a component of J, say Jp+1, that is entirely contained
in F,.

Now, as J, contains at least two of the vertices 4, 5,, and 6,, it must also contain
at least one of the vertices 1,, 2,, and 3,. There is no simple closed curve in F,, that
contains only three vertices. Since J,41 is contained in F;, and cannot contain -1, it
must contain one vertex from among 4,, 5,, and 6,, two vertices from among 1,, 2,, and
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3., and the vertex z,,. By inspection we can see that if n is even, then the only 4-edge cycle
in F, containing the vertex x, which does not bound a disk in R3 — H(n) is £,3,4,2,
(highlighted in Figure 6). If n is odd, then the only 4-edge cycle in F, containing the
vertex x,, that does not bound a disk in R% — H(n) is z,,1,6,2, (highlighted in Figure 7).
Thus Jp+1 = Tn3n4,2, when n is even and Jp4+1 = 2,1,6,2, when n is odd. Furthermore,
when n is even, J, must contain the vertices 5,, 6,, and 1,; and when = is odd, J,, must
contain the vertices 5,, 4,, and 3.

We will consider the links obtained from J by removing the components J,+; and J,.
Let J' =J — Jpy1 and let J” = J' — Jy,.

Claim: J’ is a non-split link of n components, and m =n + 1.

Proof of Claim: Suppose that the link J’ is split. We will show that this assumption
implies that J is split. Since J’ is split, there is a 2-sphere F' in R3 — J’ with some
component of J' in each component of R? — F. Let the components of R® — F be denoted
by A and B. Then A and B each contain at least one component of J'. Now without
loss of generality J,, is contained in A and for some g ¢ {n,n + 1}, the component J; is
contained in B. Observe that J,+1 bounds a disk D which is disjoint from Jy U---U Jp—1
and is punctured once by J,. If J,; were disjoint from F' then J would be split. So we
can assume that J,4; intersects F'. However, using the disk D and a standard innermost
disk and arc argument, we can isotop F' to a 2-sphere F’ which is disjoint from J,4;.
Furthermore, F’ is disjoint from J, and one component of R® — F’ contains J, U J,11
while the other component of R® — F' contains J;. It follows that J is a split link. As this
contradicts our hypothesis we conclude that J’ is a non-split link of m — 1 components.

Recall that every component of J” is contained in H(n — 1), and J,, is ambient isotopic
in R? — J” to a simple closed curve P in H(n—1). Thus J” U P is a non-split link of m — 1
components which is entirely contained in H(n — 1). Now by our inductive hypothesis, we
must have m — 1 < n. By hypothesis m > n + 1, hence in fact m = n + 1 and our claim is
proven.

Recall that at most one of the vertices 1,_;, 2,1, and 3,_; is not contained in J,,
so no component. of J” can contain the vertex z,_;. Now, J, is ambient isotopic in
R2 — J” to the simple closed curve P in H(n — 1) that contains the same vertices of
H(n —1) as J, does. So J” U P is a non-split link of n components which is contained
in H(n — 1). Thus by our inductive hypothesis J” UP = L(n). If n — 1 is odd, then
P=ux,11,_16,-12,-1; and if n — 1 is even, then P = x,_13,-14,-12,-1. Thus if
n—1isodd, J, = Tp-11n-16n-12,-15,1,6,. On the other hand, if n — 1 is even,
Jn = Tn—-13n_14n-12n-152,3n4n. It follows that J = L(n +1).

Suppose that K # J; then some component K; of K contains two sides of a triangle,
while the component J; which replaces K; in J contains only one side of that triangle. In
particular, this means that J contains fewer vertices than K. As J = L(n + 1) contains
every vertex of H(n), we must have K = J=L(n+1). O

Now we shall use Lemma 2 to prove Theorem 2.

Theorem 2. For every natural number n, G(n) is minor minimal with respect to being
intrinsically (n + 1)-linked.
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Proof. Theorem 1 states that G(n) is intrinsically (n+1)-linked. Now we will show that no
minor of G(n) is intrinsically (n + 1)-linked by showing that for every edge e in G(n) there
are embeddings of G(n) —e and G(n)/e that contain no non-split link of n+ 1 components.

Up to automorphism of G(n), the edges of G(n) can be grouped into the following types.
Edges of type a are those with one endpoint which is either ¥, or z,. Edges of type b; are
those with one endpoint in the set {1;,2;,3;}, and the other endpoint in the set {4;,5;, 6;}.
Edges of type c; are those with one endpoint which is z; and ¢ # n. Edges of type d; are
those of the form 1;4;41, 2;5;+1, and 3;6;41.

We will start with the embedding H(n), and show that for each of the above types of
edges we can remove some edge e of that type such that H(n) — e will contain no non-split
link of n + 1 components. Then we will show that for each of the above types of edges, we
can collapse some edge e of that type such that H(n)/e will contain no non-split link of
n + 1 components. Since for every two edges of the same type there is an automorphism
of G(n) taking one to the other, it is enough to pick one edge from each type to prove the
theorem.

For each type, we choose to remove the following edge e. For type a, we choose e = y14;.
For type b;, we choose e = 4;3;. For type c;, we choose e = z;1; if i is odd and e = ;3; if
i is even. For type d;, we choose e = 2;5;11. Each of these edges is contained in L(n + 1).
By Lemma 2, L(n + 1) is the only non-split link of n + 1 components in H(n). Hence
if we remove any of the above edges e from H(n), the graph will contain no non-split
(n + 1)-component link.

Now we will consider H (n)/e for each type of edge e. First, note that if e is in a triangle,
then collapsing e will create two edges with the same vertices. In this case the definition of
minor requires that one of these two edges be omitted. We have seen that every triangle
in H(n) bounds a disk whose interior is in the complement of H(n). Thus, if the edge e is
contained in a triangle in H(n), then collapsing e gives a pair of edges which cobound a
disk. Hence it makes no difference which of these two edges we omit from the embedding
of H(n)/e. Thus, the embedding of H(n)/e is well defined up to isotopy.

For each type of edge, we choose to collapse the following edge e. For type a, we choose
e = y161. For type b;, we choose e = 1;4;. For type c;, we choose e = x;3; if 7 is odd and
e = x;1,; if i is even. Finally, for type d;, we choose e = 1;4;1+1. Observe that each of these
edges e has one endpoint v in one component of L(n + 1) and the other endpoint w in a
different component of L(n+ 1). Suppose that H(n)/e contains a non-split link Q of n+1
components. If no component of @ contains the collapsed vertex vw then @ is contained
in H(n) — {v,w}. As L(n + 1) contains every vertex of H(n) this is not possible. So
some component @; of @ must contain the collapsed vertex vw. Then H(n) will contain a
non-split link R of n+ 1 components, where R is identical to @ except that the component
Q; has been replaced by a simple closed curve R; in H(n) such that R; contains either
the vertex v, the vertex w, or the vertices v and w and the edge e = 7w. In any case,
no component of R — R; will contain the vertex v or the vertex w. This is impossible,
since L(n + 1) is the only non-split link of n + 1 components in H(n), and v and w are
contained in different components of L(n + 1). Thus H(n)/e contains no non-split link of
n + 1 components.

Hence no minor of G(n) is intrinsically (n + 1)-linked, and so G(n) is minor minimal
with respect to being intrinsically (n + 1)-linked. O
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6. MINOR MINIMAL INTRINSICALLY 3-LINKED GRAPHS

Robertson, Seymour, and Thomas [RST] proved that any intrinsically 2-linked graph
contains one of the Petersen graphs as a minor. Each of the Petersen graphs can be
obtained from any one of the Petersen graphs (and from G(1) in particular) by a finite
a sequence of AY and YA moves. It is natural to wonder whether the complete list of
graphs that are minor minimal with respect to being intrinsically 3-linked can be obtained
from our graph G(2) by a finite sequence of such moves. We will now show as follows that
this is not possible.

Consider the graph J that is illustrated in Figure 9. We will first show that J is
intrinsically 3-linked, and then show that J cannot have a minor which is obtained from
G(2) by a finite sequence of AY and YA moves.

FIGURE 9. The graph J is intrinsically 3-linked

Suppose that J is embedded in R3. Let J; denote the subgraph of J with vertices 1, 2,
3,4,5,6, z, and y. Let J> denote the subgraph of J with vertices 7, 8, 9, a, b, ¢, z, and
y. Let e = Ty. We now collapse the edge e in the embedded graphs J; and J,. Observe
that Ji /e is isomorphic to the graph K331, and hence by Sachs’ Theorem [Sa] contains
a square S; and a triangle T} such that w(S1,71) = 1. Let z denote the vertex obtained
from z and y by collapsing the edge e. Then z is necessarily contained in 7;. Observe that
in J; z is adjacent to 1, 2, and 3, but not to 4, 5, or 6, and y is adjacent to 4, 5, and 6
but not to 1, 2, or 3. The triangle T} in J;/e comes from a square K; in J; by collapsing
the edge e, and the square 97 is contained in J; and is disjoint from K;. It follows that
e C Ky and w(S1, K1) = 1. By a similar argument in J;/e we obtain a pair of disjoint
squares S2 and K3 in J> such that e C K» and w(Sz, K2) = 1. Observe that K1 N Ky =,
SiINKy=¢, S2NK; =¢,and S; NS = ¢.

Now we apply the following elementary lemma from [FNP], whose proof is similar to
the proof of our Lemma 1. It follows from this lemma that J has a non-split link of three
components. Hence J is intrinsically 3-linked.

Lemma [FNP]. Suppose J is a graph that is embedded in R3, and contains simple closed
curves S1, K1, Ko, and S2. Suppose that Si and S» are disjoint from each other and both
are disjoint from K, and Ko, and K3 N K> is an arc. Ifw(S1, K1) =1 and w(S2, K3) =1,
then J contains a non-split link of three components.

It now follows that J contains some minor M which is minor minimal with respect to
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being intrinsically 3-linked. Observe that J has 31 edges, hence M has no more than 31
edges. Performing YA and AY moves on a graph does not change the total number of
edges in the graph. Thus, since G(2) has 33 edges, M cannot be obtained from G(2) by a
finite sequence of AY and YA moves.

It follows from this example that the complete list of graphs which are minor mini-
mal with respect to being intrinsically 3-linked cannot be obtained from G(2) by a finite
sequence of such moves. This suggests that finding this list may be a difficult problem.
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