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ABSTRACT: Many time series exhibit non-stationary behavior, i.e. either their mean or covariances
are functions of time. The so-called modulated autoregressive process, an AR process where the variance
is allowed to be a function of time, is a model that allows certain forms of non-stationarity to be modeled
in a convenient way. For instance, this model has been used for seismic events such as earthquakes and
mining explosions, as well as animal footfall data recorded via a geo-phone buried in the ground ground.
What turns out to be important regarding estimation of parameters and order selection can be described
as the concentration of the variance function. Highly concentrated variance functions affect the ability to
estimate parameters via standard techniques such as the Yule-Walker equations, as well as making selection
of the correct order for the model difficult. Though Pötscher (1989) has proven that, regardless of the
shape of the variance function, order selection can be made consistently, these procedures do not account
for the non-stationary behavior. As a result, the order selection procedure under performs. We show that
the variance function can be estimated consistently up to a proportionality constant without specifying an
order. Dividing through the original series by this estimate essentially makes the data stationary, improving
order selection procedures as well as the standard error of the estimates.

1. Introduction

There exists a lot of work in the literature dealing with time series that exhibit conditional heteroscedasticity,

i.e. the current volatility of a time series is dependent on past values of itself or its underlying properties.

Such models take the form Yt = εt where εt is a function of the past values of the process and its underlying

properties. The celebrated ARCH model of Engle (1982), its extension to the GARCH model of Bollerslev

(1986) and subsequent extensions have made these models very popular in finance problems. Models assum-

ing unconditional heteroscedasticity have not garnered as much attention, as their application in finance is

thought to be limited. Such models are applicable, for instance, to time series generated by seismic events

such as earthquakes or explosions. For example, Fujita and Shibara (1978) and Dargahi-Noubary, Laycock,

and Subba Rao (1978) suggested modeling these time series by X(t) = c(t)Y (t) where Y (t) is a stationary

processes and c(t) is a deterministic function. A similar model to this is the pth order autoregressive model
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(AR(p)) with unconditional heteroscedastic errors, i.e.

Xt =

p∑
j=1

φjXt−j + σ(t)εt, t = l, ..., T, (1)

where the εt are assumed to be either identically distributed independent random variables with mean 0 and

variance 1, or similar constraints under some dependency to allow the variance function to be identifiable.

σ2(t) varies in time, independent of the past. This model has been considered earlier by, among others,

Wichern, Miller and Hsu (1976), Tyssedal and Tjøsthein (1982), Paulsen and Tjøstheim (1985), and Pötscher

(1989). More recently, Drees and Stǎricǎ (2002) and Fryzlewicz et. al (2006) used model (1) for stock returns,

Dahlhaus and Polonik (2007) looked at estimation of this model under shape constraints, and Chandler and

Polonik (2006) used this as a foundation for their discrimination procedure, with applications to seismic

events. Under appropriate smoothness conditions on the variance function σ2(·), this model is a special case

of the locally stationary model defined by Dahlhaus (1997). Phillips and Xu (2006) derived the asymptotic

behavior of the AR parameter estimates and considered testing strategies for the values of the AR parameters.

One might hope that such locally stationary AR models would provide a good approximation for many time

series exhibiting non-stationary behavior. In addition to the financial application, model (1) can be used

to model non-stationary time series such as seismic events, animal footfalls recorded using a geo-phone (as

found in Wood, O’Connell-Rodwell and Klemperer, 2005) or EEG recordings of seizures.

What turns out to be important regarding estimation is not the magnitude of the variance function, but

rather the concentration of the variance function. Concentration is important in a variety of concepts. For

example, the ARCH(m) model describes the concentration of the volatility clusters through the order m. A

large value for m denotes longer range dependence and thus the series will tend to exhibit volatility clusters

that are dispersed versus smaller values of m where the clusters will tend to be more concentrated. In

establishing the effect of concentration on estimation of the asymptotic distribution of our estimates, we

provide some insight into how concentration might be measured. Of particular interest in this paper is order

selection, i.e. a data selected choice for p. In the stationary case, order selection is often based on a variant of

the AIC (Akaike 1974), which seeks a balance between explanatory power and model size. The AIC method

selects the order which minimizes

log σ̂2(k) +
kC(T )

T
, (2)
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where k is the order of the model and σ̂2 is an estimate of the global variance. Selecting C(T ) = 2 yields

Akaike’s AIC criterion, while selecting C(T ) = log(T ) gives Schwarz’s (1978) BIC criterion. Many variants

have been proposed with different values for C(T ) (see for example Hannan and Quinn, 1979), in particular to

make the order selection consistent. Paulsen and Tjøstheim (1985) considered estimation and order selection

of model (1). Pötscher (1989) went on to show that, under mild assumptions, a generalized AIC procedure

can be constructed which is consistent for the correct order of a class of non-stationary autoregressions,

with model (1) as a special case. However, in the case of a heteroscedastic model, the appearance of σ̂2(·)

in the criterion loses its standard interpretation, since the true variance is a function of time. One might

search for a modification of AIC that takes into account the non-stationarity of the time series. Recently

in the literature, work dealing with the time-varying autoregressive process has offered some ideas for order

selection for the more general case (see Dahlhaus, 1997 and Van Bellegem and Dahlhaus, 2005), in which

the autoregressive parameters are also allowed to vary in time. These techniques tend to be computationally

intensive. By way of a simple, but still useful, model, this paper proposes an order selection criterion which

takes into account the non-stationary structure of the data while also being computationally inexpensive.

First, the problem of heteroscedasticity and its effects on estimation are discussed in section 2. Section 3

deals with the order selection procedure for our model (1). Section 4 contains simulation studies. All proofs

are deferred to section 5.

2. Estimation of Autoregressive Processes with Heteroscedastic Errors

In this section, we consider the model (1). This model constitutes a non-stationary class of processes which,

under some smoothness conditions on σ2, is a special case of the locally stationary model of Dahlhaus

(1997). This definition was extended to only require bounded variation of σ2 (Dahlhaus and Polonik, 2007).

Similarly, the smoothness assumptions are relaxed in what follows. Following Dahlhaus’ methodology for

establishing a meaningful asymptotic theory, we rescale the time series to the unit interval, i.e. we assume

we observe the process

Xt,T =

p∑
j=1

φjXt−j,T + εtσ(
t

T
). (3)

Standard estimation of parameters in a stationary model is usually done via the Yule-Walker estimators,

which are based on the empirical autocovariances γ̂(h) = 1
T

∑T−h
t=1 XtXt+h at values h = 0, . . . , p of the

process. Because σ2 is a function of time, the interpretation of γ̂(h) as a global covariance estimate is lost. In

order to make sense of what the effect of heteroscedasticity is, we need some idea of what stationary processes
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we should compare this non-stationary process to. It can be shown that the empirical autocovariance function

γ̂(h)→
∫ 1

0

σ2(u)du

∞∑
i=0

ψiψi+h

in probability for all h < ∞ fixed, where the ψi are the coefficients in the MA(∞) representation under

causality, i.e. Xt,T =
∑∞
i=0 ψiεt−i. Phillips and Xu (2006) established a similar result under fairly weak

conditions (finitely many points of discontinuity of σ(u) and slightly greater than 4th moments). In other

words, the first order properties of the ACF are the same for all processes with identical autoregressive

coefficients and integrated variance functions. In terms of estimation of the autoregressive parameters, the

magnitude of the error variance does not affect the estimation. It will be seen that what is of importance

is what we might call the concentration of the variance function. The following asymptotic result quantifies

the effect of concentration on the accuracy of the estimated parameters for the model (3).

√
T (φ̂− φ)→ N(0,Γ−10

∫ 1

0

(σ̄2(u))2du)

in distribution, where φ := (φ1, . . . , φp)
′, φ̂ := (φ̂1, . . . , φ̂p)

′ is the vector of conditional least squares estima-

tors, Γ0 = [
∑∞
k=1 ψ

kψk+|i−j|]pi,j=1 and σ̄2(u) = σ2(u)∫ 1
0
σ2(u)du

, i.e. the normalized (to integrate to unity) variance

function.

Paulsen and Tjøstheim (1985) established the asymptotic normality of the unweighted least squares estimate

under similar conditions. Phillips and Xu (2006) derived the asymptotic variance, which is of interest here.

What we see is that the effect of concentration on the asymptotic variance of the estimate is equivalent to

the L2-norm of the normalized variance function. Since only the normalized variance function comes into

play, only the concentration of σ2(·) matters. This is proportional to one of the measures of concentration

suggested by Chandler and Polonik (2006). Should we be able to make the volatility less concentrated, for

instance by dividing through by a model-free estimate of the variance function, we might expect the standard

error of the estimate to be reduced. This idea is made clear in the following section, and simulations results

are shown below.
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3. Order Selection for the Modulated AR Model

In the homoscedastic case, the problem of selecting the order of an autoregressive process has been well

studied. For example, Akaike (1969, 1970) considered minimization of the final prediction error

FPE(k) =
T + k

T − k
σ̂2(k) (4)

where T is the length of the observed time series, k is the order of the model, and σ̂2(k) is an estimate of

the (global) variance of the errors. Akaike (1974) also proposed the AIC, and subsequent authors have gone

on to offer variations of this criterion which take the form of (2).

For properly chosen C(T ), these criteria are strongly consistent for the correct order in model (1). However,

they are based on a global measure of variation (σ̂2(k)) and thus do not account for heteroscedasticity. As

a consequence, for smaller sample sizes, they will under perform. In fact, similar to the problems seen in

estimation of the AR parameters, the concentration of the variance function plays a role in our ability to

correctly specify the order of our model. For example, consider the two variance functions presented in

figure 1, both with identical values of
∫ 1

0
σ2(u)du. In the homoscedastic case, order selection is based on

Figure 1: Two variance functions with equal integral, the solid line a homoscedastic variance function, the
broken line a concentrated heteroscedastic variance function

all T = 100 observations equally. In the heteroscedastic case, the lack of fit term σ̂2(k) will be dominated

by the residuals where the variance is large. Thus, the selected order is virtually determined by the 10

observations lying in this interval, drastically reducing the effective sample size. As a result, a standard AIC

model selection approach seems unreasonable. Order selection for locally stationary processes, specifically

the time-varying autoregressive (tvAR) model,

Vt =

p∑
j=1

φj(t)Vt−j + σ(t)εt (5)
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has been discussed in the literature (Dahlhaus, 1997, Van Bellegem and Dahlhaus, 2005). tvAR models

constitute a more general class of models than of interest here, and pose additional difficulties in estimation

due to the fact that the autoregressive functions are not directly “observed”, in the sense of the function

plus error. As a result, estimation and order selection is done in the spectral domain, essentially based

on a penalized (Whittle) likelihood, which is a computationally intensive procedure. In contrast to the

autoregressive parameters, the variance function is directly observed in this sense. Additionally, because

model (1) has a wide array of applications even without the generalization of model (4), a simpler, more

computationally friendly order selection procedure which takes into account the non-stationarity of the

process would be useful. The procedure described below is all done in the time domain, thus not requiring

computation of time dependent spectrum, perhaps offering some intuition for the user. Furthermore, it

accounts for the non-stationarity of the process being observed, and thus would be expected to outperform

AIC directly on the non-stationary data.

To illustrate what is meant by the variance function being “directly observed”, the following theorem provides

some insight.

Theorem 1. Define Σ̂0(α) = 1
T

∑[Tα]
t=1 X

2
t,T and define Σ0(α) = c2

∫ α
0
σ2(u)du, where c2 :=

∑∞
j=0 ψ

2
j . Under

the assumptions of Phillips and Xu (2006),

sup
α∈[0,1]

|Σ̂0(α)− Σ0(α)| = op(1)

The above theorem is of interest, for instance, in the case of Chandler and Polonik (2006), who considered

functionals of the partial sum process of the squared residuals after normalization for measuring concentration

of a function. As only the normalized estimate of the variance function appeared in their method, this result

shows that correct identification of the order is not needed. In general however, correctly identifying the

order of an autoregression is necessary. It seems clear from this theorem that without specifying the order, we

can define an estimator η̂2( tT ), which estimates a function that is proportional to the true variance function.

We essentially study the process

X∗t,T :=
Xt,T

η̂( tT )
, (6)

which behaves similarly to a stationary AR-process with the same autoregressive parameters as Xt,T for

large T under some conditions on the estimator. The exact sense in which we mean it behaves similarly is

motivated by (2). In order to perform order selection, we only need the estimator of the global variance

6



to behave as in the stationary case. This criterion seems reasonable to use for the X∗t,T since the data is

essentially homoscedastic. As will be shown, our order selection procedure is consistent for the correct order

p, where p is the true order of the underlying process, as the following theorem states.

Assumption 1. (i) L > p, where L is the largest order under consideration and p is the correct order.

(ii) η̂2(u) is a uniformly consistent estimator of c2σ2(u) on any compact subinterval I ∈ (0, 1) not containing

the points of discontinuity.

Theorem 2. Let

s2T (k) =
1

T

T∑
t=k+1

1

η̂2( tT )
(Xt,T −

k∑
j=1

φ̂jXt−j,T )2. (7)

Define

p = arg min
0≤k≤L

(log(s2T (k)) +
kC(T )

T
)

with C(T ) such that order selection in the stationary case is consistent (see for example Schwarz (1978),

Hannan and Quinn (1979)). Under assumptions 1 and the assumptions of Phillips and Xu (2006), p̂ → p

as T →∞ in probability.

While the definition of s2T (k) differs slightly from using AIC on the X∗t,T as defined earlier, the idea is the

same. We divide through by a local estimate of the variance in an attempt to make the data stationary. The

difference between using (7) or the sample variance based on (6) will be asymptotically negligible.

Remark 1. In light of theorem 2, the assumption regarding a uniformly consistent estimator is readily

satisfied. For instance, consider a kernel estimator of the X2
t with a box kernel. In this case, the estimator

can be written as

η̂2T (u) =
Σ̂0(u+ b)− Σ̂0(u− b)

2b

Thus,

sup
u∈I
|η̂2T (u)− c2σ2(u)| ≤ sup

u∈I
| Σ̂

0(u+ b)− Σ̂0(u− b)
2b

− Σ0(u+ b)− Σ0(u− b)
2b

|

+ sup
u∈I
|Σ

0(u+ b)− Σ0(u− b)
2b

− c2σ2(u)|

which, for an appropriately chosen sequence b, converges to zero due to Theorem 1 and an application of the

mean value theorem combined with the uniform continuity of σ2(u) on I.
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The consistency of the estimated order is perhaps not surprising, since the order based on Xt,T is also

consistent. However, X∗t,T itself is not an autoregressive process though it does behave similarly to an

autoregressive process if the model is correct. Also, s2T (k) behaves similarly to the estimated variance of an

autoregressive procedure. More importantly, they behave as if the errors are homoscedastic, and thus should

be more likely to select the correct order than the heteroscedastic model.

4. Simulations

In this section, we present some simulation studies to show the affect of concentration in the variance function

on our ability to select the order of the autoregression. We compare order selection on the corrected-for time

series against the case where the heteroscedastic nature of the process is completely ignored as well as

accounting for it by estimating the AR parameters using weighted conditional least squares. We show that

incorporating the non-constant variance improves our ability to correctly select the order, especially when

the variance function is highly concentrated. The variance function was estimated using a gaussian kernel

with data selected bandwidth.

Consider the following modulated AR(1) model,

Xt = .9Xt−1 + εtσ(t), where σ2(t) = exp(
2at

T
) (8)

for different values of a. T = 1024 observations were generated from this model, and M = 1000 simulations

were run using the criterion (2) with C(T ) = 4. The proportion of the trials for which each of the 3 methods

selected the correct order are given in table 1.

Method a=0(d=1.0) a=1(d=1.1) a=2(d=1.3) a=3(d=1.6) a=4(d=2.1) a=5(d=2.5)

Xt,T 0.99 0.94 0.76 0.53 0.34 0.22
Xt,T w/WLS 0.99 0.95 0.80 0.56 0.40 0.27
X∗t,T 0.99 0.99 0.98 0.98 0.98 0.97

Table 1: Simulation results (proportion correct) with an AR(1) and variance function (7). WLS is weighted
least squares, and d is the concentration of the variance function, i.e. the L2-norm of the normalized variance
function.

The second order selection simulation presented mimics a real data application. In figure 2 (top), a footstep

from an elephant recorded with a geo-phone is shown. The model (1) is assumed, and the procedure described

above selects an AR(1) model for the data, with φ = .94. The estimated variance function is presented in

figure 2 (bottom), and has a concentration of 2.35, as measured by the L2 norm of the normalized function.
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Figure 2: A geo-phone recording of an elephant’s footfall (above) and the estimated (normalized) time-
dependent variance function (below).

10,000 simulations from an AR(1) with T = 201 modulated by this variance function were performed, each

resulting in an order selected for the 3 methods. The results of the simulation are given in table 2.

Method Correct

Xt,T 0.78
Xt,T w/WLS 0.79
X∗t,T 0.91

Table 2: Simulation results with an AR(1) and variance function pictured in figure 2 (bottom). WLS is
weighted least squares.

Figure 3: A seismic recording of a mining explosion (above) and the estimated time-dependent variance
function (below).

The third order selection simulation presented also mimics a real data application. In figure 3 (top), a

seismic recording of a mining explosion is shown. The model (1) is again assumed and, following Chandler

and Polonik (2006), an AR(2) model is used with φ1 = 1.65 and φ2 = −.94. The estimated variance function

is presented in figure 3 (bottom), and has a concentration of 7.65. 5,000 simulations from an AR(2) with

T = 1024 modulated by this variance function were done, each resulting in an order selected for the 3
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methods. The results of the simulation are given in table 3.

Method Correct

Xt,T 0.52
Xt,T w/WLS 0.58
X∗t,T 0.90

Table 3: Simulation results with an AR(2) and variance function pictured in figure 3 (bottom). WLS is
weighted least squares.

From the simulations, the effect of heteroscedasticity on the selected order can be quite strong. Weighted

least squares seems to improve the chance of selecting the correct order, though the non-constant variance

still seems problematic. The proposed method outperforms the others in all instances studied.

With regards to estimation, consider the model (8) with a = 5 and X∗t,T as defined above. Using a bandwidth

of .2 on the squared observations to estimate the variance function, we compare the regular series, the series

divided by the estimate, and the series divided by the true variance over 1000 simulations. The results are

shown in table 4. Having the true variance function on hand allows for a further reduction in the standard

deviation of the estimated AR parameter, though using the estimated function provides a great reduction

from the unadulterated data. Consistency of the estimate will follow for the same reasons as in Theorem 2,

primarily the smoothness of the variance function.

Method Mean Standard Deviation

Xt .885 .049
X∗t .886 .019
Xt/σ(t) .890 .014

Table 4: Simulation results for estimation of an AR(1) model with heteroscedastic errors.

5. Proofs

Proof of Theorem 1

Proof. We first establish that Σ̂0(α) is pointwise consistent for Σ0(α) = c2
∫ α
0
σ2(u)du. This is simply

achieved by using the technique of Phillips and Xu (2006) and dealing with partial sums to show:

E(
1

T

[Tα]∑
t=0

X2
t ) =

1

T

[Tα]∑
t=0

E(

∞∑
i=0

∞∑
j=0

ψiψjεt−iεt−j) =
1

T

[Tα]∑
t=0

∞∑
i=0

ψ2
i σ

2(
t− i
T

)

=
1

T

[Tα]∑
t=0

σ2(
t

T
)

∞∑
i=0

ψ2
i + o(1)→

∞∑
i=0

ψ2
i

∫ α

0

σ2(u)du
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Next, uniform consistency in α can be shown using a similar technique to that used in the proof of the

Glivenko-Cantelli theorem. The key idea is that both the partially integrated variance function and its

empirical version are monotonically increasing functions. Details are omitted.

Proof of Theorem 2

Proof. Let Yt, t = 1, . . . , T , be a AR(p) time series with the same AR coefficients as in the series of interest

Xt,T and constant variance σ2
Y = 1

c2 , with c2 =
∑∞
j=0 ψ

2
j .

The conditions on the error process (for example in Hannan and Quinn (1979)) are readily satisfied for the

process Yt. Notice that the only randomness that appears in the criterion (2) is through the sum of squared

errors, or equivalently, the estimate of the “residual standard error” s2(k). If the proposed weighted standard

error (7) has an equivalent limit to that of the Yt, then order selection based on the Xt,T in this sense is

consistent as well, since the Yt is a stationary AR process.

To do this, we will show first that error due to estimation of the AR coefficients φjk is asymptotically

negligible, where φjk is the jth AR parameter when an AR(k) model is fit to the data. Next, we will show

that error from estimation of the variance function is also asymptotically negligible.

Assume first that the variance function is continuous. Thus I can be chosen of the form [δ, 1 − δ] for any

δ > 0, in particular so the contribution of points outside I is small.

Define

Vk(t) = (
Xt

η̂( t+1
T )

,
Xt−1

η̂( t+1
T )

, . . . ,
Xt−k+1

η̂( t+1
T )

)′, Yk = (
Xk+1

η̂(k+1
T )

,
Xk+2

η̂(k+2
T )

, . . . ,
XT

η̂(TT )
)′,

Φ̂k = (φ̂1, φ̂2, . . . , φ̂k)′, Φk = (φ1, φ2, . . . , φk)′ and Vk = (Vk(k)′, Vk(k + 1)′, . . . , Vk(T − 1)′).

Consider the difference

1

T
(Y −VkΦ̂k)′(Y −VkΦ̂k)− 1

T
(Y −VkΦk)′(Y −VkΦk) = − 2

T
(Φ̂k − Φk)′V′k(Y −VkΦk) + op(1) = op(1) (9)

by the consistency of the φ̂k (as they are functions of the autocovariances via the Yule-Walker equations) and

consistency of η̂(u), which ensures all the V (t) are finite. Next, we show that the error from the estimation

of the variance function is asymptotically negligible.

Define εt,k = Xt,T −
∑k
j=1 φjkXt−j,T and ft(x) =

ε2t,k
x . Thus, f ′t(x) = − ε

2
t,k

x2 . Consider, on I,

1

T

∑
t/T∈I

∣∣∣∣ft(η̂2(
t

T
)

)
− ft

(
c2σ2(

t

T
)

)∣∣∣∣ =
1

T

∑
t/T∈I

∣∣∣∣f ′t(ξt)(η̂2(
t

T
)− c2σ2(

t

T
)

)∣∣∣∣
≤ sup

u∈I

∣∣(η̂2(u)− c2σ2(u)
)∣∣ 1

T

∑
t/T∈I

|f ′t(ξt)| (10)
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by the mean value theorem, where ξt is between η̂2( tT ) and c2σ2( tT ). (10) is op(1) due to the uniform

consistency of the estimator of the variance function, the moment condition on εt and the bounds on the

variance function. Lastly, we consider

1

T

T∑
t=1+k

1

c2σ2( tT )

Xt,T −
k∑
j=1

φjkXt−j,T

2

,

which is an average of a finite sum of weighted empirical covariance terms. Letting φ0k = −1, we have

E (
1

c2T

T∑
t=1+k

1

σ2( tT )

k∑
j=0

k∑
l=0

φjkφlkXt−j,TXt−l,T )

=
1

c2T

T∑
t=1+k

1

σ2( tT )

k∑
j=0

k∑
l=0

φjkφlk
∑
m

ψmψj+m−lσ
2(
t− j −m

T
)

=
1

c2T

T∑
t=1+k

k∑
j=0

k∑
l=0

φjkφlk
∑
m

ψmψj+m−l + o(1) (11)

using the technique of Phillips and Xu (2006). The first term in (11) is identical to the expectation of s2T (k)

based on the Yt,T series. Furthermore, the variance of these quantities is o(1) due to the moment condition.

Thus, these two quantities are asymptotically equivalent. In the case there are finitely many points of

discontinuity, I can be chosen so that the contribution of these points is arbitrarily small asymptotically.

Finally, since we are only considering finitely many k, it follows that the estimated order based on the

normalized data is asymptotically equivalent to the order based on autoregressive data of the same order,

and hence the selected order based on the normalized data is consistent for the true order.
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