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Abstract

We introduce invariants of graphs embedded in S3 which are related to the Wu invariant
and the Simon invariant. Then we use our invariants to prove that certain graphs are in-
trinsically chiral, and to obtain lower bounds for the minimal crossing number of particular
embeddings of graphs in S3.

1. Introduction

While there are numerous invariants for embeddings of graphs in 3-manifolds, most have
limited applications either because they are hard to compute or because they are only defined
for particular types of graphs. For example, Thompson [18] defined a powerful polynomial
invariant for graphs embedded in arbitrary 3-manifolds, which can detect whether an embed-
ding of a graph in S3 is planar. However, computing Thompson’s invariant requires identi-
fying topological features of a sequence of 3-manifolds, such as whether each manifold is
compressible.

Yamada [21] and Yokota [22] introduced polynomial invariants for spatial graphs (i.e.,
graphs embedded in S3). The Yamada polynomial is an ambient isotopy invariant for spatial
graphs with vertices of degree at most 3. However, for other spatial graphs it is only a regular
isotopy invariant. It is convenient to use because it can be computed using skein relations.
Also, the Yamada polynomial can be used to detect whether a spatial graph with vertices of
degree at most 3 is chiral (i.e., distinct from its mirror image). The Yokota polynomial is an
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K5 K3, 3

Fig. 1. Achiral embeddings of K5 and K3,3.

ambient isotopy invariant for all spatial graphs that reduces to the Yamada polynomial for
graphs with vertices of degree at most 3. However, the Yokota polynomial is more difficult
to compute, and cannot be used to show that a spatial graph is chiral.

In a lecture in 1990, Jon Simon introduced an invariant of embeddings of the graphs
K5 and K3,3 with labeled vertices in S3. The Simon invariant is easy to compute from a
projection of an embedding and has been useful in obtaining results about embeddings of
non-planar graphs [5, 8–10, 12–14, 16, 17]. In 1995, Taniyama [17] showed that the Simon
invariant is a special case of a cohomology invariant for all spatial graphs which had been
introduced by Wu [19, 20], and showed that the Wu invariant can be defined combinatorially
from a graph projection. However, the Wu invariant is not always easy to compute, and
(like the Simon invariant) depends on the choice of labeling of the vertices of a graph. For
this reason, the role of the Wu invariant in distinguishing a spatial graph from its mirror
image has been limited to showing that for any embedded non-planar graph �, there is
no orientation reversing homeomorphism of (S3, �) that fixes every vertex of � (see [8]).
Without this restriction on the vertices, many non-planar graphs including K5 and K3,3 have
achiral embeddings as shown in Figure 1.

In this paper, we define numerical invariants that are obtained by reducing the Wu invari-
ant and by generalizing the Simon invariant. We then use our invariants to prove that no
matter how the complete graph K7, the Möbius ladders M2N+1, and the Heawood graph are
embedded in S3, there is no orientation reversing homeomorphism of S3 which takes the
embedded graph to itself. Finally, we show that our invariants can be used to give a lower
bound on the minimal crossing number of embedded graphs.

2. Wu invariants and reduced Wu invariants

In 1960, Wu [19] introduced an invariant as follows. Let C2(X) be the configuration space
of ordered pairs of points from a topological space X , namely

C2(X) = {(x, y) ∈ X × X | x � y} .

Let σ be the involution of C2(X) given by σ(x, y) = (y, x). The integral cohomology
group of Ker(1 + σ�) denoted by H ∗(C2(X), σ ) is said to be the skew-symmetric integral
cohomology group of the pair (C2(X), σ ), where σ� denotes the chain map induced by σ .
Wu [19] proved that H 2(C2(R

3), σ ) � Z, and hence is generated by some element �. Let
f : G → R3 be a spatial embedding of a graph G with labeled vertices and orientations on
the edges. Then f naturally induces an equivariant embedding f × f : C2(G) → C2(R

3)

with respect to the action σ , and therefore induces a homomorphism

( f × f )∗ : H 2(C2(R
3), σ ) −→ H 2(C2(G), σ ).

The element ( f × f )∗(�) is an ambient isotopy invariant known as the Wu invariant.
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Fig. 2. The Wu invariants for embeddings of these graphs are given in Examples 2·1, 2·2 and 2·3.

In order to explicitly calculate the Wu invariant, Taniyama [17] developed the following
combinatorial approach. Let G be a graph with vertices labeled v1, v2, . . . , vm and oriented
edges labeled e1, e2, . . . , en . For each pair of disjoint edges ei and e j , we define a variable
Eei ,e j = Ee j ,ei ; and for each edge ei and vertex vs which is disjoint from ei , we define a
variable V ei ,vs . Let Z(G) be the free Z-module generated by the collection of Eei ,e j ’s. For
each V ei ,vs , let δ(V ei ,vs ) be the element of Z(G) given by the sum of all Eei ,ek such that ek is
disjoint from ei and has initial vertex vs , minus the sum of all Eei ,ek such that ek is disjoint
from ei and has terminal vertex vs . Thus

δ(V ei ,vs ) =
∑

I (k)=s
ei �ek=�

Eei ,ek −
∑

T (l)=s
ei �el=�

Eei ,el ,

where I (k) = s indicates that the initial vertex of ek is vs , and T (l) = s indicates that the
terminal vertex of el is vs . Let B(G) be the submodule of Z(G) generated by the collection
of δ(V ei ,vs )’s. We let L(G) denote the quotient module Z(G)/B(G), and call it a linking
module of G. Then L(G)� H 2(C2(G), σ ).

Now let f be an embedding of the labeled oriented graph G in S3. Fix a projection of
f (G) and let �( f (ei), f (e j )) = �( f (e j ), f (ei)) denote the sum of the signs of the crossings
between f (ei) and f (e j ). Taniyama [17] showed that the equivalence class

L( f ) =
⎡⎣ ∑

ei �e j =�

�( f (ei), f (e j ))Eei ,e j

⎤⎦ ∈ L(G)

coincides with ( f × f )∗(�) through the isomorphism from H 2(C2(G), σ ) to L(G). Thus
we may regard L( f ) as the Wu invariant of f . Furthermore, H 2(C2(G), σ ) is torsion free,
namely L(G) is a free Z-module, and for an orientation-reversing self-homeomorphism �

of S3, it follows that L(� ◦ f ) = −L( f ).

Example 2·1. Let 2K3 denote the graph consisting of two copies of K3, labeled and ori-
ented as illustrated in Figure 2, and let f be a spatial embedding of 2K3. It was shown in
[17] that the linking module L(2K3) = 〈[Ee1,d1]〉 � Z, and the Wu invariant of f is given
by:

L( f ) =
∑

1�i, j�3

�( f (ei), f (d j ))[Ee1,d1] = 2lk( f )[Ee1,d1],

where lk( f ) denotes the linking number of the pair of triangles in S3.

Example 2·2. Let K5 denote the complete graph on five vertices, labelled and oriented as
illustrated in Figure 2, and let f be a spatial embedding of K5. It was shown in [17] that the
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linking module L(K5) = 〈[Ee1,e3]〉�Z and the Wu invariant is given by:

L( f ) =
∑

a�b=�

ε(a, b)�( f (a), f (b))[Ee1,e3],

where ε(a, b) is defined by ε(ei , e j ) = 1, ε(di , d j ) = −1 and ε(ei , d j ) = −1.

We work out the following example which it is given in [17] without details.

Example 2·3. Let K3,3 denote the complete bipartite graph, labelled and oriented as illus-
trated in Figure 2, and let f be a spatial embedding of K3,3. Then Z(K3,3) is a free Z-module
generated by

Ec1,c3, Ec2,c4, Ec3,c5, Ec4,c6, Ec5,c1, Ec6,c2, Ec1,c4, Ec2,c5, Ec3,c6,

Eb1,c2, Eb1,c5, Eb3,c4, Eb3,c1, Eb2,c3, Eb2,c6, Eb1,b2, Eb2,b3, Eb3,b1

and B(K3,3) is a submodule of Z(K3,3) generated by

Eb1,c2 − Ec6,c2, Ec1,c3 − Ec3,c6, Ec1,c4 − Ec4,c6,

Ec5,c1 + Eb1,c5, Eb3,c1 + Eb3,b1, Eb1,b2 − Eb2,c6,

−Eb2,c3 − Ec1,c3, Ec2,c4 − Ec1,c4, Ec2,c5 − Ec5,c1,

Ec6,c2 − Eb2,c6, −Eb2,b3 − Eb3,c1, Eb1,c2 − Eb1,b2,

Eb3,c4 − Ec2,c4, Ec3,c5 − Ec2,c5, Ec3,c6 − Ec6,c2,

Ec1,c3 + Eb3,c1, Eb2,c3 + Eb2,b3, Eb3,b1 − Eb1,c2,

−Eb1,c5 − Ec3,c5, Ec4,c6 − Ec3,c6, Ec1,c4 − Ec1,c3,

Ec2,c4 − Eb1,c2, −Eb1,b2 − Eb2,c3, Eb3,c4 − Eb3,b1,

Eb2,c6 − Ec4,c6, Ec5,c1 − Ec1,c4, Ec2,c5 − Ec2,c4,

Ec3,c5 + Eb2,c3, Eb1,c5 + Eb1,b2, Eb2,b3 − Eb3,c4,

−Eb3,c1 − Ec5,c1, Ec6,c2 − Ec2,c5, Ec3,c6 − Ec3,c5,

Ec4,c6 − Ed3,c4, −Eb3,b1 − Eb1,c5, Eb2,c6 − Eb2,b3 .

Then we have

[Ec1,c3] = [Ec2,c4] = [Ec3,c5] = [Ec4,c6] = [Ec5,c1] = [Ec6,c2]
= [Ec1,c4] = [Ec2,c5] = [Ec3,c6] = [Eb1,b2] = [Eb2,b3] = [Eb3,b1]
= [Eb1,c2] = [Eb3,c4] = [Eb2,c6]
= −[Eb1,c5] = −[Eb3,c1] = −[Eb2,c3],

Then the linking module L(K3,3) = 〈[Ec1,c3]〉�Z and the Wu invariant is given by:

L( f ) =
∑

a�b=�

ε(a, b)�( f (a), f (b))[Ec1,c3],

where ε(a, b)) is defined by ε(ci , c j ) = 1, ε(bi , b j ) = 1 and

ε(ci , b j ) =
{

1 if ci and b j are parallel in Figure 2

−1 if ci and b j are anti-parallel in Figure 2.

Remark 2·4. It was shown in [17] that L(G) = 0 if and only if G is a planar graph which
does not contain a pair of disjoint cycles.
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Fig. 3. A reduced Wu invariant for K6 is given in Example 2·9.

Remark 2·5. It was shown in [7] that if the graph G is 3-connected, then

rankL(G) = 1

2

{
β1(G)2 + β1(G) + 4|E(G)| −

∑
v∈V (G)

(deg(v))2

}
,

where β1(G) denotes the first Betti number of G and deg(v) denotes the valency of a vertex
v. For example, rank(L(K6)) = 10 and rank(L(K7)) = 36.

Definition 2·6. Let f be a spatial embedding of an oriented graph G with linking module
L(G) and Wu invariant L( f ) ∈ L(G). Let ε : L(G) → Z be a homomorphism. Then we
call the integer ε(L( f )) the reduced Wu invariant of f with respect to ε and denote it by
L̃ε( f ).

For a pair of disjoint edges ei and e j , we denote ε([Eei ,e j ]) by ε(ei , e j ). Thus

L̃ε( f ) = ε

⎛⎝⎡⎣ ∑
ei �e j =�

�( f (ei), f (e j ))Eei ,e j

⎤⎦⎞⎠ =
∑

ei �e j =�

�( f (ei ), f (e j ))ε(ei , e j ).

Example 2·7. Consider 2K3, labelled and oriented as in Figure 2, and let f be an embed-
ding of 2K3 in S3. Let ε be the isomorphism from L(2K3) to Z defined by ε(e1, d1) = 1.
Then by Example 2·1, we have L̃ε( f ) = 2lk( f ).

Example 2·8. Let G be K5 or K3,3 labelled and oriented as illustrated in Figure 2, and
let f be an embedding of G in S3. Let ε be the isomorphism from L(G) to Z defined by
ε(e1, e3) = 1 for G = K5 and ε(c1, c3) = 1 for G = K3,3. Then it follows that L̃ε( f ) =∑

a�b=� ε(a, b)�( f (a), f (b)), where the value of ε(a, b) for an arbitrary pair of edges is
given in Example 2·2 if G = K5 and in Example 2·3 if G = K3,3.

Example 2·9. Consider K6, labelled and oriented as in Figure 3, and let f be an embed-
ding of K6 in S3. For any pair of disjoint edges a and b in K6, we define ε(a, b) as follows:

ε(xi , x j ) =
{

3 if xi and x j are anti-parallel in Figure 3

2 if xi and x j are neither parallel nor anti-parallel in Figure 3;

ε(yi , y j ) =
{

0 if yi and y j are anti-parallel in Figure 3

−1 if yi and y j are neither parallel nor anti-parallel in Figure 3;

ε(xi , z j ) =
{

−1 if xi and z j are anti-parallel in Figure 3

1 if xi and z j are parallel in Figure 3.

In addition, we define ε(zi , z j ) = 1, ε(xi , y j ) = −1, and ε(yi , z j) = 0. Then it can
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Fig. 4. The Reidemeister moves for embedded graphs.

be checked that ε gives a homomorphism from L(K6) to Z. It follows that L̃ε( f ) =∑
a�b=� ε(a, b)�( f (a), f (b)) is a reduced Wu invariant for K6.

3. Generalized Simon invariants

Simon introduced the following function of embeddings f of the graphs K5 and K3,3,
labeled and oriented as in Figure 2. Let

L̂ε( f ) =
∑

a�b=�

ε(a, b)�( f (a), f (b))

where ε(a, b) is defined as ε(ei , e j ) = 1, and ε(di , d j ) = ε(ei , d j ) = −1 for K5; and ε(a, b)

is defined as ε(ci , c j ) = 1, ε(bi , b j ) = 1,

ε(ci , b j ) =
{

1 if ci and b j are parallel in Figure 2

−1 if ci and b j are anti-parallel in Figure 2,

for K3,3.
Simon then proved that for any projection of an embedding f of the oriented labelled

graphs K5 and K3,3, the value of ∑
a,b∈G

ε(a, b)�( f (a), f (b))

is invariant under the five Reidemeister moves for spatial graphs given in Figure 4. This
invariant is known as the Simon invariant.

By using Simon’s method we can create similar invariants for many other embedded
graphs. In particular, let G be an oriented graph and let f be an embedding of G in S3.
If we can define a function ε(a, b) from the set of pairs of disjoint edges of G to the integers
such that for any projection of f (G) the value of

L̂ε( f ) =
∑

a�b=�

ε(a, b)�( f (a), f (b))

is invariant under the five Reidemeister moves, then we say that L̂ε( f ) is a generalized
Simon invariant of f (G). If for every embedding f of G, L̂ε( f ) is a generalized Simon
invariant of f (G), then we say that L̂ε( f ) is a generalized Simon invariant of G.

Observe that the reduced Wu invariants given in Example 2·8 are identical to their Simon
invariants. In fact, every reduced Wu invariant with respect to a given homomorphism ε is a



Reduced Wu and generalized Simon invariants for spatial graphs 527

x1

x7

x6

x5

x4

x3

x2
y1 y2

y3

y4

y5

y6

y
7

z1 z2

z3

z4

z5

z6

z7

Fig. 5. An illustration of the oriented K7, with the 0-star in black, the 1-star in bold, and the 2-star in grey.

generalized Simon invariant with epsilon coefficients given by ε(a, b). However, not every
generalized Simon invariant is necessarily a reduced Wu invariant. In order to distinguish
these two types of invariants, we use L̃ε( f ) to denote a reduced Wu invariant and L̂ε( f ) to
denote a generalized Simon invariant.

We say that a graph embedded in S3 is achiral if there is an orientation reversing homeo-
morphism of S3 that takes the graph to itself setwise. Otherwise, we say the embedded graph
is chiral. We say that an abstract graph is intrinsically chiral if every embedding of the graph
in S3 is chiral. Note that when we talk about chirality or achirality we are considering em-
bedded graphs as subsets of S3 disregarding any edge labels or orientations. For example,
we saw in Figure 1 that K5 and K3,3 have achiral embeddings, although it was shown in [8]
that no embedding of either of these graphs has an orientation reversing homeomorphism
that preserves the edge labels and orientations given in Figure 2.

We now define generalized Simon invariants for some specific graphs and families of
graphs, and use these invariants to prove that the graphs are intrinsically chiral.

The complete graph K7

Consider the complete graph K7 with labelled edges as illustrated in Figure 5. We refer
to the edges x1, x2, ..., x7 as “outer edges” and the rest of the edges as “inner edges.” We
refer to the Hamiltonian cycle y1 y2...y7 as the 1-star since these edges skip over one vertex
relative to the cycle x1x2...x7. Similarly, we refer to the Hamiltonian cycle z1z2...z7 as the 2-
star since these edges skip over two vertices relative to the cycle x1x2...x7. For consistency,
we also use the term 0-star to refer to the Hamiltonian cycle x1x2...x7. We orient the edges
around each of the stars as illustrated. Note that this classification of oriented edges is only
dependent on our initial choice of an oriented 0-star.

We define the epsilon coefficient of a pair of disjoint edges by the function:

ε(xi , x j ) = ε(yi , y j ) = ε(zi , z j ) = ε(xi , z j ) = ε(yi , z j ) = 1

ε(xi , y j ) = −1.

Given an oriented 0-star and an embedding f : K7 → S3 with a regular projection, we
define the integer L̂ε( f ) by

L̂ε( f ) =
∑

a�b=�

ε(a, b)�( f (a), f (b)).

LEMMA 3·1. Consider K7 with a fixed choice of an oriented 0-star. Then for any embed-
ding f : K7 → S3, the value of L̂ε( f ) is an ambient isotopy invariant.

Proof. It is easy to check that L̂ε( f ) is invariant under the first four Reidemeister moves.
In order to show that L̂ε( f ) is invariant under the fifth move, we must show that the value
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is unchanged when any edge of f (K7) is pulled over or under a given vertex v. An example
is illustrated in Figure 6.

Pulling a given edge e over a vertex will generate six new crossings. In Figure 6 the
edge x4 has new crossings with the edges x1, y1, z1, x2, y3, and z4. The crossings with
edges pointed away from the vertex (x1, y1, z1) will have an opposite sign compared to
the crossings with edges pointed toward the vertex (x2, y3, z4). Thus, the overall change in
L̂ε( f ) is found by adding the epsilon coefficients for the crossings of x4 with x1, y1, and z1

and subtracting the epsilon coefficients for the crossings of x4 with x2, y3, and z4. It is easy
to check that L̂ε( f ) is unchanged in each case.

It follows from Lemma 3·1, that L̂ε( f ) is a generalized Simon invariant.

Remark 3·2. One can check that the epsilon coefficients we have given for K7 define a
homomorphism from the free Z-module L(K7) to Z. Thus L̂ε( f ) also gives us a reduced
Wu invariant for K7.

We now apply the generalized Simon invariant of K7 to prove that K7 is intrinsically
chiral. This result was previously proven by Flapan and Weaver [3], but using the generalized
Simon invariant allows us to give a simpler proof which can be generalized to apply to many
other graphs. We begin with a lemma.

LEMMA 3·3. For any embedding f of K7 in S3, the generalized Simon invariant L̂ε( f )

is an odd number.

Proof. Since any crossing change will change the signed crossing number between two
edges by ±2, we only need to find an embedding f where L̂ε( f ) is odd. Consider an embed-
ding of K7 which has Figure 5 as its projection with the intersections between edges replaced
by crossings. Note that there are 35 crossings in this embedding of K7: 14 crossings of the
2-star with itself, and 21 crossings between the 1-star and the 2-star. The epsilon coefficient
for every one of these crossings is 1. Since there is an odd number of crossings, regardless
of their signs, L̂ε( f ) must be odd. Because any crossing change will change L̂ε( f ) by an
even number, it follows that L̂ε( f ) is odd for any embedding of K7.

THEOREM 3·4. K7 is intrinsically chiral.

Proof. For the sake of contradiction, suppose that for some embedding f of K7 there
is an orientation reversing homeomorphism h of the pair (S3, f (K7)). Let α denote the
automorphism of K7 that is induced by h.

Let J denote the set of Hamiltonian cycles in f (K7) with non-zero Arf invariant. Since
any homeomorphism of S3 preserves the Arf invariant of a knot, the homeomorphism h
permutes the elements of J . It follows from Conway and Gordon [1] that |J | must be odd,
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and hence there is an orbit O in J such that |O| = n for some odd number n. Consequently,
hn setwise fixes an element of O . Hence some Hamiltonian cycle C with non-zero Arf
invariant is setwise fixed by hn . We now label and orient the edges of K7 as in Figure 5 so
that f takes the 0-star of K7 to C . Since hn leaves C setwise invariant, the automorphism αn

(induced on K7 by hn) leaves the 0-star, 1-star and 2-star all setwise invariant.
Fix a sphere of projection P in S3. Since f ◦ αn(K7) and f (K7) are identical as subsets

of S3, their projections on P are the same. Furthermore, if αn preserves the orientation of
the 0-star, then αn preserves the orientation of the 1-star and 2-star and hence of every edge.
Otherwise, αn reverses the orientation of every edge. In either case, a given crossing in the
projection has the same sign whether it is considered with orientations induced by αn(K7) or
with orientations induced by K7. Furthermore, since αn leaves the 0-star, 1-star, and 2-star
of K7 setwise invariant, each crossing has the same epsilon coefficient, whether the crossing
is considered in f ◦ αn(K7) or in f (K7). It follows that L̂ε(hn ◦ f ) = L̂ε(α

n ◦ f ) = L̂ε( f ).
Let ρ denote a reflection of S3 which pointwise fixes the sphere of projection P . Using

orientations induced by K7, we see that the sign of every crossing in the projection of ρ ◦
f (K7) on P is the reverse of that of the corresponding crossing in the projection of f (K7).
Using the oriented 0-star from K7, it follows that L̂ε(ρ ◦ f ) = −L̂ε( f ). On the other hand,
since n is odd hn is orientation reversing and is thus isotopic to ρ. Hence by Lemma 3·1,
L̂ε(ρ ◦ f ) = L̂ε(hn ◦ f ). Consequently, L̂ε(hn ◦ f ) = −L̂ε( f ). Thus L̂ε( f ) = 0, which
contradicts Lemma 3·3. Hence in fact, K7 is intrinsically chiral.

COROLLARY 3·5. For every odd number n, the complete graph K4n+3 is intrinsically
chiral.

Proof. Suppose that for some embedding f of K4n+3 in S3, there is an orientation revers-
ing homeomorphism h of (S3, f (K4n+3)). Even though in general the homeomorphism h
will not have finite order, the automorphism that h induces on K4n+3 does have finite order
and its order can be expressed as 2ab for some odd number b. Now g = hb is an orientation
reversing homeomorphism of (S3, f (K4n+3)) which induces an automorphism of K4n+3 of
order 2a .

Observe that the number of K7 subgraphs in K4n+3 is

(4n + 3)(4n + 2)(4n + 1)(4n)(4n − 1)(4n − 2)(4n − 3)

7!
= (4n + 3)(2n + 1)(4n + 1)(n)(4n − 1)(2n − 1)(4n − 3)

315
.

This number is odd, since n is odd. Thus g leaves invariant some K7 subgraph. But this is
impossible since by Theorem 3·4, K7 is intrinsically chiral.

Mobius ladders

A Möbius ladder Mn with n rungs is the graph obtained from a circle with 2n vertices
by adding an edge between every pair of antipodal vertices. Let N � 2, and consider the
oriented labeled graph of M2N+1 illustrated in Figure 7 (note there is no vertex at the center of
the circle). We denote the “outer edges” consecutively as x1, x2, ..., x2(2N+1), and the “inner
edges” consecutively as y1, y2, ..., y2N+1. Since N � 2, it follows from Simon [15] that
there is no automorphism of M2N+1 which takes an outer edge to an inner edge. Thus, the
distinction between inner and outer edges does not depend on any particular labeling.
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Fig. 7. An oriented M2N+1.

For any pair of edges a and b, let the minimal outer edge distance d(a, b) be defined as
the minimum number of edges of any path between a and b using only outer edges (not
counting a and b). For M2N+1, note that d(xi , x j ) � 2N for any i, j . We define the epsilon
coefficient ε(a, b) of a pair of disjoint edges a and b by:

ε(xi , x j ) =

⎧⎪⎨⎪⎩
2 if d(xi , x j ) is odd and d(xi , x j )� 2N − 1

−1 if d(xi , x j ) = 2N

1 otherwise,

ε(xi , y j ) =
{

2 if d(xi , y j ) = 1

3 if d(xi , y j ) � 2,

ε(yi , y j ) =

⎧⎪⎨⎪⎩
2 if d(yi , y j ) = 1

5 if d(yi , y j ) = 2

6 if d(yi , y j ) � 3.

For any embedding f : M2N+1 → S3 with a regular projection, define:

L̂ε( f ) =
∑

a�b=�

ε(a, b)�( f (a), f (b)).

Remark 3·6. This definition of L̂ε( f ) does not reduce to the original Simon invariant for
N = 1.

THEOREM 3·7. For N � 2 and any embedding f of M2N+1 in S3, L̂ε( f ) is independent
of labeling and orientation, and invariant under ambient isotopy of f (M2N+1).

Proof. We first show that L̂ε( f ) is independent of labeling and orientation. Since N � 2,
it follows from Simon [15] that any automorphism of M2N+1 with N � 2 takes the cycle of
outer edges x1x2...x4N+2 to itself, preserving the order of the edges x1, x2, ..., x4N+2 and thus
the edges y1, y2, ..., y2N+1 as well. Thus any automorphism either preserves all the arrows in
the orientation of M2N+1, or reverses all the arrows. Reversing every arrow would have no
effect on the signs of the crossings, so L̂ε( f ) is independent of labelling and orientation.

As before, it is easy to see that L̂ε( f ) is invariant under the first four Reidemeister moves.
We show that L̂ε( f ) is unchanged under the fifth Reidemeister move. Without loss of gen-
erality, we may assume that an edge e is pulled over a vertex v and the adjacent outer edges
point towards v (see Figure 8). Pulling e over v generates three new crossings: two with
outer edges and one with an inner edge. We must determine the change in L̂ε( f ) as a result
of of these added crossings.
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ve

Fig. 8. M2N+1 with an edge e pulled over a vertex v.

Below we compute the possibilities for the change L̂ε( f ), and show that in all cases
this value is zero. The crossings between the edge e and the two outer edges have the same
sign while the crossing of e with an inner edge has the opposite sign. The epsilon coef-
ficients for the crossings of e with the two outer edges are given in parenthesis (with the
edge whose minimal outer edge distance from e is larger given first, and the edge closer to e
given second), while the epsilon coefficient of the crossing of e with the inner edge is given
afterward. For ease of notation, let d(e, v) denote the minimum number of edges in any path
between e and v using only outer edges and not counting e.

(i) e is an outer edge

(a) If d(e, v) = 1, then
L̂ε( f ) = (2 + 0) − 2 = 0.

(b) If d(e, v) = 2, 4, ..., 2N − 2, then
L̂ε( f ) = (1 + 2) − 3 = 0.

(c) If d(e, v) = 3, 5, ..., 2N − 3, then
L̂ε( f ) = (2 + 1) − 3 = 0.

(d) If d(e, v) = 2N − 1, then
L̂ε( f ) = (1 + 1) − 2 = 0.

(e) If d(e, v) = 2N , then
L̂ε( f ) = (−1 + 1) − 0 = 0.

(ii) e is an inner edge

(a) If d(e, v) = 1, then
L( f ) = (2 + 0) − 2 = 0.

(b) If d(e, v) = 2, then
L( f ) = (3 + 2) − 5 = 0.

(c) If d(e, v) � 3, then
L( f ) = (3 + 3) − 6 = 0.

Thus L̂ε( f ) is invariant under the fifth Reidemeister move, and so it is invariant under
ambient isotopy

It follows that L̂ε( f ) is a generalized Simon invariant for M2N+1.

LEMMA 3·8. For any N � 2 and any embedding f of M2N+1 in S3, the generalized
Simon invariant L̂ε( f ) is an odd number.

Proof. Note that any crossing change of a projection of f (M2N+1) will change the signed
crossing number between the two edges by ±2. Thus any crossing change will alter L̂ε( f )
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Fig. 9. An embedding of M2N+1 with L̂ε( f ) = 1.

by an even number. Now consider the embedding f of M2N+1 shown in Figure 9. There
is only one crossing, and it is between two outer edges with an outer edge distance of 2N
(the maximum). The epsilon coefficient for this crossing is −1, which is multiplied by the
crossing sign −1 so that L̂ε( f ) = (−1)(−1) = 1 for this embedding. It follows that L̂ε( f )

is odd for any embedding of M2N+1.

LEMMA 3·9. Let N � 2. If α is an automorphism of M2N+1, then the epsilon coefficients
of M2N+1 and α(M2N+1) are the same, and α either preserves the orientation of every edge
or reverses the orientation of every edge.

Proof. Let α ∈ Aut(M2N+1). Since N � 2, it follows from Simon [15] that α takes
the cycle x1x2...x4N+2 to itself, preserving the order of the edges x1, x2, ..., x4N+2 and thus
preserving the order of the edges y1, y2, ..., y2N+1 as well. Because the order of the outer
edges is preserved, the outer edge distance is also preserved. The epsilon coefficients depend
only on the outer edge distance and the distinction between inner and outer edges, so it
follows that the epsilon coefficients of M2N+1 and α(M2N+1) are the same.

Finally, we can see from Figure 7 that α either preserves all or reverses all the orientations
on edges.

To prove that M2N+1 is intrinsically chiral, we will use the following Proposition whose
proof is similar to that of Theorem 3·4.

PROPOSITION 3·10. Let G be an oriented graph with a generalized Simon invariant
L̂ε( f ). Suppose that L̂ε( f ) is odd for every embedding f : G → S3, and every auto-
morphism of G preserves the epsilon coefficients of G and either preserves the orientation
of every edge or reverses the orientation of every edge. Then G is intrinsically chiral.

Proof. For the sake of contradiction, suppose that for some embedding f of G, there is
an orientation reversing homeomorphism h of the pair (S3, f (G)). Let α denote the auto-
morphism that h induces on G.

Fix a sphere of projection P in S3. Since f ◦α(G) and f (G) are identical as subsets of S3,
their projections on P are the same. Also, since α either preserves all the edge orientations or
reverses all the edge orientations, the sign of every crossing in the projection of the oriented
embedded graph h◦ f (G) is the same as it is in the projection of the oriented embedded graph
f (G). Furthermore, by hypothesis each crossing has the same epsilon coefficient, whether
the crossing is considered in f ◦ α(G) or in f (G). It follows that L̂ε(h◦ f ) = L̂ε(α ◦ f ) =
L̂ε( f ).

Let ρ denote a reflection of S3 which pointwise fixes the sphere of projection P . Using
orientations induced by G, the sign of every crossing in the projection of ρ ◦ f (G) is the
reverse of that of the corresponding crossing in f (G). It follows that L̂ε(ρ ◦ f ) = −L̂ε( f ).
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Fig. 10. An embedding of M2N+1 with L̂ε( f ) = 2k + 1 with a rotation of the outer loop of order 4N + 2
together with a reflection of the outer loop.

On the other hand, since h is orientation reversing it is isotopic to ρ. Hence by definition
of a generalized Simon invariant, L̂ε(ρ ◦ f ) = L̂ε(h ◦ f ). Consequently, L̂ε(h ◦ f ) =
−L̂ε( f ). Thus L̂ε( f ) = 0, which contradicts our hypothesis that L̂ε( f ) is odd. Hence G is
intrinsically chiral.

Flapan [2] showed that M2N+1 is intrinsically chiral. However, now that result follows as
an immediate corollary of Lemmas 3·8, 3·9 and Proposition 3·10.

COROLLARY 3·11. M2N+1 is intrinsically chiral for N � 2.

Nikkuni and Taniyama [12] showed that the Simon invariant provides restrictions on the
symmetries of a given embedding of K5 or K3,3. For example, they proved that for both
K5 and K3,3, the transposition of two vertices can be induced by a homeomorphism on an
embedding f only if the Simon invariant of the embedding is ±1. By contrast we have the
following result for M2N+1.

THEOREM 3·12. Let N � 2. Then for any odd integer m, there is an embedding f of
M2N+1 in S3 with L̂ε( f ) = m such that every automorphism of M2N+1 is induced by a
homeomorphism of (S3, f (M2N+1)).

Proof. Let m be an odd integer, and suppose that |m| = 2k+1. Since any automorphism of
M2N+1 takes the outer loop x1x2...x4N+2 to itself [15], the automorphism group Aut(M2N+1)
is the dihedral group D2(4N+2). This group is generated by a rotation of the outer loop of
order 4N + 2 together with a reflection of the outer loop. Hence, it suffices to show there
is an embedding f : M2N+1 → S3 with L̂ε( f ) = m such that both of the generators of
Aut(M2N+1) are induced by homeomorphisms of (S3, f (M2N+1)).

Consider the embedding of f : M2N+1 → S3 shown in Figure 10. There are 2k + 1
crossings between a pair of outer edges with an outer edge distance of 2N . The epsilon
coefficient for each of these crossings is −1. If m > 0, we embed M2N+1 so that all the
crossings have negative sign, otherwise embed M2N+1 so that the crossings all have positive
sign. Then L̂ε( f ) = (−1)(−1)(2k+1) = 2k+1 if m > 0, and L̂ε( f ) = (−1)(+1)(2k+1) =
−(2k + 1) if m < 0. Since |m| = 2k + 1, it follows that L̂ε( f ) = m.

By inspection of Figure 10 we see that both generators of Aut(M2N+1) can be induced by
homeomorphisms of (S3, f (M2N+1)).

Observe that M3 = K3,3. Using our generalized Simon invariant for embeddings of M2N+1

(with N � 2) and the original Simon invariant for embeddings of M3 = K3,3, we now define
a topological invariant for embedded Mobius ladders with an even number of rungs (at least
4). For the remainder of this section, we use L̂ε( f ) to refer to the Simon invariant if f is an
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embedding of M3 and to the generalized Simon invariant if f is an embedding of M2N+1 for
N � 2.

Let N � 2 and let f be an embedding of M2N in S3. For each i � 2N , let gi : M2N → S3

be the embedding obtained from f by omitting the rung ri and its vertices from M2N . Note
that since N > 1 the rungs of M2N are setwise invariant under any automorphism [15].
Thus the definition of gi is unambiguous. When N > 2, by Theorem 3·7, the graph M2N−1

has a well defined L̂ε(gi ) independent of labelling and orientation. When N = 2, we label
each M3 subgraph such that the rungs and outer edges of M3 are contained in the rungs
and outer edges of M4 respectively. Although there are two possible orientations for each
embedded M3 subgraph, one can be obtained from the other by reversing the orientation
of all edges. This has no effect on the crossing signs (or epsilon coefficients). Thus we can
unambiguously define:

Tε( f ) =
∑

i�2N

L̂ε(gi).

Note that Tε( f ) is defined on an embedding of the unoriented graph M2N .

THEOREM 3·13. For N � 2 and any embedding f of M2N in S3, Tε( f ) is invariant under
ambient isotopy. Furthermore, if Tε( f )� 0, then f is a chiral embedding of M2N .

Proof. By [15], the cycle of outer edges of M2N is unique. Each L̂ε(gi ) is invariant under
ambient isotopy by Theorem 3·7 when N > 2 and by the Simon invariant when N = 2.
Thus it follows that Tε( f ) is also invariant under ambient isotopy.

Let h denote an orientation reversing homeomorphism of S3. Then h will reverse the
signs of all the crossings of f (M2N ) (and thus each gi (M2N−1)). We now show that the auto-
morphism that h induces on each M2N−1 preserves the epsilon coefficients. If N � 3, then
this follows directly from Lemma 3·9. If instead N = 2, then by Simon [15] the outer edges
of M2N are setwise invariant under the automorphism that h induces on M2N , so h preserves
the distinction between inner and outer edges. As explained earlier, the edges in each gi (M3)

subgraph of f (M4) are labelled as inner or outer in order to match f (M4). It follows that
h also preserves the distinction between inner and outer edges for each M3 subgraph. For
M3, the epsilon coefficients depend only on the distinction between inner and outer edges
and on the relative orientation of edges (which is invariant under any automorphism), so the
automorphism that h induces on each M3 subgraph preserves the epsilon coefficients.

Since the epsilon coefficients are preserved and the crossing signs are reversed, it follows
that each L̂ε(h ◦ gi ) = −L̂ε(gi) and so Tε(h( f )) = −T ( f ). If Tε( f ) � 0, then Tε( f ) �
−Tε( f ) = Tε(h( f )), and thus f (M2N ) is chiral.

COROLLARY 3·14. For all N � 2, m � 0, the embedding f of M2N shown in Figure 11
is chiral.

Proof. For all of the f (M2N−1) subgraphs, the outer edge distance between the two
crossed edges is 2N − 2, so the crossing sign and epsilon coefficient for each of the
2m + 1 crossings is the same. This epsilon coefficient is 1 for M3 when N = 2, and −1
for the generalized Simon invariant (if N > 2). Since all of the 2N subgraphs have the
same epsilon coefficient and sign for each crossing, both of which are ±1, it follows that
Tε( f ) = (±1)(±1)(2N )(2m + 1) for the embedding f in Figure 11. Since N � 2 and
m � 0, this means Tε( f )� 0 and thus the embedding is chiral by Theorem 3·13.
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Fig. 11. An embedding of M2N with 2m + 1 crossings.
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Fig. 12. An oriented Heawood graph.

The Heawood graph

Let C14 denote the Heawood graph oriented and labelled as in Figure 12. In particular, we
refer to its “outer edges” consecutively by x1, x2, ..., x14, and its “inner edges” consecutively
by y1, y2, ..., y7. We note that this classification of oriented edges is only dependent on the
labeling of the edges in the Hamiltonian cycle x1x2...x14.

For any pair of edges a and b, let the minimal outer edge distance d(a, b) be defined as
the minimum number of edges in any path between a and b using only outer edges (not
counting a and b). For any i, j , note that d(xi , x j ) � 6, d(xi , y j ) � 4, and d(yi , y j ) � 2.

We define the epsilon coefficient ε(a, b) of a pair of disjoint edges by:

ε(xi , x j ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2 if d(xi , x j ) = 1 or 4

−2 if d(xi , x j ) = 3 or 5, and xi , x j are connected by an edge

−3 if d(xi , x j ) = 5, and xi , x j are not connected by an edge

5 if d(xi , x j ) = 6

1 otherwise,

ε(xi , y j ) =

⎧⎪⎨⎪⎩
2 if d(xi , y j ) = 1

3 if d(xi , y j ) = 2 or 4

−1 if d(xi , y j ) = 3,

ε(yi , y j ) =
{

2 if d(yi , y j ) = 1

5 if d(yi , y j ) = 2.

For any embedding f : C14 → S3 with a regular projection, define

L̂ε( f ) =
∑

a�b=�

ε(a, b)�( f (a), f (b)).
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THEOREM 3·15. For any embedding f of C14 in S3, L̂ε( f ) is invariant under any ambient
isotopy leaving the cycle x1x2...x14 setwise invariant.

Proof. As demonstrated in the previous proofs, we need only to verify that L̂ε( f ) is in-
variant under the fifth Reidemeister move. It suffices to show that L̂ε( f ) is unchanged when
any of the 21 edges in the Heawood graph is pulled over a particular vertex. This is easy to
check using the method shown in the proof of Theorem 3·7.

It follows that L̂ε( f ) is a generalized Simon invariant of C14.

LEMMA 3·16. For any embedding f of C14 in S3, the generalized Simon invariant L̂ε( f )

is an odd number.

Proof. Since any crossing change will change the signed crossing number between the
two edges by ±2, we only need to find an embedding f where L̂ε( f ) is odd. Consider an
embedding of the Heawood graph which has Figure 12 as its projection with the intersections
between edges replaced by crossings. The reader can check that regardless of the signs of the
crossings, there are an odd number of crossings with odd epsilon coefficient. Hence L̂ε( f )

is an odd number.

The proof of the following lemma is left as an exercise.

LEMMA 3·17. Let α be an automorphism of C14 that takes the Hamiltonian cycle
x1x2...x14 to itself. Then corresponding epsilon coefficients of C14 and α(C14) are equal,
and α either preserves the orientation of every edge or reverses the orientation of every
edge.

THEOREM 3·18. The Heawood graph is intrinsically chiral.

Proof. Let C14 denote the Heawood graph. Suppose that for some embedding f of C14

in S3, there is an orientation reversing homeomorphism h of (S3, f (C14)). It was shown by
Nikkuni [11] that the mod 2 sum of the Arf invariants of all the 14-cycles and 12-cycles
in an embedding of C14 is 1. Thus f (C14) either has an odd number of 14-cycles with Arf
invariant 1 or an odd number of 12-cycles with Arf invariant 1. By arguing as in the proof of
Corollary 3·5, without loss of generality we can assume that the order of the automorphism
that h induces on C14 is a power of 2. It follows that h either leaves some 14-cycle or some
12-cycle setwise invariant.

Suppose that h leaves a 14-cycle setwise invariant. Label the edges of this 14-cycle
consecutively as x1x2...x14. Then it follows from Lemma 3·17, that L̂ε(h ◦ f ) = L̂ε( f ).
But since h is orientation reversing we can argue as in the proof of Proposition 3·10 that
L̂ε(h ◦ f ) = −L̂ε( f ), which is impossible since L( f ) is odd and hence non-zero.

Now suppose that h leaves a 12-cycle Z setwise invariant. As shown in Figure 13, G has
precisely three edges not in Z which have both vertices in Z . Now Z together with these
three edges is a Möbius ladder M3. However, it was shown in [2] that no embedding of M3

in S3 has an orientation reversing homeomorphism which takes the outer loop Z to itself.
Thus again we have a contradiction.

4. The subgraphs 2K3, K5 and K3,3 of a given graph

Shinjo and Taniyama [14] proved that two embeddings f and g of a graph G in S3 are
spatial-graph homologous if and only if for each 2K3 subgraph H of G the restriction maps
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Z

Fig. 13. A 12-cycle in the Heawood graph.

f |H and g|H have the same linking number, and for each K5 or K3,3 subgraph H of G the
restriction maps f |H and g|H have the same Simon invariant.

We now show that for any oriented graph G, any integer linear combination of the reduced
Wu invariants of subgraphs of G is itself a reduced Wu invariant for G.

THEOREM 4·1. Let G be a graph with oriented edges, and let G1, G2, . . . , Gk denote
subgraphs of G with orientations inherited from G. For each q � k, let εq : L(Gq) → Z be
a homomorphism, and iq : Gq → G be the inclusion map. Let m1, m2, . . . , mk be integers
and let ε : L(G) → Z be the homomorphism given by ε = ∑k

q=1 mqεq ◦ (iq × iq)
∗. Then

for any embedding f of G in S3,
∑k

q=1 mqL̃εq ( f |Gq ) is the reduced Wu invariant given by

L̃ε( f ).

Proof. Observe that the embedding ( f × f ) ◦ (iq × iq) is equivalent to the embedding
( f |Gq )×( f |Gq ) : C2(Gq) → C2(R

3). Hence, by the definition of the Wu invariant, it follows
that

L̃ε( f ) = ε(L( f ))

= ε(( f × f )∗(�))

=
k∑

q=1

mqεq ◦ (iq × iq)
∗ ◦ ( f × f )∗(�)

=
k∑

q=1

mqεq ◦ (( f × f ) ◦ (iq × iq))
∗(�)

=
k∑

q=1

mqεq ◦ (( f |Gq ) × ( f |Gq ))
∗(�)

=
k∑

q=1

mqεq(L( f |Gq ))

=
k∑

q=1

mqL̃εq ( f |Gq ).

Thus we have the result.

This theorem allows us to define new reduced Wu invariants, as we see from the following
two examples.

Example 4·2. For N � 2, consider the oriented labelled graph of a Möbius ladder M2N+1

illustrated in Figure 14. For q = 0, 1, . . . , 2N , let Gq be the subgraph of M2N+1 consisting
of the outer cycle x1x2...x4N+2 together with the three rungs yq+1, yq+2, and yq+3 where
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Fig. 14. An oriented M2N+1 together with a K3,3 subgraph. Note the subscripts on xi are considered mod
4N + 2 and those on yi are considered mod 2N + 1.

the subscripts are considered mod 2N + 1 and the orientations are inherited from M2N+1.
Then each Gq is homeomorphic to K3,3. Thus each L(Gq) is generated by [E xq+1,xq+2N+2].
Let εq be the homomorphism from L(Gq) to Z defined by εq(xq+1, xq+2N+2) = 1. Let f be
an embedding of M2N+1 in S3. Then by Theorem 4·1, L̃ε( f ) = ∑2N

q=0 L̃εq ( f |Gq ) defines a
reduced Wu invariant for M2N+1.

Observe that this reduced Wu invariant is not equal to the generalized Simon invariant for
M2N+1 that we defined in Section 3. However, this invariant has similar properties to those
we proved for the generalized Simon invariant of M2N+1. In particular, since each L̃εq ( f |Gq )

is essentially the Simon invariant of f |Gq and therefore odd valued, it follows that L̃( f ) is
always odd. Moreover, we know from [15] that any automorphism of M2N+1 takes the outer
cycle x1x2...x4N+2 to itself. Thus any automorphism of M2N+1 leaves {G0, G1, . . . , G2N }
setwise invariant. This implies that L̃( f ) is independent of labelling.

Example 4·3. Let C14 be the Heawood graph as illustrated in Figure 15. For q =
0, 1, . . . , 6, let Gq be the subgraph of C14 as illustrated in Figure 15, where the labels
of vertices are considered mod 14. Note that each Gq is homeomorphic to K3,3. Thus
each L(Gq) is generated by [E x1,x8]. Let εq be the homomorphism from L(Gq) to Z

defined by εq(x1, x8) = 1. Let f be an embedding of C14 in S3. Then by Theorem 4·1,
L̃ε( f ) = ∑6

q=0 L̃εq ( f |Gq ) defines a reduced Wu invariant for C14.
Again this reduced Wu invariant is not equal to the generalized Simon invariant for C14

that we defined in Section 3, but has similar properties to those of the generalized Simon
invariant. In particular, since each L̃εq ( f |Gq ) is essentially the Simon invariant of f |Gq and
therefore odd valued, it follows that L̃( f ) is always odd. Moreover, let α be an automorph-
ism of C14 takes the outer cycle x1 . . . x14 to itself, and thus the edges y1, y2, . . . , y7 as well.
Then α permutes {G0, G1, . . . , G6} and reversing every arrow would have no effect on the
signs of the crossings. This implies that L̃( f ) is preserved under α.

Now we prove the converse of Theorem 4·1. In particular, we show that any reduced Wu
invariant of a graph G can be expressed as a linear combination of reduced Wu invariants of
subgraphs 2K3, K5 and K3,3 of G.

THEOREM 4·4. Let G be a graph with oriented edges, and let G1, G2, . . . , Gk denote all
of the 2K3, K5, and K3,3 subgraphs of G with orientations inherited from G. For each q � k,
let εq : L(Gq) → Z be an isomorphism, and let iq : Gq → G be the inclusion map. Then
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Fig. 15. An oriented Heawood graph together with a K3,3 subgraph.

for any homomorphism ε : L(G) → Z, there exists integers m � 0 and m1, m2, . . . , mk

such that for any embedding f of G in S3.

mL̃ε( f ) =
k∑

q=1

mqL̃εq ( f |Gq ).

Proof. Consider the homomorphism

ϕ : L(G) −→
k⊕

q=1

L(Gq)

defined by

ϕ(x) = ((i1 × i1)
∗(x), (i2 × i2)

∗(x), . . . , (ik × ik)
∗(x)).

Shinjo and Taniyama [14] proved that for any x, y ∈ L(G), if (iq × iq)
∗(x) = (iq × iq)

∗(y)

for any q = 1, 2, . . . , k then x = y. This implies that ϕ is injective. It follows that ϕ also
induces an injective linear map

ϕ : L(G) ⊗ Q −→
k⊕

q=1

(L(Gq) ⊗ Q)

and therefore its dual

ϕ� : Hom

⎛⎝ k⊕
q=1

(L(Gq) ⊗ Q), Q

⎞⎠ −→ Hom(L(G) ⊗ Q, Q)

is surjective. We consider each εq as a linear map from
⊕k

q=1(L(Gq) ⊗ Q) to Q in the
usual way. Then because each εq is an isomorphism, the linear forms ε1, ε2, . . . , εk gener-
ate Hom(

⊕k
q=1(L(Gq) ⊗ Q), Q). Thus, for any u ∈ Hom(L(G) ⊗ Q, Q), there is a u′ ∈

Hom(
⊕k

q=1(L(Gq) ⊗ Q), Q) and rational numbers r1, r2, . . . , rk such that u′ = ∑k
q=1 rqεq .
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Fig. 16. An oriented K6 together with K5 subgraphs.

Hence for an element x in L(G) ⊗ Q, we have

u(x) = ϕ�(u′)(x)

= ϕ�

⎛⎝ k∑
q=1

rqεq

⎞⎠ (x)

=
k∑

q=1

rqϕ
�(εq)(x)

=
k∑

q=1

rqεq(ϕ(x))

=
k∑

q=1

rqεq ◦ (iq × iq)
∗(x).

Now it follows that ε1 ◦ (i1 × i1)
∗, ε2 ◦ (i2 × i2)

∗, . . . , εk ◦ (ik × ik)
∗ generate Hom(L(G) ⊗

Q, Q). Hence, there are rational numbers r1, r2, . . . , rk such that

L̃ε( f ) =
k∑

q=1

rqL̃εq ( f |Gq ).

This implies the desired conclusion.

Example 4·5. Consider the oriented and labelled K6 illustrated in Figure 16. Let ε be the
homomorphism from L(K6) to Z given in Example 2·9, and let L̃ε( f ) be the corresponding
reduced Wu invariant. For q = 1, . . . , 6, let Gq be the K5 subgraphs illustrated in Figure 16
where q is considered mod 6. Observe that the orientations and labels on Gq are inherited
from those on K6. Then for each q, the linking module L(Gq) is generated by [E x1,x4]. Let
εq be the isomorphism from L(Gq) to Z defined by εq(x1, x4) = 1. Let f be an embedding
of K6 in S3. Then it’s not hard to check that:

2L̃ε( f ) =
6∑

q=1

L̃εq ( f |Gq ).

Example 4·6. Consider the oriented and labelled K7 illustrated in Figure 5. The epsilon
coefficients which gave us the generalized Simon invariant for K7 are

ε(xi , x j ) = ε(yi , y j ) = ε(zi , z j ) = ε(xi , z j) = ε(yi , z j) = 1.

ε(xi , y j ) = −1
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Fig. 17. We consider these oriented subgraphs of K7.

These values of ε(a, b) define a homomorphism ε : L(K7) → Z, which corresponds to a
reduced Wu invariant L̃ε( f ). For q = 1, 2, . . . , 7, let Gq, Hq, Fq and Lq be the subgraphs
of K7 illustrated in Figure 17, where the subscripts are considered mod 7. Observe that the
orientations on the subgraphs are inherited from those of K7 in Figure 5.

Each Gq, Hq , and Fq is homeomorphic to K3,3. Each L(Gq) is generated by [E x1,x4], each
L(Hq) is generated by [E y1,y7] and each L(Fq) is generated by [Ez1,z3]. On the other hand,
each Jq is homeomorphic to 2K3, and each L(Jq) is generated by [E xq+1,xq+4]. Let εq be the
homomorphism from L(Gq) to Z defined by εq(x1, x4) = 1. Let ζq be the homomorphism
from L(Hq) to Z defined by ζq(y1, y7) = 1. Let ηq be the homomorphism from L(Fq) to
Z defined by ηq(z1, z3) = 1. Let θq be the homomorphism from L(Jq) to Z defined by
θq(xq+1, xq+4) = 1. Let f be an embedding of K7 in S3. Then it is not hard to check that:

3L̃ε( f ) =
7∑

q=1

L̃εq ( f |Gq ) +
7∑

q=1

L̃ζq ( f |Hq ) +
7∑

q=1

L̃ηq ( f |Fq ) − 5
7∑

q=1

L̃θq ( f |Jq ).

5. Minimal crossing number of a spatial graph

Let f be a spatial embedding of a graph G. The following theorem gives a lower bound
for the minimal crossing number of any projection of f up to isotopy.

THEOREM 5·1. Let f be an embedding of an oriented graph G in S3 with generalized
Simon invariant L̂ε( f ), and let c( f ) be the minimum crossing number of all projections of
all embeddings ambient isotopic to f . Let mε be the maximum of |ε(ei , e j )| over all pairs of
disjoint edges in G. Then ∣∣L̂( f )

∣∣ � c( f )mε.

Proof. Fix a diagram of f (G) which realizes the minimal crossing number c( f ). Observe
that c( f ) includes crossings between an edge and itself as well as crossings between adja-
cent edges, which are not included in

∑
ei �e j =� |�( f (ei ), f (e j ))|. Therefore, we have the

following sequence of inequalities.

|L̂ε( f )| =
∣∣∣∣∣∣

∑
ei �e j =�

ε(ei , e j )�( f (ei), f (e j ))

∣∣∣∣∣∣
�

∑
ei �e j =�

|ε(ei , e j )||�( f (ei ), f (e j ))|

� mε

∑
ei �e j =�

|�( f (ei), f (e j ))|

� mεc( f ).
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Fig. 18. This projection of an embedded K6 has a minimal number of crossings.

Thus we have the result.

Since every reduced Wu invariant with respect to a given homomorphism ε is a general-
ized Simon invariant with epsilon coefficients given by ε(a, b), Theorem 5·1 is true for any
reduced Wu invariant L̃ε( f ).

Recall from Example 2·7 that the reduced Wu invariant of 2K3 is twice the linking num-
ber. Thus applying Theorem 5·1 to an embedding of 2K3 gives us the well known fact that
the minimal crossing number of a 2-component link is at least twice the absolute value of
the linking number. Applying Theorem 5·1 to Examples 2·2 and 2·3 shows that the minimal
crossing number of any spatial embedding of K5 or K3,3 is at least the absolute value of the
Simon invariant.

Example 5·2. Let f be a spatial embedding of K7. Consider the generalized Simon in-
variant L̂ε( f ) given in Section 3. Since mε( f ) = 1 for any projection of f , it follows from
Theorem 5·1 that c( f ) � |L̂ε( f )|.

Example 5·3. Consider the oriented and labelled K6 illustrated in Figure 16. We introduce
a new generalized Simon invariant for K6 where the epsilon coefficients are given by:

ε(xi , x j ) = ε(zi , z j ) = 1

ε(yi , y j ) = ε(xi , z j ) = −1

ε(xi , y j ) = ε(yi , z j ) = 0.

It is not hard to check that these epsilon coefficients indeed give us a generalized Simon
invariant for K6. Alternatively, if we let T1 be the triangle with vertices y1, y2, and y3 and
let T2 be the triangle with vertices y4, y5, and y6, then we can define L̃ε( f ) as the sum of
2lk( f (T1), f (T2)) together with the Simon invariant of the oriented K3,3-subgraph obtained
from K6 by deleting T1 and T2.

Let f be the spatial embedding of K6 illustrated in Figure 18, where 2n + 1 is the number
of positive crossings. We compute the generalized Simon invariant L̃ε( f ) as:

L̃ε( f ) = ε(y1, y4) · (2n + 1) + ε(x4, z2) · 1 + ε(y6, y3) · 1 = −(2n + 1) − 1 = −2n − 3.

Since mε = 1, it follows from Theorem 5·1 that c( f ) � |L̂ε( f )| = 2n +3. The projection
in Figure 18 has 2n + 3 crossings. Thus this projection has a minimal number of crossings.
In particular, this means that for every odd number k � 3, there is an embedding g of K6 in
S3 such that c(g) = k.

Example 5·4. Let f be the embedding of the Heawood graph illustrated in Figure 19,
where the numbers in each of the rectangles is the number of positive crossings. Using the



Reduced Wu and generalized Simon invariants for spatial graphs 543

x 13

x1

x2

x3

x4

x 5

x 6
x 7x 8

x 9

x 10

x11

x 12

x 14

y1

y2

y3

y4

y5

y6

y7

2k+1 y1

y7

y4

y3

2m+1

1
+n2

y5

y6

Fig. 19. This projection of an embedded Heawood graph has a minimal number of crossings.

generalized Simon invariant from Section 3, we find that L̂ε( f ) = 5(2k + 1)+ 5(2m + 1)+
5(2n + 1). Also, mε = 5. Now it follows from Theorem 5·1 that c( f ) � 2(k + m + n) + 3.
Since this is precisely the number of crossings in Figure 19, it follows that this projection
has a minimal number of crossings. Since we can choose any values for k, m, and n, it
follows that for every odd number l � 3, there is an an embedding g of the Heawood graph
in S3 such that c(g) = l.
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