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1 Introduction

Characterizing the symmetries of a molecule is an imporséep in predicting its
chemical behavior. Chemists have long used the group af siginmetries, known as
the point group as a means of representing the symmetries of a molecule evéow
molecules which are flexible or partially flexible may havensyetries which are not
included in the point group. Jon Simohl] introduced the concept of thtepological
symmetry grougn order to study symmetries of such non-rigid molecules.e Th
topological symmetry group provides a way to classify, nalydhe symmetries of
molecular graphs, but the symmetries of any graph embeaddst! i

We define the topological symmetry group as follows. f.die an abstract graph, and
let Aut(v) denote the automorphism group-of Let I' be the image of an embedding
of v in $*. Thetopological symmetry groupf T, denoted by TSQGY), is the subgroup
of Aut(y) which is induced by homeomorphisms of the p&#, 7). Theorientation
preserving topological symmetry groap I", denoted by TSG(I"), is the subgroup
of Aut(v) which is induced by orientation preserving homeomorpkisshthe pair
(S%,T). In this paper we are only concerned with TSE), and thus for simplicity
we abuse notation and refer to the group TG simply as theéopological symmetry
groupof I'.

Frucht B] showed that every finite group is the automorphism groupofesconnected
graph. Since every graph can be embedde8®nit is natural to ask whether every
finite group can be realized as TS@") for some connected graph embedded in
S*. Flapan, Naimi, Pommersheim, and Tamvakis provedjitHat the answer to this
guestion is “no”, and proved that there are strong resbristion which groups can
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occur as topological symmetry groups. For example, it wasvatthat TSG (I") can
never be the alternating grou, for n > 5.

The special case of topological symmetry groups of compiedphs is interesting
to consider because a complete grafhhas the largest automorphism group of any
graph withn vertices. In B], Flapan, Naimi, and Tamvakis characterized which finite
groups can occur as topological symmetry groups of embgddih complete graphs
in S as follows.

CompleteGraph Theorem [8] A finite groupH is isomorphic tor SG,(I") for some
embeddingl’ of a complete graph i if and only if H is a finite cyclic group, a
dihedral group, a subgroup B, x Dy, for some oddm, or A4, &4, or As.

We useDp, to denote the dihedral group witmRelements. The group8s, &, or
As, are known agolyhedral groupshecause they consist of: the group of rotations
of a tetrahedron (which is isomorphic #y), the group of rotations of a cube or
octahedron (which is isomorphic &), and the group of rotations of a dodecahedron
or icosahedron (which is isomorphic ).

Observe that the Complete Graph Theorem does not tell ushvduimplete graphs
can have a given groupl as their topological symmetry group. In this paper we
characterize which complete graphs can have each of thdwguhigl groups as its
topological symmetry group. In particular, in the followimesults we determine for
which m, Ky, has an embedding with TSG, (I') = A4, As, Or ;.

A4 Theorem A complete graplm, with m > 4 has an embedding in S* such that
TSG(I') 2 Aq ifand onlyifm=0, 1, 4,5, 8 (mod 12)

As Theorem A complete graplm, with m > 4 has an embedding in S* such that
TSGL(I') =2 As ifand only ifm= 0, 1, 5, 20 (mod 60)

S Theorem A complete grapim, with m > 4 has an embedding in S* such that
TSGL(I') =2 & ifand only ifm= 0, 4, 8, 12, 20 (mod 24)

Observe that iK, has an embedding with topological symmetry group isomarfhi
As or &, thenK,, also has an embedding with topological symmetry group ispmo

to As.

In[6] we characterize which complete graphs can have a cycligogedihedral group,
or another subgroup d,, x Dy, as its topological symmetry group.
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2 Necessity of the conditions

In this section, we prove the necessity of the conditiongmivm theA,, As and &
Theorems. We begin by listing some results that were prolssivbere that will be
useful to us.

OrbitsLemma [3] If a and 8 are permutations of a finite set such thatand 3
commute, thert takesa-orbits toa-orbits of the same length.

D, Lemma [3] If m= 3 (mod 4) then there is no embeddiiy of K, in S* such
that TSG, (I") contains a subgroup isomorphiclio .

Recall that the groupsy and Ag can be realized as the group of rotations of a solid
tetrahedron and a solid dodecahedron respectively. Lgaktieach of these groups of
rotations we see that any two cyclic subgroups of the samer @& conjugate. The
group & can be realized as the group of rotations of a cube. It follthas all cyclic
groups of order 3 or order 4 are conjugate. Up to conjug&gycontains two cyclic
groups of order 2, those which are containedAin and those which are not. This
implies the following observation that we will make use ofhis section.

Fixed Vertex Property LetG = A4, As and supposé& acts faithfully on a grapt'.
Then all elements 0B of a given order fix the same number of vertices. Furthermore,
since all of the non-trivial elements @& have prime order, all of the elements in a
given cyclic subgroup fix the same vertices.

LetH be isomorphic t&, and suppose that acts faithfully onl’. Then all elements
of H of order 3 fix the same number of vertices, and all elements of order 4 fix
the same number of vertices. All involutions ldf which are inG = A4 fix the same
number of vertices, and all involutions bf which are not inG fix the same number
of vertices.

We will also use the theorem below to focus on embeddifigsf K, in S* such
that TSG.(I') is induced by an isomorphic finite subgroup of SO(4) (theugrof
orientation preserving isometries 6f). This theorem follows from a result irv]
together with the recently proved Geometrization Theorgth [
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Isometry Theorem Let Q be an embedding of somé&, in S*. ThenK, can be
re-embedded i asT' such thafTSG, (Q) < TSG,(I") andTSG, (") is induced by
an isomorphic finite subgroup &O(4).

Suppose tha is an embedding of a complete graigh in S° such thaG = TSG, ()

is isomorphic toA4, As or &. By applying the Isometry Theorem, we obtain a re-
embeddingl” of K, in S such thatG < TSG, (I") is induced orl" by an isomorphic
finite subgroupé < SO(4). This simplifies our analysis since every finite order
element of SO(4) is either a rotation with fixed point set adgsic circle or a glide
rotation with no fixed points. If the fixed point sets of two Buotations intersect but
do not coincide, then they intersect in 2 points. Furtheanidfrall of the elements
of a finite subgroup of SO(4) pointwise fix the same simple edosurve, then that
subgroup must be cyclic (this can be seen by looking at theraof the subgroup on
the normal bundle).

For eachg € G, we letg denote the element o which inducesg. SinceG has
finite order, ifg € G fixes both vertices of an edge, thgrpointwise fixes that edge.
Since the fixed point set of every element®fis either a circle or the empty set, no
non-trivial element ofG can fix more than 3 vertices af. If g € G fixes 3 vertices,
then fix@) is precisely these 3 fixed vertices together with the edgbsden them.
Suppose that) € G fixes 3 vertices and has order 2. Thgmust interchange some
pair of verticesv andw in I'. Thusg must fix a point on the edgéw. As this is not
possible, no order 2 element Gf fixes more than 2 vertices. Sin€&< Aut(K,,) and
G is isomorphic toA4, As or &, m > 4. In particular, since ng € G fixes more than
3 vertices, eacly € G is induced by precisely ong € G. The following lemmas put
further restrictions on the number of fixed vertices of edement of a given order.

Lemma2.l LetG < Aut(K.,) which is isomorphic téA, or As. Suppose there is an
embeddingl’ of Ky, in S* such thaiG is induced orl’ by an isomorphic subgroup
G < SO(4). Then no order 2 element & fixes more than 1 vertex af.

Proof As observed above, no order 2 elements@Gffixes more than 2 vertices.
Suppose some order 2 element®ffixes 2 vertices of". Thus, by the Fixed Vertex
Property, each order 2 element®ffixes 2 vertices, and hence also pointwise fixes the
edge between the 2 vertices. Now observe that two distinclutions of G cannot
pointwise fix the same edge, since a cyclic group can have sttone element of order

2.
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Observe thaG contains a subgroupl = D,. SinceD, contains 3 elements of order
2, I" has 3 edges which are each pointwise fixed by precisely ome 2relement ob.
We see as follows that each order 2 elemerftiahust setwise fix all 3 of these edges.
Letg andh be order 2 elements ¢f, and letx andy be the vertices of the edge that is
pointwise fixed byg. Since all elements db, commute,g(h(x)) = h(g(x)) = h(x), so
h(x) is fixed byg. Sincex andy are the only vertices that are fixed gyh(x) € {x,y}.
Similarly for h(y). Soh setwise fixes the edgegy. It follows that each order 2 element
of H setwise fixes all 3 of these edges. This implies that eaclr @rdeement fixes the
midpoint of each of the 3 edges. These 3 midpoints determgemdesic, which must
be pointwise fixed by all 3 order 2 elementstdf But this is impossible since a cyclic
group can have at most one element of order 2. O

Lemma 2.2 Let G < Aut(Ky,) which is isomorphic toAs. Suppose there is an
embeddingl’ of Ky, in S* such thaiG is induced orl’ by an isomorphic subgroup
G< SO(4). If an order 2 element o& fixes some vertex, thenv is fixed by every
element ofG.

Proof Suppose an order 2 elemepi € G fixes a vertexv. By LemmaZ2.1, ¢;
fixes no other vertices df'. SinceG = A4, there is an involutionp, € G such that
(p1,2) = Zy x Zy. Now by the Orbits Lemmay, takes fixed vertices ap; to fixed
vertices ofp;. Thusy,(v) = v. Hencev is fixed by (1, p2). Furthermore, all of the
order 2 elements o6 are in {1, p2). Thusv is the only vertex fixed by any order 2
element ofG.

Let ¢» be an order 3 element @&. Now vp1¢)~1 has order 2 and fixeg(v). Thus
P(v) = v. SinceG = (1, 2,v), Vv is fixed by every element db. O

Lemma 2.3 Let G < Aut(K\,) which is isomorphic toAs. Suppose there is an
embeddingl’ of Ky, in S* such thaiG is induced orl’ by an isomorphic subgroup
G< SO(4). If some order 2 element @& fixes a vertex ofl’, then no element o6
fixes 3 vertices.

Proof Suppose some order 2 element®ffixes a vertexv. By Lemma 2, every
element ofG fixes v. Suppose thaG contains an element which fixes 3 vertices.

It follows from Lemma 1 that the order af must be 3. Now leg € G have order 3
such that(g, ¢) is not cyclic. It follows from the Fixed Vertex property trfm(zZ) and
fix(g) each consist of 3 vertices and 3 edges. Sineefix(g) N fix()), there must be
another pointx € fix(g) N fix(xZ). However, since two edges cannot intersect in their
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interiors, x must be a vertex of'. This implies thatJ and g pointwise fix the edge
Xv. However, this is impossible singe, g) is not cyclic. Thus no element @ fixes
3 vertices. O

Lemma 24 Let G < Aut(Ky) which is isomorphic taAs. Suppose there an em-
beddingT" of Ky, in S* such thatG is induced onl’ by an isomorphic subgroup
G < SO(4). Then no element 0B fixes 3 vertices.

Proof Recall that the only even order elementsfgfare involutions. By Lemma 1,
no involution of G fixes more than 1 vertex. Let be an element o6 of odd order
g and suppose thap fixes 3 vertices. NowG contains an involutionp such that
(p,1) = Dq. Thus for every vertex which is fixed by, ¥ p(X) = o 1(X) = ¢(X).
Hencep(X) is also fixed byy. Soy setwise fixes the set of fixed vertices#f Since
1) fixes 3 vertices angb has order 2o must fix one of these 3 vertices

Let H < G such thatH = A4 andH contains the involutionp. Then by Lemm&.2,
every element oH fixesv. Sinceyp fixes v and fixes 3 vertices, it follows from
Lemma2.3thaty ¢ H. Therefore(y),H) = G, becauseAs has no proper subgroup
containingA4 as a proper subgroup. Hence every elemef@ ikesv. Now letg € G
have orderg such that(g, ¢) is not cyclic. By the Fixed Vertex Property, fg)(and
fix(xZ) each contain 3 vertices and 3 edges. Thus we can repeagtimemt given in
the proof of Lemma&.3to get a contradiction. O

Lemma 25 Let G < Aut(Ky,) which is isomorphic toAs. Suppose there is an
embeddingl’ of Ky, in S* such thaiG is induced orl’ by an isomorphic subgroup
G< SO(4). If an element) € G with odd ordem fixes precisely one vertex, thenv

is fixed by every element dé and no other vertex is fixed by any non-trivial element
of G.

Proof There is an involutiony € G such that(p,1) = Dgq. Now (V) =

o (v) = (v). Sincev is the only vertex fixed by, we must havep(v) = v.

Now G contains a subgroupl = A, containingy. By Lemma2.2, sincey fixesv

every element oH fixesv. SinceA, does not contaiDz or Ds, v ¢ H. Hence as
in the proof of Lemm&2.4, (), H) = G. Thus every element db fixesv. Every

involution in G is an element of a subgroup isomorphicAg. Thus by Lemma&.1, v

is the only vertex which is fixed by any involution (&.

Let 5 € G be of orderp = 3 or 5. Supposes fixes some vertexv = v. Thus all
of the elements ing3) = Z, fix v andw. Let n denote the number of subgroups of
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G that are isomorphic t&,. Thusn = 6 or n = 10 according to whethep = 5
or p = 3 respectively. By the Fixed Vertex Property, all of the swlogs isomorphic
to Zp also fix 2 vertices. Ifg € G fixes w, theng pointwise fixes the edgew and
hence(g, ) is cyclic. It follows that each of the subgroups isomorphic té, fixes
a distinct vertex in addition te. Thesen vertices together witlv span a subgraph
A C T which is an embedding df,1 such thatA is setwise invariant unde® andG
induces an isomorphic group action dn However,n+ 1 =7 or 11. SinceG = Ag
contains a subgroup isomorphic B, this contradicts th®, Lemma. Thusy is the
only vertex which is fixed by any ordgr element ofG. O

The following general result may be well known. Howevergsinve could not find a
reference, we include an elementary proof here. Obsertvénticantrast with Lemma
2.6, if G acts onS® as the orientation preserving isometries of a regular $pl&rthen
the order 5 elements are glide rotations.

Lemma 2.6 Suppose thaG < SO(4) such thatG = As and every order 5 element
of G is a rotation ofS®. ThenG induces the group of rotations of a regular solid
dodecahedron.

Proof The groupé contains subgroupd,, ..., Js which are isomorphic t&s and
involutions ¢1, ..., vs such that for each, Hi = (J;, ¢i) = Ds. Now since every
order 5 element 06 is a rotation ofS3, for eachi there is a geodesic circlg which
is pointwise fixed by every element df. Furthermore, becaudd; =~ Ds, the circle
L; must be inverted by the involutiop; . Hence there are poings andg; on L; which
are fixed byy;. Now every involution inH; = D5 is conjugate tap; by an element of
Ji. Hence every involution irH; also fixes bothp; and g;. For eachi, let § denote
the geodesic sphei® which meets the circlé; orthogonally in the pointg; andg; .
Now § is setwise invariant under every elementt

By analyzing the structure dfs, we see that each involution id; is also contained
in precisely one of the groupds, ..., Hg. Thus for each # 1, the 2 points which
are fixed by the involution irH; N H; are contained irf§; N S. Sincep; is fixed by
every involution inHy, it follows thatp; is contained in ever. Observe that the set
of geodesic spheresS;, . .., S} is setwise invariant unde®. Sincep; isin everyS,
this implies that the orbiP of p; is contained in eveng .

If py is fixed by every element dB, thenG induces the group of rotations of a regular
solid dodecahedron centered@t. Thus we assume that; is not fixed by every
element ofG. SinceG can be generated by elements of order 5, it follows that some

Algebraic & GeometricZopology XX (20XX)



1008 Erica Flapan, Blake Mellor and Ramin Naimi

order 5 element 06 does not fixpi. The orbit ofp; under that element must contain
at least 5 elements, and hend® > 5. Suppose that som& # S;. ThenS N §
consists of a geodesic circle containing the seP. Since|P| > 2, the circleC is
uniquely determined by.

Now C must be setwise invariant undé sinceP is. Thus the coreD of the open
solid torusS® — C is also setwise invariant undé&. Since a pair of circles cannot
be pointwise fixed by a non-trivial orientation preservisgmetry ofS®, G induces a
faithful action of C U D taking each circle to itself. But the only finite groups thahc
act faithfully on a circle are cyclic or dihedral, ag is not the product of two such
groups. Thus everg = ;.

Recall that for each, the geodesic circld.; is orthogonal to the spher§ and is
pointwise fixed by every element df. Since all of the geodesic circlds, ..., Lg
are orthogonal to the single sphefe= S;, they must all meet at a pointin a ball
bounded byS;. Now G= (J1,J2), and every element af; and J; fixes x. ThusG
fixes the poinix. Hence agair@ induces the group of rotations of a solid dodecahedron
centered at the poirx. O

Suppose thaG is a group acting faithfully orkK,,. Let V denote the vertices i,
and let [fix(g|V)| denote the number of vertices &, which are fixed byg € G.
Burnside’s Lemmad] gives us the following equation:

# vertex orbits= |—é| > [fix(glV)|
e

We shall use the fact that the left side of this equation isrdaeger to prove the
necessity of our conditions fd¢, to have an embedding such thaiG = TSG, (') is
isomorphic toA4 or As. By the Fixed Vertex Property, all elements of the same order
fix the same number of vertices bf So we will useny to denote the number of fixed
vertices of an element d& of orderk. Observe thah; is always equal ton.

Theorem 2.7 Ifacomplete grapk, has an embeddirig in S such thalf SG, (I") =
A4, thenm=0,1,4,5,8 (mod 12)

Proof Let G = TSG,(I') & A4. By applying the Isometry Theorem, we obtain
a re-embedding\ of K, such thatG is induced onA by an isomorphic subgroup
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G< SO(4). Thus we can apply our lemmas. Note thgf = 12, andA4 contains
3 order 2 elements and 8 order 3 elements. Thus Burnside’smizetells us that
4(m+ 3n, + 8ng) is an integer.

By Lemma 1, we know that, = 0 or 1, and by Lemma 3 we know thatri$ = 1 then

n3 # 3. Also, by Lemma 2, ilh3 = 0, thenn, = 0. So there are 5 cases, summarized
in the table below. In each case, the valuemo{mod 12) is determined by knowing
that &5(m+ 3n; + 8ng) is an integer.

ny N3 m (mod 12)
0| Oor3 0
0 1 4
0 2 8
1 1 1
1 2 5

O

Theorem 2.8 Ifacomplete grapk, has an embeddirig in S* such thalf SG, (I") =2
As, thenm=0, 1, 5, 20 (mod 60)

Proof Let G = TSG,(I') &£ As. By applying the Isometry Theorem, we obtain
a re-embedding\ of K, such thatG is induced onA by an isomorphic subgroup

G < SO(4). Note that/As| = 60, andAs contains 15 elements of order 2, 20
elements of order 3, and 24 elements of order 5. Thus Buradidenma tells us that

&(M+ 15m; + 20n3 + 24ns) is an integer.

By Lemma 4, for everk > 1, ng < 3. Every element o6 of order 2 or 3 is contained
in some subgroup isomorphic A&,. Thus as in the proof of Theorem 1, we see tipat
=0or1l, andifn3 = 0 thennp = 0. Also, by Lemma 5, if eithens =1 orng = 1,
then all ofny, n3 andns are 1.

Suppose thahs = 2. Then each order 5 element Gf must be a rotation. Leﬂ?,
% € Gsuch that)) has order 5 has order 2, and@, ) = Ds. Then there is a circle
which is fixed pointwise byZ and inverted byp. Thus fix(p) intersects fix@) in 2
precisely points. By Lemma.6, we know thatG induces the group of rotations on
a solid dodecahedron. Hence the fixed point sets of all of ldmments ofG meet in
two points, which are the points figf N fix(J). Now sincens = 2, fix(@) contains
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precisely 2 vertices, and hence an ea@gelThuse must be inverted bys. It follows
that the midpoint ofe is one of the two fixed points dB. SinceG is not a dihedral
group we know thak is not setwise invariant under every elemen@Gf Thus there
are other edges in the orbit @fwhich intersecte in its midpoint. Since two edges
cannot intersect in their interiors, we conclude that£ 2.

There are four cases summarized in the table below.

n, | N3 | ns | m (mod 60)
OO0 O 0
0|20 20
1111 1
1120 5

O

Theorem 2.9 Ifacomplete grapk, has an embeddirig in S* such thalf SG, (I") =2
S, thenm=0, 4, 8, 12, 20 (mod 24)

Proof Let G = TSG.(I') = &. By applying the Isometry Theorem, we obtain
a re-embedding\ of Ky, such thatG is induced onA by an isomorphic subgroup
G< SO(4). Suppose that some order 4 eler@ﬂté has non-empty fixed point set.
Then fix@) = St. Thus fix@?) = fix(g). Let (v1, o, V3, Va) be a 4-cycle of vertices
underg. Theng? inverts the edgesivz and vz, Thus fix@) intersects botivivs
and zvz. Henceg fixes a point on each ofivz and V2v;. But this is impossible
since {1, V2, V3, Vy) is induced byg. Thus every order 4 element &fhas empty fixed
point set. In particular, no order 4 element®ffixes any vertices of’. Thusm # 1
(mod 4). SinceA; < &, by Theoren2.7, m= 0, 1 (mod 4). It follows tham = 0
(mod 4).

Suppose tham = 24n + 16 for somen. The groupS, has 3 elements of order 2
which are contained i, 6 elements of order 2 which are not containedAin 8
elements of order 3, and 6 elements of order 4. By the FixeteXé&troperty, each of
the elements of any one of these types fixes the same numberticbg. So according
to Burnside’s Lemma2l4((24n + 16) + 3ny + 61, + 8nz + 6n4) is an integer, where
n, denotes the number of fixed vertices of elements of order 2wdiie contained in
A4 andn), denotes the number of fixed vertices of elements of order 2wdie not
contained inA4.

Algebraic & GeometricZopology XX (20XX)



Polyhedral topological symmetry groups 1011

We saw above that,; = 0. By Lemma2.1, n, = 0 or 1. However, sinca, is the
only term with an odd coefficient, we cannot have= 1. Also since the number of
verticesm = 24n + 16 = 1 (mod 3), each element of order 3 must fix one vertex.
Thusn, = 0 andnz = 1. Hence2i4(16+ 6n, + 8) is an integer. It follows that), = 0,
sincer, # 3. Lety be an order 3 element @&. Sinceng = 1, 1) must be a rotation
about a circleL containing a single vertex. SinceG = S, there is an involution

¢ € G such that(y, p) = D3. It follows that ¢ invertsL. However, sincev is the
only vertex onL, ¢(v) = v. This is impossible since; = n, = 0. Thusm # 16
(mod 24). The result follows. O

3 Embedding Lemmas

For a givenn, we would like to be able to construct an embeddindggfwhich has a
particular topological symmetry group. We do this by firstbemiding the vertices of
Km so that they are setwise invariant under a particular grdugometries, and then
we embed the edges B, using the results below. Note that Lem@haapplies to any
finite group G of diffeomorphisms ofS®, regardless of whether the diffeomorphisms
in G are orientation reversing or preserving.

Lemma3.1 LetG be a finite group of diffeomorphisms & and lety be a graph
whose vertices are embeddedShas a se¥ such thaiG induces a faithful action on
~. LetY denote the union of the fixed point sets of all of the non-iiglements of
G. Suppose that adjacent pairs of vertice¥ isatisfy the following hypotheses:

(1) Ifapairis pointwise fixed by non-trivial elemertisg € G, thenfix(h) = fix(g).

(2) No pair is interchanged by an element®f

(3) Any pair that is pointwise fixed by a non-trivigl € G bounds an arc ifix(g)
whose interior is disjoint fron¥Y U (Y — fix(g)).

(4) Every pair is contained in a single componen&df-Y .

Then there is an embedding of the edges &fuch that the resulting embedding-pf
is setwise invariant undés.

Proof We partition the edges of into setsF; andF,, whereF; consists of all edges
of ~ both of whose embedded vertices are fixed by some non-teléatent ofG, and
F, consists of the remaining edges-pf Thus, eaclF; is setwise invariant undes.
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We first embed the edgesin as follows. Let{f,...,fn} be a set of edges consisting
of one representative from the orbit of each edgé&in Thus for each, some non-
trivial gi € G fixes the embedded vertices 6f Furthermore, by hypothesis (1),
fix(gi) is uniquely determined by;. By hypothesis (3), the vertices &f bound an
arc Aj C fix(g;) whose interior is disjoint fromV/ and from the fixed point set of any
element ofG whose fixed point set is not fig{). We embed the edde as the ard;.
Now it follows from our choice off; that the interiors of the arcs in the orbits Af,
..., Ap are pairwise disjoint.

Now let f be an edge ifF; — {f1,...,fn}. Then for somey € G and some edgé,

we haveg(f)) = f. We embed the edgk as g(A;). To see that this is well-defined,
suppose that for somie € G and somefj, we also havd = h(fj). Theni = j, since
we picked only one representative from each edge orbit. efberg(f;) = h(f;). This
implies h—1g fixes both vertices of. since by hypothesis (2) no edge ofis inverted

by G. Now, by hypothesis (1), ih—g is non-trivial, then fixt—g) = fix(g;). Since

A C fix(g), it follows that h(A)) = g(A), as desired. We can thus unambiguously
embed all of the edges df,. Let E; denote this set of embedded edges. By our
construction,E; is setwise invariant undes.

Next we will embed the edges &%. Let 7 : S — S°/G denote the quotient map.
Then 7|(S* — Y) is a covering map, and the quotient spa@e= (S* — Y)/G is a
3-manifold. We will embed representatives of the edgef.ofn the quotient space
Q, and then lift them to get an embedding of the edgeS’in

Let {e1,...,en} be a set of edges consisting of one representative from tieadr
each edge irF». For eachi, let x; andy; be the embedded vertices gfin V. By
hypothesis (4), for each= 1, ... ,n, there exists a path; in S* from x; to y; whose
interior is disjoint fromV U Y. Let of = 7o ;. Thenqa] is a path or loop from
w(X) to w(y;) whose interior is inQ. Using general position iQ, we can homotop
eachq/, fixing its endpoints, to a simple path or logp such that the interiors of the
pi(1) are pairwise disjoint and are each disjoint frartV U Y). Now, for eachi, we
lift p{ to a pathp; beginning at;. Then each inif) is disjoint fromV U Y. Since
pl = o p; is one-to-one except possibly on the §8t1}, pi must also be one-to-one
except possibly on the s¢0, 1}. Also, sincep{ is homotopic fixing its endpoints to
of, pi is homotopic fixing its endpoints ta;. In particular,p; is a simple path fronx;
to yi. We embed the edge aspi(l).

Next, we will embed an arbitrary edgeof F,. By hypothesis (2) and the definition
of F», no edge inF, is setwise invariant under any non-trivial elementGf Hence
there is a uniquey € G and a uniqud < n such thate = ¢'(g). It follows thate
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determines a unique agfpi(l)) betweeng(x) andg(y;). We embece asg(pi(l)). By
the uniqueness aj andi, this embedding is well-defined. L&, denote the set of
embedded edges 6. ThenG leavesE, setwise invariant.

Now, since each ing{(l)) is disjoint from =(V), the interior of each embedded edge
of E; is disjoint fromV. Similarly, sincepi{(I) and pj’(l) have disjoint interiors when

i #], foreveryg, h € G, g(pi(l)) andh(p;(l)) also have disjoint interiors whein# j.
And sincep] is a simple path or loop whose interior is disjoint fran(Y), if g # h,
theng(pi(l)) andh(pi(l)) have disjoint interiors. Thus the embedded edgds,diiave
pairwise disjoint interiors.

Let I consist of the set of embedded verticésogether with the set of embedded
edgesk; U E,. ThenI is setwise invariant unde®. Also, every edge irk; is an arc
of Y, whose interior is disjoint fronV, and the interior of every edge B, is a subset
of S — (YU V). Therefore the interiors of the edgeskn andE; are disjoint. Hence
I" is an embedded graph with underlying abstract grapandI" is setwise invariant
underG. O

We use Lemma 7 to prove the following result. Note that D) denotes the group
of orientation preserving diffeomorphisms 8t. Thus by contrast with Lemma.1,
the Edge Embedding Lemma only applies to finite groups ofnteiteon preserving
diffeomorphisms ofS®.

Edge Embedding Lemma Let G be a finite subgroup dbiff . (S%) and lety be a

graph whose vertices are embeddeims a se¥ such thats induces a faithful action

on~y. Suppose that adjacent pairs of vertice¥igatisfy the following hypotheses:
(1) Ifapairis pointwise fixed by non-trivial elemertisg € G, thenfix(h) = fix(g).

(2) For each paifv,w} in the fixed point se€ of some non-trivial element d&,
there is an ar@\,,y, C C bounded by{v,w} whose interior is disjoint fromV/
and from any other such arsy .

(3) If a point in the interior of somé\,, or a pair{v,w} bounding somé\, is
setwise invariant under dne G, thenf(Aw) = Aw-

(4) Ifa pairis interchanged by songec G, then the subgraph of whose vertices
are pointwise fixed byg can be embedded in a proper subset of a circle.

(5) Ifa pairis interchanged by sontec G, thenfix(g) is non-empty, and for any
h #£ g, thenfix(h) # fix(g).

Then there is an embedding of the edges afi S* such that the resulting embedding
of ~ is setwise invariant undes.
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Proof Let~’ denotey together with a valence 2 vertex added to the interior ofyever
edge whose vertices are interchanged by some eleme@t offhen G induces a
faithful action ony’, sinceG induces a faithful action on. For eachg € G we will

let ¢ denote the automorphism af induced byg, and letG' denote the group of
automorphisms of/ induced byG. No element ofG’ interchanges a pair of adjacent
vertices ofy’. SinceG induces a faithful action on’, eachg € G is induced by a
uniqueg € G.

Let M denote the set of vertices of which are not iny. Each vertexm € M

is fixed by an element’ € G’ which interchanges the pair of vertices adjacent to
m. We partitionM into setsM1 and M», where M; contains those vertices dfl
whose adjacent vertices are both fixed by a non-trivial aotphism inG’ and M,
contains those vertices M whose adjacent vertices are not both fixed by a non-trivial
automorphism irG’.

We first embed the vertices d¥l;. Let {my,...,m;} be a set consisting of one
representative from the orbit of each vertexMa, and for eachm;, let v; andw; denote
the vertices which are adjacent to the vertexin +/. Thusv; andw; are adjacent
vertices of~y. By definition of My, eachm; is fixed both by some automorphism
f/ € G’ which interchanges; andw; and by some elemetit € G’ which fixes both
vi andw;. Letf; andh; be the elements db which inducef/ andh{ respectively. Let
Ayw denote the arc in fix{) given by hypothesis (2). Since interchanges; and
w;, it follows from hypothesis (3) that(Ayw) = Auw - Also sincef; has finite order,
there is a unique point in the interior of Ay, which is fixed byf;. We embedn as
the pointx . By hypothesis (2), ifi # j, thenA, and A,y have disjoint interiors,
and hencex # X;.

We see as follows that the choice xf does not depend on the choice of eittgr
or fi. Suppose tham is fixed by somef’ € G’ which interchanges; andw; and
someh’ € G’ which fixes bothv; andw;. Let f and h be the elements o& which
induce f’” and h' respectively. Since botlfi and h leave the pair{vi,w;} setwise
invariant, by hypothesis (3) bothand h leave the ard\, Setwise invariant. Since
h has finite order and fixes both andw;, h pointwise fixes the aré\,y,, and hence
fix(h) = fix(h;). Thus the choice of the aw,,,, does not depend on. Also sinceG
has finite order, andl andf; both interchange; andw; leavingA,.w; setwise invariant,
f~f; pointwise fixesAyy, . Hencef|Ayw = fi|Ayw , and thus the choice of is indeed
independent of; and h;. In fact, by the same argument we see tkais the unique
point in the interior ofA,; that is fixed by an element d& which setwise but not
pointwise fixesAy, (we will repeatedly use this fact below).
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Now let m denote an arbitrary point iM;. Then for somé and some automorphism
g € G, m= ¢g(m). Letv andw be the vertices that are adjacent to the vertex
in 7/, Then{v,w} = d'({vi,wi}). Let g be the element o6 which inducesy’. We
embedm as the poing(x;). To see that this embedding is unambiguous, suppose that
for some other automorphisg’ € G', we also havem = ¢/(m). Thenj =i, since
the orbits ofmy,. .., m; are disjoint. Letp denote the element @& which induces
¢'. Theng=tp(m) = my, and henceg~to({vi,wi}) = {vi,w;}. It follows from
hypothesis (3) tha~1p(Ayw) = Avw . Now X is the unique point in the interior of
Ayw that is fixed by an element @& which setwise but not pointwise fixes,, . It
follows that (%) = g(x;). Thus our embedding is well defined for all of the points of
M;. Furthermore, sincey, ..., m; have distinct orbits unde®’, the pairs{vy, w; },
..., {w,w; } have distinct orbits unde®. Hence the arcé,,w, . . . , Ay,w, are notonly
disjoint, they also have distinct orbits und@étr Thus the points oM; are embedded
as distinct points of®.

Next we embed the vertices . Let {g;, ..., d,} consist of one representative from
each conjugacy class of automorphism&Ginwhich fix a point inM,, and let eachy;

be induced byg; € G. For eachy, from the set of vertices d¥l, that are fixed by that
g, choose a subs€ipii, . .., pin, } consisting of one representative from each of their
orbits underG.

Let F; = fix(g;). By hypothesis (5) and Smith Theory]], F; = S' andF; is not the
fixed point set of any element & other thang;. Thus each aré\,, that is a subset of
F; corresponds to some edgepfvhose vertices are fixed ly. By hypothesis (4) the
subgraph ofy whose vertices are fixed gy is homeomorphic to a proper subset of a
circle. Furthermore, sinc® < Diff . (S) is finite, the fixed point set of any non-trivial
element ofG other thang; meetsF; in either O or 2 points. Thus we can choose an
arc Ay C F; which does not intersect ard, is disjoint from the fixed point set of
any other non-trivial element db, and is disjoint from its own image under any other
non-trivial element ofG. Now we can choose a sé€¥i1, . ..,VYin } Of distinct points

in the arcA;, and embed the set of verticégi1, ..., pin,} as the set(yi1,...,Vin }-
Observe that if some; were also fixed by a non-trivial automorphisghe G’ such
that g’ # ¢f, then eitherg’ or g'g/ would fix both vertices adjacent ta;, which is
contrary to the definition oM,. Henceg/ is the unique non-trivial automorphism in
G fixing pj. Thus our embedding gfj is well defined.

We embed an arbitrary poimt of M, as follows. Chooseg, j, andg € G’ such that

p = d'(pj), andg is induced by a unique elemegte G. Sincepj is embedded as a
pointy; € Ai C fix(gi), we embecp asg(y;j). To see that this is well defined, suppose
that for some automorphism’ € G’ we also havep = '(pk), and ¢’ is induced by
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¢ € G. Thenp; = pi, since their orbits share the poipt and hence are equal. Now
(@)Y (pj) = pij - Butsincep; € Mz, no non-trivial element o6’ other tharh fixes
pj. Thus either §)~1¢’ = ¢ or g = ¢’. In the former case, the diffeomorphism
g~y = g; fixes the pointyj, sinceyj € fix(gi). Hence in either caseg(yj) = »(yij)-
Thus our embedding is well defined for all pointshd$.

Recall that, ifi # j, theng; andg; are in distinct conjugacy classes Gf Also, by
hypothesis (5)F; is not fixed by any non-trivial element @ other thang;. Now it
follows thatF; is not in the orbit ofF;, and hence the points ®fl, are embedded as
distinct points ofS®. Finally, since the points dfl; are each embedded in an &gy
and the points oM, are each embedded in an arc which is disjoint from Apy, the
sets of vertices iltM1 and M, have disjoint embeddings.

Let V' denoteV together with the embeddings of the pointsMf Thus we have
embedded the vertices of in S*. We check as follows that the hypotheses of Lemma
7 are satisfied fo’. When we refer to a hypothesis of Lemma 7 we shall put an *
after the number of the hypothesis to distinguish it from pdtiesis of the lemma we
are proving. We have defined so that it is setwise invariant undé and G induces

a faithful action om/’. Also, by the definition ofy’, hypothesis (2*) is satisfied. Since
G is a finite subgroup of Diff(S°), the unionY of all of the fixed point sets of the
non-trivial elements ofG is a graph inS®. ThusS® — Y is connected, and hence
hypothesis (4*) is satisfied.

To see that hypothesis (1*) is satisfied 1, suppose a paifx, y} of adjacent vertices
of ~" are both fixed by non-trivial elements g € G. If the pair is inV, then they
are adjacent iny, and hence by hypothesis (1) we know thatH)x& fix(g). Thus
suppose thak € M. Thenx € Mj, since the vertices iM, are fixed by at most
one non-trivial automorphism is’. Now without loss of generality, we can assume
that x is one of them; € M1 andy is an adjacent vertey;. Thusx is embedded as
X € int(Ayw ). Sinceh andg both fix x;, by hypothesis (3), both(Aw) = Asw and
9(Avw) = Ayw - It follows thath and g both fix w;, since we know they fix;. Now
{vi,w;} are an adjacent pair in. Hence again by hypothesis (1), tix(= fix(g). It
follows that hypothesis (1*) is satisfied fof .

It remains to check that hypothesis (3*) is satisfied ¥6r Let s andt be adjacent
vertices ofy’ which are fixed by some non-trivig € G. We will show thats and
t bound an arc in fixg) whose interior is disjoint fronV’, and if anyf € G fixes a
point in the interior of this arc then fik| = fix(g). First suppose that andt are both
in V. Then no element o6 interchangess andt. Now, by hypothesis (2)s and
t bound an arddg; C fix(g) whose interior is disjoint fronV. Furthermore, by (2),
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int(Asy) is disjoint from any otheAy, if {v,w} # {s,t}. Thus int@s) is disjoint from
the embedded points dfl;. Also the embedded points &fl, are disjoint from any
A Thus int@gy) is disjoint fromV’. Suppose some € G fixes a point in intAg).
Then by hypothesis (3¥,(As) = Ast. Sof either fixes or interchangesandt. In the
latter cases andt would not be adjacent in’. Thusf fixes boths andt. Now by
hypothesis (1), we must have fi¥(= fix(g). So the pair of vertices andt satisfy
hypothesis (3*).

Next suppose tha € V' — V. Sinces andt are adjacent in/, we must have € V.
Now s is the embedding of somma € M, andm is adjacent to verticeg, t € V which
are both fixed byg. Thusm € M;. By our embedding oM, for someh € G and
somei, we haves = h(x;) wherex; is adjacent to verticeg; andw; in ~'. It follows
that {v,t} = h({vi,w;}). Thush~!gh fixesv; andw;. Let hy and A, C fix(h)
be as in the description of our embedding of the pointdlin Thusv; andw; are
adjacent vertices ofy which are fixed by bothy, and h—'gh. By hypothesis (1),
fix(h) = fix(h~'gh). ThusAy C fix(h~1gh). Let A = h(A,w). ThenA is an arc
bounded by andt which is contained in fixd). Furthermore, the interior oy, is
disjoint from V andx; is the unique point in the interior oAy, that is fixed by an
element ofG which setwise but not pointwise fixe&;,. Thus the interior ofA is
disjoint fromV ands = h(x) is the unique point in the interior & that is fixed by an
element ofG which setwise but not pointwise fixes. Let Ag; denote the subarc &f
with endpointss andt. Then int@g) is disjoint fromV’, and Aq; satisfies hypothesis

(3%).
Thus we can apply Lemma 7 to the embedded verticeg ¢b get an embedding of

the edges ofy’ such that the resulting embedding gfis setwise invariant undes.
Now by omitting the vertices of’ — v we obtain the required embeddingof O

4 Embeddingswith TSG,(I') = &

Recall from Theoren2.9that if K, has an embedding with TSG,(I') & &, then
m= 0, 4, 8, 12, 20 (mod 24). For each of these valuempfve will use the Edge
Embedding Lemma to construct an embedding<gf whose topological symmetry
group is isomorphic td&y.

Proposition1 Letm=0, 4, 8, 12, 20 (mod 24) Then there is an embeddinyof
Km in S® such thalTSG, (') = S.
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Proof LetG = S, be the finite group of orientation preserving isometrieSbivhich
leaves the 1-skeleton of a tetrahedron setwise invariant. Observe that every non-
trivial element of G with non-empty fixed point set is conjugate to one of the rotet

f, h, g, or ¢ illustrated in Figurel. Furthermore, an even order element®fhas
non-empty fixed point set if and only if it is an involution. g4, for everyg € G of
order 4, every point ir8® has an orbit of size 4 undey, sog does not interchange any
pair of vertices.Thus regardless of how we embed our verticgpothesis (5) of the
Edge Embedding Lemma will be satisfied.

Figure 1: G leaves the 1-skeleton of a tetrahedron setwise invariant. The bRlls disjoint
from the fixed point set of any non-trivial element & and from its image under every
non-trivial element ofG.

Let n > 0. We begin by defining an embeddingk4,. Let B denote a ball which is
disjoint from the fixed point set of any non-trivial elememt®, and which is disjoint
from its image under every non-trivial element@f Choosen points in B, and let
Vo denote the orbit of these points und&r Since|S;| = 24, the sel, contains 24
points. These points will be the embedded verticelkaf,. Since none of the points in
V) is fixed by any non-trivial element @, it is easy to check that hypotheses (1) - (4)
of the Edge Embedding Lemma are satisfied for th&/gefThus the Edge Embedding
Lemma gives us an embeddirdg of Koz Which is setwise invariant undes. It
follows that TSG_(I'g) contains a subgroup isomorphic &. However, we know by
the Complete Graph Theorem th&f cannot be isomorphic to a proper subgroup of
TSG+(F0). ThusS, = TSG+(F0).

Next we will embedKogy14. Let V4 denote the four corners of the tetrahedron
(illustrated in Figurel). We embed the vertices o404 as the points iV, U Vp.

Now the edges of- are the arcs required by hypothesis (2) of the Edge Embedding
Lemma. Thus it is not hard to check that the $gtu V, satisfies the hypotheses
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of the Edge Embedding Lemma. By applying the Edge Embeddamgrha and the
Complete Graph Theorem as above we obtain an embeddjraj Kozn14 such that
S = TSGL(l).

E ()

B

Figure 2: The points oY¥/g are the vertices of; U 2. The arcs required by hypothesis (2) are
the gray arcs between corresponding vertices.

Next we will embedK,4,.8. Let T denote a regular solid tetrahedron with 1-skeleton
7. Let m; denote the 1-skeleton of a tetrahedron contained iand let, denote
the 1-skeleton of a tetrahedron 81 — T such thatr, U 7, is setwise invariant under
G. Observe thaty and » are interchanged by all elements conjugaté io Figure

1, and eachr; is setwise fixed by all the other elements®f We obtain the graph
illustrated in Figure2 by connectingr; and » with arcs contained in the fixed point
sets of the elements @ of order 3. Now letVg denote the vertices af, U 7. Then

Vg is setwise invariant undeG. We embed the vertices dfo4n1 g as the points of
Vg U Vp. It is easy to check that hypothesis (1) of the Edge Embeddamgma is
satisfied. To check hypothesis (2), first observe that the jpairs of vertices that are
fixed by a non-trivial element oG are the pairs of endpoints of the arcs joining
and (illustrated as gray arcs in Figug. These arcs are precisely those required by
hypothesis (2). Now hypotheses (3) and (4) follow easilyusagain by applying the
Edge Embedding Lemma and the Complete Graph Theorem wen@stambedding
I'g of Kognes such thats, = TSG, (I's).

Next we will embedK24,112. Let V12 be a set of 12 vertices which are symmetrically
placed on the edges of the tetrahedroso thatVi, is setwise invariant unde® (see
Figure3). We embed the vertices o412 asViz2 U V. Itis again easy to check
that hypothesis (1) of the Edge Embedding Lemma is satisfiedipU V. To check
hypothesis (2) observe that the only pairs of vertices thatfized by a non-trivial
element ofG are pairs on the same edgemaf The arcs required by hypothesis (2) in
Figure3 are illustrated as gray arcs. Hypotheses (3) and (4) noavfodlasily. Thus
again by applying the Edge Embedding Lemma and the Completehd heorem we
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Figure 3: The points o¥1, are symmetrically placed on the edgesrofThe arcs required by
hypothesis (2) are the gray arcs between vertices on the sdgeeofr .

obtain an embedding'1» of K412 such thats, = TSG, (I'12).

Figure 4: The points o¥g U V1, are the vertices of U 11 U 7». The gray arcs required by
hypothesis (2) are the union of those in Figures 2 and 3.

Finally, in order to embedK,4,,1 20 We first embed the vertices & U Vg U Vi, from
Figures2 and3. In Figure4, the 20 vertices oWg U Vi, are indicated by black dots
and the arcs required by hypothesis (2) are highlighteday.grhese vertices and arcs
are the union of those illustrated in Figurzand3. Now again by applying the Edge
Embedding Lemma and the Complete Graph Theorem we obtaimbedzingIl'1»
of Kagnig such thats, =2 TSGy(I'12). O

The following theorem summarizes our results on when a cetagraph can have an
embedding whose topological symmetry group is isomorphig;t

S Theorem A complete grapim, with m > 4 has an embedding in S* such that
TSG (I =2 S ifandonly ifm=0, 4, 8, 12, 20 (mod 24)
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5 Embeddings I’ with TSG. (') = As

Recall from Theoren®.8 that if K, has an embedding’ in S® such thatG =
TSG,.(I') = As, thenm = 0, 1, 5, or 20 (mod 60). In this section we show that
for all of these values ofn there is an embedding &, whose topological symmetry
group is isomorphic tds.

Proposition 2 Letm=0, 1, 5, 20 (mod 60) Then there exists an embeddifigof
Km in S such thafTSG,(I') = As.

Proof Let G = Ag denote the finite group of orientation preserving isomstoé

S which leaves a regular solid dodecaheddnsetwise invariant. Every element
of this group is a rotation, and hence has non-empty fixedtfgan Also the only
even order elements d&s are involutions. Thus regardless of how we embed our
vertices, hypothesis (5) of the Edge Embedding Lemma willdiesfied for the group
G. Let H = As denote the finite group of orientation preserving isomstoé S*
which leaves a regular 4-simplex setwise invariant. Observe that the elements of
order 2 ofH interchange pairs of vertices of the 4-simplex and hence han-empty
fixed point sets. Thus regardless of how we embed our vertiggmthesis (5) of the
Edge Embedding Lemma will be satisfied for the grétipWe will use eitherG or H

for each of our embeddings.

We shall useG to embedKgn,. Let B be a ball which is disjoint from the fixed point
set of any non-trivial element d& and which is disjoint from its image under every
non-trivial element ofG. Choosen points inB, and letVy denote the orbit of these
points underG. We embed the vertices dgo, as the points oiy. Since none of
the points ofV is fixed by any non-trivial element d&, the hypotheses of the Edge
Embedding Lemma are easy to check. Thus by applying the Eadpeéiding Lemma
and the Complete Graph Theorem, we obtain an embeddjraf Keon in S° such that
As =2 TSG, (T).

In order to embedKson1-1 We again use the isometry gro@ We embed the vertices of
Ksm+1 asVoU{x}, wherex is the center of the invariant solid dodecahedibnSince

X is the only vertex which is fixed by a non-trivial element®f the hypotheses of the
Edge Embedding Lemma are satisfied YorU {x}. Thus as above, by applying the
Edge Embedding Lemma and the Complete Graph Theorem, wia @lnt@mbedding
I'; of K60n+1 in S such thatAs = TSG+(F1).

In order to embedgg,5 We use the isometry groud. Let B’ be a ball which is
disjoint from the fixed point set of any non-trivial elemefitid and which is disjoint
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from its image under every non-trivial element ldf. Thus B’ is disjoint from the
4-simplexo. Choosen points inB’, and letW, denote the orbit of these points under
H. Let W5 denote the set of vertices of the 4-simplex We embed the vertices of
Keons as the points ofAMp U Ws. Now Wp U Ws is setwise invariant undet, andH
induces a faithful action oKgp+5. The arcs required by hypothesis (2) of the Edge
Embedding Lemma are the edges of the 4-simplexThus it is easy to check that
the hypotheses of the Edge Embedding Lemma are satisfiedifor Ws. Hence as
above by applying the Edge Embedding Lemma and the CompletghGlrheorem,
we obtain an embeddinbs of Kggny5 in S such thatAs 22 TSG, (I's).

/ S
.,

B

Figure 5: The points of\,y are symmetrically placed on the 4-simplex The arcs required
by hypothesis (3) are the gray arcs between vertices on the sdge ofr.

Finally, in order to embedgo20 We again use the isometry grotip. Observe that
each order 2 element d¢f fixes one vertex ob, each order 3 element ¢ fixes 2
vertices ofo, and each order 5 element Hif fixes no vertices ot. Let W,g denote
a set of 20 points which are symmetrically placed on the edfdse 4-simplexc
so thatWsg is setwise invariant under (see Figure 5). We embed the vertices of
Kemn20 as the points oMy U Wag. The only pairs of points i, that are both fixed
by a single non-trivial element dfl are on the same edge of the 4-simptexand are
fixed by two elements of order 3. We illustrate the arcs reglby hypothesis (2) of
the Edge Embedding Lemma as gray arcs in Figurdow as above, by applying the
Edge Embedding Lemma and the Complete Graph Theorem, wia @lotembedding
I'yg Of K60n+20 in S such thatA5 = TSG+(F20). |

The following theorem summarizes our results on when a cetegraph can have an
embedding whose topological symmetry group is isomorphiést

As Theorem A complete graplm, with m > 4 has an embedding in S* such that
TSG.(I') =2 As ifand only ifm=0, 1, 5, 20 (mod 60)
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6 EmbeddingsI with TSG,.(I') = A4

Recall from Theoren®.7 that if K, has an embeddind’ in S® such thatG =
TSGL(I') =2 A4, thenm= 0, 1, 4,5, or 8 (mod 12). In this section we will show that
for these values afn, there are embeddings &f, whose topological symmetry group
is isomorphic toA.

We begin with the special case Kf,. First, we embed the vertices bfat the corners
of aregular tetrahedron. Then, we embed the edgé&ssafthat each set of three edges
whose vertices are the corners of a single face of the tetraheare now tangled as
shown in Figures. The two dangling ends on each side in Fig@reontinue into an
adjacent face with the same pattern. If we consider the laratdd by the three edges
whose vertices are the corners of a single face (and ignerettter edges of'), we
see that this cycle is embedded as the KAdllustrated in Figurer.

Figure 6: One face of the embeddiingof K.

Lemma6.1 The knotK in Figure7 is non-invertible.

Proof Observe thaK is the connected sum of three trefoil knots together with the
knot J illustrated in FigureB. SupposeK is invertible. Then by the uniqueness of
prime factorizations of oriented knotwould also be invertible. Sincgis the closure

of the sum of three rational tangle$,is an algebraic knot. Thus the machinery of
Bonahon and Siebenmanij can be used to show thdtis non-invertible. It follows
that K is non-invertible as well. O

Proposition3 LetT be the embedding &, in S® described above. Tha@isG, (I') =
A4, andTSG,(I") is induced by the group of rotations of a solid tetrahedron.
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Figure 7: The knoK formed by three edges whose vertices are the corners of ke $atg.
We indicate the three edges of the triangle with differepesyof lines.

09
WL

p
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R

Figure 8: K is the connected sum of three trefoil knots together withkihet J illustrated
here.

Proof It follows from the Complete Graph Theorem thatAjf is isomorphic to a
subgroup of TSG(I'), then TSG.(T') is isomorphic to eithe”A,, &4, or As. We will
first show that TSG(I") contains a group isomorphic #y, and then that TSET)
is not isomorphic to eithe®, or As.

We see as follows thal' is setwise invariant under a group of rotations of a solid
tetrahedron. The fixed point set of an order three rotatiom @blid tetrahedron
contains a single vertex of the tetrahedron and a point icenéer of the face opposite
that vertex. To see thdt is invariant under such a rotation, we unfold three of the
faces of the tetrahedron. The unfolded picturd’as illustrated in Figured. In order

to recover the embedded graphfrom Figure9, we glue together the pairs of sides
with corresponding labels. When we re-glue these pairsthitee vertices labeles
become a single vertex. We can see from the unfolded pictuFégiure9 that there

is a rotation ofl" of order three which fixes the pointin the center of the picture,

Algebraic & GeometricZopology XX (20XX)



Polyhedral topological symmetry groups 1025

together with the vertex.

X

Figure 9: This unfolded view illustrates an order three syatrgnof I".

The fixed point set of a rotation of order two of a tetrahedrontains the midpoints

of two opposite edges. This rotation interchanges the twedavhich are adjacent to
each of these inverted edges. To see Ihatinvariant under such a rotation, we unfold
the tetrahedron into a strip made up of four faces of thetietteon. The unfolded
picture ofI" is illustrated in FigurelO. In order to recover the embedded grdpfrom
Figure 10, we glue together pairs of sides with corresponding lab@lsen we glue
these pairs, the two points labeledire glued together. We can see from the unfolded
picture in FigurelO that there is a rotation df' of order two which fixes the point/
that is in the center of the picture together with the peinThus TSG.(I') contains a
subgroup isomorphic téy.

Now assume tha®, = TSG, (I'). Label the four vertices of by the lettersa, b, c,
andd. Then there is a homeomorphigmof S* which leaved" setwise invariant while
inducing the automorphisnaky) on its vertices. In particular, the image of the oriented
cycleabcis the oriented cycleac. Thus the simple closed curvelhwith verticesabc

is inverted byh. However, this simple closed curve is the kkotillustrated in Figure,
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Figure 10: This unfolded view illustrates an order two syromef I".

and we proved in Lemm@.1that K is non-invertible. Therefore, 2 TSQT).
Finally, by Theorem 2As; 2 TSG, (I"), which completes the proof. O

Now we will show that for allm > 4 such thaimm = 0,1,4,5,8 (mod 12), there is an
embedding of K, in S® with TSG, (") =2 A4. The following Theorem fromd] will
be used in the proof.

Subgroup Theorem [5] Let I' be an embedding of a 3-connected graphSin
Suppose that' contains an edge which is not pointwise fixed by any non-trivial
element ofTSG,(I'). Then for evennH < TSG, (), there is an embedding of T
with H = TSG,(T").

Proposition 4 Suppose thain > 4 andm=0,1,4,5,8 (mod 12) Then there is an
embedding of K, in S* such thatTSG, (T') = A,.

Proof We first consider the cases whare= 0,4, 8,12 20 (mod 24). LetG denote
the finite group of orientation preserving isometries of thgkeletonr of a regular
tetrahedron. Recall from the proof of Propositibthat for eachk = 0, 4, 8, 12, or 20,
we embedded,4 1k as a graph 'k with vertices in the seVy U V4 U Vg U V12 such
that TSG (I'y) = & is induced byG. We will show that eachi’y has an edge which
is is not pointwise fixed by any non-trivial element Gf
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First suppose thah = 24n+ k wheren > 0 andk = 0, 4, 8, 12, or 20. Recall thafy
contains 24 vertices none of which is fixed by any non-trivial element&f Let g
be an edge of kx with vertices inVy. Thenegy is not pointwise fixed by any non-trivial
element ofG. Hence by the Subgroup Theorem, there is an embeddiofyK,, with
Ay = TSG(T).

Next we suppose that = 0, and letl'g, I'12, andI'y¢ denote the embeddings &g,
K12, and Kyg given in the proof of Propositiod. Let g be an edge il'g whose
vertices are not the endpoints of one of the gray arcs in Eiguet e;» be an edge in
I"12 whose vertices are not the endpoints of one of the gray aifigiure3, and leteyg
be an edge il',p whose vertices are not the endpoints of one of the gray afigure
4. In each caseg is not pointwise fixed by any non-trivial element Gf. Hence by
the Subgroup Theorem, there is an embeddimyf Ky with Ay = TSG,(I).

Next we consider the case wheme= 24n + 16. Thenm = 12(2n + 1) + 4. Let
H = A4 denote a finite group of orientation preserving isometrieSowhich leaves
a solid tetrahedrof setwise invariant. Then every elementbthas non-empty fixed
point set, and the only even order elements are involutidhsis regardless of how we
embed our vertices, hypothesis (5) of the Edge Embeddingrawill be satisfied for
H. Also, observe that no edge of the tetrahedfos pointwise fixed by any non-trivial
element ofH. Let W, denote the vertices of. Let B denote a ball which is disjoint
from the fixed point set of any non-trivial elementldf and which is disjoint from its
image under every non-trivial element Hf. Choose 8 + 1 points inB (recall that
we are not assuming that > 0) and letW, denote the orbit of these points under
H. We embed the vertices &f;o(xn+1)+4 as the points ofVp U W,. Since no pair of
vertices inWp U W, are both fixed by a non-trivial elemehte H, it is easy to see that
hypotheses (1) - (4) of the Edge Embedding Lemma are satisfibds by applying
the Edge Embedding Lemma we obtain an embed8isgpf Kogn+16 Which is setwise
invariant undeH . Now by Theorems 2 and 3, we know that TSE16) 2 As or &.
Now it follows from the Complete Graph Theorem that TSG1g) =2 A4.

Thus we have shown that i = 0, 4, or 8 (mod 12) andn > 4, then there is an
embeddingl’ of K, in S® with TSG,(I") = A4.

Next suppose thain = 12n+ 1 andm # 1 (mod 60). Let the group! and the ball
B be as in the above paragraph. Choageoints inB and letUgy denote the orbit of
these points undet . Let v denote one of the two points & which is fixed by every
element ofH. We embed the vertices ¢fy, asUp U {v}. Since no pair of vertices
in Up U {v} are both fixed by a non-trivial elemehte H, it is easy to check that the
hypotheses of the Edge Embedding Lemma are satisfied. Ndwelydge Embedding
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Lemma together with Theorems 2 and 3 and the Complete Grapbréim we obtain
an embedding” of Ky, such that TSG(I") =2 A4.

Similarly, suppose thatn = 12n+ 5 andm # 5 (mod 60). LetH, Ug, Wy, andv
be as above. We embed the verticeKaf as Up U W4 U {v}. The arcs required by
hypothesis (2) of the Edge Embedding Lemma are highlightegtay in Figurell.
Now again by the Edge Embedding Lemma together with Theo&Zarsd 3 and the
Complete Graph Theorem we obtain an embeddirgf K, such that TSG(I') = Ag.

B

Figure 11: The vertices a;U{v} are indicated by black dots. The arcs required by hypothesis
(3) are highlighted in gray.

Next suppose thatn = 60n+ 1 or m = 60n + 5 wheren > 0. Let G; denote the
group of orientation preserving symmetries of a reguladstbdecahedron and 185
denote the group of orientation preserving symmetries efjalar 4-simplex. We first
embedKgo 1 and Kegonys as the graphd’s and I's respectively given in the proof
of Proposition2 such that TSG(I'x) = As is induced byGy, wherek = 1,5. Since

n > 0, we can choose an edggof I'x both of whose vertices are Wy. Theney is not
pointwise fixed by any non-trivial element & . Hence by the Subgroup Theorem,
we obtain an embedding of Ky, such that TSG(I") = A4.

Finally, let m = 5. Let i denote an embedding of the 1-skeleton of a regular solid
tetrahedronT so that the edges gi each contain an identical trefoil knot. L&t
denote these vertices and edges together with a vertex aetiter of T which is
connected via unknotted arcs to the other vertice ¢dee Figurel2). We choosd”

so that it is setwise invariant under a group of orientatiogsprving isometries of .
Thus TSG (I") contains a subgroup isomorphic &a. Sincel" is an embedding of
Ks, by Theorem 2 we know that TSGI") 2 &. Furthermore, any homeomorphism
of (S%,T"), must take each triangle which is the connected sum of Bitrfiots to

a triangle which also is the connected sum of 3 trefoil kndibus TSG (I') must
leavey setwise invariant. Sincg is an embedding ok4, TSG, (T") induces a faithful
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action onK,4. However,As cannot act faithfully ork,. Thus TSG.(I') 2 As. Now
it follows from the Completeness Theorem that TSB) = Ay.

Figure 12: An embedding of Ks such that TSG(I") = A,.

The above four paragraphs together show that i£ 1,5 (mod 12) andn > 4, then
there is an embedding of K, in S with TSG_ (') = A4. O

The following theorem summarizes our results on when a cetagraph can have an
embedding whose topological symmetry group is isomorphié,t

A4 Theorem A complete graplm, with m > 4 has an embedding in S* such that
TSG.(I') 2 Aq ifand onlyifm=0, 1, 4,5, 8 (mod 12)
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