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Abstract

In many applications, time series exhibit non-stationary behavior that might rea-

sonably be modeled as a time-varying autoregressive process. In the context of such a

model, we discuss the problem of testing for modality of the variance function. We pro-

pose a test of modality which is local, and which when used iteratively, can be used to

identify the total number of modes in a given series. This problem is closely related to

peak detection and identification, which has applications in many fields. We propose a

test that, under appropriate assumptions, is asymptotically distribution free under the

null-hypothesis, even though non-parametric estimation of the AR parameter-functions

is involved. Simulation studies and applications to real data sets illustrate the behavior

of the test.
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1 Introduction

Underlying the methodology of this paper is the following nonstationary autoregressive model

which allows the volatility to evolve unconditionally on the past as a function of time:

Yt −
p∑

k=1

θk

( t
T

)
Yt−k = σ

( t
T

)
εt, t = 1, . . . , T, (1)

where θk are the autoregressive parameter functions, p is the order of the model, σ is a

function controlling the volatility and εt ∼ (0, 1) i.i.d. Following Dahlhaus (1997), time is

rescaled to the interval [0, 1] in order to make a large sample analysis feasible. Observe

that this in particular means that the process Yt = Yt,T satisfying (1) is in fact a triangular

array of processes. Under certain additional assumptions, (1) constitutes a locally stationary

processes in the sense of Dahlhaus (1997). Such additional assumptions are not used here,

however.

Time-varying AR-processes have been in use for quite some while, in particular in the area of

signal processing (e.g. Subba Rao, 1970, Grenier, 1983, Hall et al. 1983, Rjan and Rayner,

1996, Girault et al. 1998, Eom, 1999). In this area of work, however, the variance is often

assumed to be constant, and only the AR-parameters are modeled as being time-dependent.

Orbe et al. (2005) also used such a model in the context of econometric time series. Another

line of work, such as Drees and Stǎricǎ (2002) and Fryzlewicz et al. (2006), used a model

with constant AR-parameters, but time-varying variance function as a simple yet effective

model for stock returns, while Chandler and Polonik (2006) used the model as the basis for

discriminating different types of seismic events. The focus of this paper is also the inference

for the variance function σ2(·). While we allow for the AR-parameters θk(u), u ∈ [0, 1] to

vary with time, they are regarded as nuisance parameters.

There are situations in which the shape of these parameter functions are of particular interest.

In an econometric context, seasonality might be a causing factor, and Orbe et al. (2005)

incorporate such shape information into the estimation method for the time-varying AR-

parameters (the variance is kept constant in this paper). However, the shape of the variance

function is of interest in various applications. For instance, a measure of concentration

of the variance function was used in the context of discrimination between earthquakes

and explosions in Chandler and Polonik (2006). Other applications regard the question of

monotonicity or the modality of the variance function. In particular, this question is closely
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related to the problem of peak detection and estimation, which shows up in a variety of

contexts. For example, peak picking is important for onset detection in musical signals

(Bello et al. 2005). In order to estimate the location of a peak, we must first be sure that

one exists. This motivates a test for the existence of peaks. For simplicity of presentation,

we present a test that only considers whether or not there is a mode in a given interval of

time. However, our test is performed locally. Via an iterative procedure, we can thus count

the number of modes in a given time series, in addition to an estimate of their locations.

The location of a mode is only discussed in passing, as it is not the focus of this paper.

As a motivating example, suppose that we are interested in locating volatility clusters in

financial data, often modeled by the celebrated ARCH (Engle, 1982) and GARCH (Boller-

slev, 1986) models. From an unconditional heteroscedastic perspective, volatility clusters

correspond to modes in the variance function. For instance, we might consider a model in

which volatility clusters result from exogenic shocks. Identifying individual volatility clus-

ters (modes) allows us to identify the presence of shocks, which we can then try to identify.

Figure 1.1 shows the log returns, rt, from the Dow Jones Industrial Average (DJI), which

we model simply as rt = θrt−1 + σ(t)εt.

Figure 1.1: Log return on the Dow Jones Industrial Average closing prices from January 2008 to
December 2010.

Using a graphical device motivated by the mode tree of Minnotte and Scott (1993), we

present the results of using our test of modality (to be discussed in detail below) iteratively

on the DJI data set. Whereas the mode tree plots mode locations against the bandwidth at

which they first appear, we plot the locations against their p-value. For the DJI data set,
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the mode corresponding to the initial crash of October, 2008 (in the plot at observation 300)

is readily apparent and highly significant for our test of homoscedasticity. The second most

significant mode corresponds to the period following the “flash crash” of May, 2010 (in the

plot just before observation 600), with a p-value of .125. Though not significant, studying

the stock market on a daily basis obscures much of the variability in the market that would

be apparent on a smaller time scale, especially obvious with respect to volatility of the ‘crash’

in question. What appears to be a mode in early 2009 seemingly is only two days of high

log returns, and our method finds that mode to be highly non-significant, though due to the

outlying values, a kernel smoother (of the squared observations or residuals resulting from

fitting some model, say) may very well suggest a mode exists.

Figure 1.2: A mode tree for the DJI data set. Up arrows denote estimates of locations of modes,
down arrows denote estimates of anti-modes. By design, the initial estimate of the mode does not
come with an antimode attached to it. Lines are the estimated sets on which our test of modality
was run.
In section 2 we present and discuss the testing problem, our proposed test statistic and its

asymptotic behavior. Section 3 discusses the application of the testing procedure to mode

countingt. In section 4 we present simulation studies and applications to real data. Proofs

are deferred to section 5.

2 Testing for modality of the volatility

2.1 The problem

Tests of modality of a probability density function have been studied in detail. For instance,

the excess mass test (Müller and Sawitzki, 1991), the dip test (Hartigan and Hartigan, 1985),
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and the bandwidth test (Silverman, 1981) have been proposed. For higher dimensions, Bur-

man and Polonik (2009) propose an approach based on the concept of an antimode. In the

regression setting, tests of monotonicity of functions has been explored by a number of au-

thors. See, for instance, Bowman, et al. (1998), Ghosal, et al. (2000) and Hall and Heckman

(2000), and references therein.

In contrast to this work, we consider a non-stationary time series context, and our interest

is to test for modality of the variance function σ2(·). Compared to other approaches for

investigating modality from the literature, the approach studied here is conceptually closest

to that of Burman and Polonik (2009), as it also uses the relationship that if a function is

unimodal then it contains no anti-mode. Here we say that an anti-mode is present if there

exists an interval I composed of a union of two disjoint intervals, i.e. I = I0 ∪ I1 such that

σ(·) is decreasing on I0 and increasing on I1. On each stretch (I0 or I1), the function σ(·)
does not need to be strictly monotonic, but is not allowed to be fully constant on either I0

or I1. Using this definition of an anti-mode, we consider the hypotheses:

H0 : σ(·) is unimodal (i.e. has no antimode);

H1 : σ(·) has an anti-mode somewhere.

Testing for unimodality and testing for monotonicity are closely related. A unimodal function

is simply one that is monotone on either side of the mode (first increasing then decreasing).

As such, testing for unimodality is equivalent to testing for the appropriate monotonicity on

either side of the mode. In order to detect deviations from monotonicity, one has to consider

the ‘right’ region that contains an anti-mode under H1.

For now, in order to simplify the discussion, assume that the ‘right’ region is known to be

the interval [a, b] ⊂ [0, 1] to the left of the mode, and consider the hypothesis that σ2(·) is

monotonically increasing in this interval. For k = 1, . . . , p, let θ̂k(·) be an estimator for θk(·),
and define the corresponding squared residuals as η̂2

t =
(
Yt −

∑p
k=1 θ̂k

(
t
T

)
Yt−k

)2
. Under

our model (1) we can expect the squared residuals to behave like σ2
(
t
T

)
ε2t . Thus, under

the hypothesis of σ2(·) being increasing on [a, b], the squared residuals should tend to be

increasing in that interval. If fact, we expect the large squared residuals to be concentrated

towards b if the function is strictly monotone, or perhaps uniformly placed in the case that

the function σ2(·) is constant on [a, b]. On the other hand, if the function contains an

anti-mode on [a, b], we might expect to see different patterns in the occurrences of large

squared residuals, also depending on the choice of [a, b]. For instance, consider the function
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Figure 2.1: A bimodal variance function (solid line) and a similar unimodal function (dashed
line) that is the L2-projection of the bimodal σ(u) onto the class of monotone functions. The two
functions agree everywhere the dashed line is not visible.

in figure 2.1. If we choose the set [a, b] to be the set indicated by the dashed line, one can

expect that many of the largest residuals will tend to fall within the first half of the interval,

as this is where the variance function is largest on the set. The construction of our test

statistic exploits these different patterns of occurrences of large residuals. The most difficult

case to discriminate against the alternative, an anti-mode, should be a unimodal σ2(·) with

σ(u) = c for all u on [a, b], which corresponds to an (approximate) uniform distribution of

the locations of large squared residuals across the set [a, b].

Our proposed testing procedure also takes into account the possibility of observed outliers

in the residuals, as it only uses their ranks and not the values themselves. Our procedure

shares the benefits of Hall and Heckman’s procedure in that it does not require selecting a

bandwidth.

2.2 The Test Statistic

Let Yt−1 = (Yt−1, . . . , Yt−p)
′, and let θ̂n( t

T
) = (θ̂n,1( t

T
), . . . , , θ̂n,p(

t
T

))′ be an estimator for the

AR-parameters. Consider the γ-proportion largest squared residuals η̂2
t on the set [a, b], i.e.

the squared residuals that exceed the empirical upper γ-quantile of the squared residuals on

[a, b] given by

q̂ 2
γ = min{q 2 ≥ 0 :

1

n

∑
t∈[aT, bT ]

1(η̂ 2
t > q2) ≤ γ},

where n = bbT c−daT e+ 1 is the number of observations in [aT, bT ]. The quantity q̂ 2
γ serves

as an estimate of the γ-quantile of the squared residual if the variance function is constant
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on this set (see section 2.3). For given [a, b] and 0 < γ < 1 define the partial sum process of

the ‘large’ squared residuals on [a, b] as

Ĝn,γ(α) =
1

n

daT e+bαnc−1∑
t=daT e

1(η̂ 2
t ≥ q̂ 2

γ ), α ∈ [0, 1]. (2)

Notice that Ĝn,γ(·) is defined in [0, 1] rather than [a, b]. This reparametrization is done for

ease of notation.

To simplify the discussion, assume for the moment that all the residuals are different and

that γn is an integer. Then by definition Ĝn,γ(1) = γ. The jumps in Ĝn,γ(·) occur at the

γn ‘large’ squared residuals, and under the worst case null-hypothesis, the location of the

large residuals can be expected to be approximately uniform on the interval [a, b]. We can

then expect Ĝn,γ(α) to behave like γα in this case. When testing for σ2(u) monotonically

increasing, we expect more of the large squared residuals to occur in the earlier portions

of the interval [a, b] than under a uniform distribution. Thus, we reject the null (σ2(·)
monotonically increasing on [a, b]) for large values of supα∈[0,1](Ĝn,γ(α)− γα). When testing

for a monotonically decreasing σ2(·) (on [a, b]) we modify Tn by taking the supremum over

γα−Ĝn,γ(α). Lettingm ∈ [0, 1] denote the mode of σ2(·), which might be known or estimated,

our test statistic thus is

Tn =

supα∈[0,1](Ĝn,γ(α)− γα), [a, b] ⊂ [0,m]

supα∈[0,1](γα− Ĝn,γ(α)), [a, b] ⊂ [m, 1].
(3)

For the simple test of homoscedasticity one can use [a, b] = [0, 1] and T
(1)
n = supα∈[0,1] |Ĝn,γ(α)−

γα|. In practice we will have to estimate a “good” interval [a, b] and also the mode m. In

section 2.4 we will discuss the estimation procedure for this interval. For more details an

consistent mode estimation see section 2.3.1.

2.3 Asymptotic distribution

Under appropriate assumptions, the asymptotic distribution of the appropriately normalized

test statistics Tn under the worst case null hypothesis (σ(u) ≡ σ0 > 0 for all u ∈ [a, b]) is

the supremum of a standard Brownian Bridge, and thus is distribution free. See Theorem 1

below. This theorem also shows that the large sample behavior of our test statistic is not

influenced by the (in general) non-parametric estimation of the parameter functions, as long
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as the rate of convergence of these estimators is sufficiently fast, essentially meaning that

the model class for the AR-parameter function is not too rich.

Theorem 1 Let γ ∈ [0, 1] and suppose that 0 ≤ a < b ≤ 1 are non-random with m /∈
[a, b]. Assume further that E|ε|k < Ck for some C > 0 and all k = 1, 2, . . . Then, under

assumptions (i) - (iv) (see appendix), we have under the worst case null-hypothesis σ(u) ≡ σ0

for u ∈ [a, b] that

√
n

γ (1− γ)
Tn → sup

α∈[0,1]

B(α), in distribution as n→∞.

Moreover, in case the AR-parameter in model (1) are constant, and
√
n-consistent estimators

are used, then the moment assumptions on the innovations can be relaxed to E ε 2
t <∞. The

result continues to hold if the mode m of σ(·) is replaced by an estimate m̂ with |m̂−m| =
oP (1) as n→∞, and if [a, b] is replaced by an estimated set [â, b̂] with P ([â, b̂] ⊂ [a, b])→ 1

and max{|c− â|, |d− b̂|} = oP (1) for some a ≤ c < d ≤ b as n→∞,

Consistent estimation of the mode is discussed in subsection 2.3.1. The construction of an

appropriate estimated set [â, b̂] is presented in section 2.4.

We also note that while our testing procedure is calibrated to have the correct asymp-

totic level α when the variance function is constant on our interval, it is the case that the

asymptotic level under any other form satisfying the null hypothesis, the level is at most

α. This is due to the fact that for any variance function satisfying the null hypothesis

E(Gn,γ(α)) ≤ γα + O(n−1) for all α ∈ [0,m] and E(Gn,γ(α)) ≥ γα + O(n−1) for α ∈ [m, 1].

In fact, with

Ψa,b(α, z) =

∫ α

0

F
(

z
σ(a+β(b−a))

)
dβ −

∫ α

0

F
( −z
σ(a+β(b−a))

)
dβ,

the expected value E(Gn,γ(α)) can be approximated uniformly in α by α − Ψa,b(α, qγ) (see

proof of Theorem 2). This motivates the fact that the deviation Ψa,b(α, qγ) − α (1 − γ) in-

fluences the large sample behavior of our test statistics (cf. Theorem 2), where qγ is such that

Ψa,b(1, qγ) = 1− γ. (4)

The quantity qγ is well defined if the distribution function F of εt is strictly monotonic

and minu∈[a,b] σ(u) > 0. Under the worst case null-hypothesis of σ2(·) ≡ σ2
0, u ∈ [a, b], this
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definition gives us back the (1 − γ)-quantile of the distribution of σ0εt (cf. definition of

Gn,γ(α)).

Theorem 2 If the assumptions of Theorem 1 hold and we have supα∈[0,1]

(
α (1 − γ) −

Ψa,b(α, qγ)
)
> 0, then the power of our test for the variance function being monotonically in-

creasing on [a, b] tends to one as n→∞. Similarly, the power of the test for a monotonically

decreasing variance function tends to one if supα∈[0,1]

(
Ψa,b(α, qγ)− α (1− γ)

)
> 0.

2.3.1 Consistent estimation of maxima and minima. In practice we need to esti-

mate maxima and minima of σ2(·) (restricted to a certain region), and Theorem 1 requires

the estimation of the mode to be consistent. Under appropriate smoothness conditions, one

such consistent estimator is given by the maximum local likelihood estimate discussed in

Dahlhaus and Polonik (2009). Consistency of this estimator can be shown by using the uni-

form consistency of the local likelihood estimates, which is shown in Dahlhaus and Polonik, in

conjunction with standard techniques from mode estimation (e.g. see Appendix, section 5.3).

The same arguments apply to the estimation of a minimum.

2.4 Estimation of the set of interest.

In practice, the set [a, b] on which our test statistic is based will often be unknown and

a data driven method to select [a, b] will be needed. We propose a method based on a

constrained optimization estimate of the variance function, where the constraint is motivated

by the null hypothesis of unimodality. We search for the best fitting (in the sense of least

squares) unimodal function, which amounts to performing isotonic regression on the squared

residuals η̂2
t to each side of the mode m. More precisely, let Σ̂(u) := 1

T

∑buT c
t=1 η̂2

t , u ∈ [0, 1],

and for m ∈ [0, 1] let Σ̂∗m(u) denote the greatest convex minorant / least concave majorant

(GCM/LCM) to Σ̂(u) on [0,m] and [m, 1], respectively. The function σ̂∗2m (u) further denotes

the slope (right-hand derivative) of Σ̂∗m(u). The mode m may either be fixed or itself be

selected by the data. Efficient algorithms to calculate σ̂∗2m (u), based on the pooled-adjacent-

violators algorithm, exist (see e.g. Robertson et al. 1988). The resulting estimate is a

piecewise constant function.

The estimation procedure. Σ̂∗m(u) estimates Σ∗m(u), which denotes the GCM/LCM to

Σ(u) :=

∫ u

0

σ2(v)dv, (5)
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with m being the mode of σ2(u). We also denote by σ∗2m (u) the derivative of Σ∗m(u). For

simplicity we first consider the region left of the mode. Under H0 where σ2(u) is increasing

to the left of m, we have σ2(u) = σ∗2m (u) for u ∈ [0,m], because Σ∗m(u) = Σ(u) for u ∈ [0,m].

If σ∗2m (u) is constant on a certain stretch I0 = [a, b] ⊂ [0,m], then Σ∗m(u) is linear on I0, and

thus the longest of these linear stretches is our set of interest. If σ2(u) has an antimode to

the left of m, then Σ(u) is concave on an interval containing the antimode, and this implies

the Σ∗m(u) will lie strictly below Σ(u) on an interval containing the antimode. Let I0 denote

the closure of the longest such interval. The simple, but crucial, observation is that σ∗2m is

constant on this set I0. The set I0 for the function shown in figure 2.1 is exactly the closure

of the set for which the solid and dashed lines do not agree.

The intuitive idea now is to use the longest constant stretch, Î0, of the piecewise constant

function σ̂∗2m as an estimator of the longest constant stretch of σ∗2m . However, this will in

general not result in a consistent estimator for I0 (even if I0 is the only constant stretch

of σ∗2m ). The reason for this is that the greatest convex minorant will tend to have a few

jumps along I0, so that Î0 will tend to fall somewhere inside the true flat set, and thus

will be shorter. More seriously, considered as a random set Î0, it does not stabilize, i.e. it

does not converge to a fixed subset of I0. This ‘instability’ affects the limiting distribution.

Our remedy to overcome this inconsistency is to instead estimate a slight enlargement of I0.

This will result in a consistent estimator (see below). In a second step, we prune back this

estimated set somewhat. This will result in a subset of I0 for the test, but the estimator will

stabilize. Besides not affecting the limiting distribution, this estimate also has the important

effect of a bias reduction, as discussed below.

The formal definition of our estimator to the left of the mode is as follows. For a given m

write

Ĥm,λ(c, d) = Σ̂∗m(c, d)− λ|c− d|, 0 ≤ c ≤ d ≤ 1,

where in slight abuse of notation Σ̂∗m(c, d) = Σ̂∗m(d)−Σ̂∗m(c). In other words, Σ̂∗m(c, d) denotes

the mass content of the interval [c, d] under the positive measure given by Σ̂∗m(u). Now, for

given λ, δ > 0 define

∆̂`
m(δ;λ) = sup

[c,d]⊂[0,m]

{
|c− d| : −Ĥm,λ(c, t) ≤ δ and Ĥm,λ(t, d) ≤ δ for all t ∈ [c, d]

}
Let [ĉλ(δ), d̂λ(δ)] denote the ‘optimal’ interval at which the supremum in the definition of

∆̂m(δ;λ) is attained. (For ease of notation we drop the dependence on m of [ĉλ(δ), d̂λ(δ)].)
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In a second step we maximize over λ > 0:

∆̂`
m(δ) = sup

λ≥0
∆̂`
m(δ;λ) = sup

λ≥0
|d̂λ(δ)− ĉλ(δ)]. (6)

Let [â∗`δ , b̂
∗`
δ ] ⊂ [0,m] denote the corresponding maximizing set (again the dependence on m

is not indicated). In case there is more than one interval [â∗`δ , b̂
∗`
δ ] at which the maximum

in ∆̂`
m(δ) is assumed, then pick one of these maximizers. In a similar fashion we define an

estimated set to the right of the mode, where the definition of ∆̂`
m(δ;λ) is modified to

∆̂r
m(δ;λ) = sup

[c,d]⊂[m,1]

{
|c− d| : Ĥm,λ(c, t) ≤ δ and − Ĥm,λ(t, d) ≤ δ for all t ∈ [c, d]

}
.

This then results in an estimated set [â∗rδ , b̂
∗r
δ ] for testing a decreasing function. More pre-

cisely, instead of [âδ, b̂δ], we propose to use a slightly reduced set

[âδ,β, b̂δ,β]

which is defined by cutting off β
2
× 100% from each side of the interval [âδ, b̂δ]. For the

motivation of this trimming procedure, see discussion below.

Geometric interpretation. For this discussion we only consider intervals in [0,m], and

to ease the notation we omit the superscript ` that indicates that we are to the left of the

mode. Now, to the left of the mode, the function σ̂∗2m (t) is piecewise constant, increasing,

and with a few jumps in the area of the unknown interval of interest [a, b]. This is due to

the behavior of the LCM. Therefore the idea is to seek an interval that contains the longest

constant piece of σ̂∗2m (t) such that on this interval the function σ̂∗2m (t) does not differ ‘by much’

from its value on the longest constant piece. Our measure of distance used here (defined via

Ĥm,λ) is motivated by the fact that there tend to be only a few jumps of σ̂∗2m (t) along the

interval of interest. The following makes this precise.

Consider the set T̂ (λ) = {t ∈ [0,m] : σ̂∗2m (t−) ≤ λ ≤ σ̂∗2m (t+)} where σ̂∗2m (t±) denote

right hand and left hand limits, respectively, of σ̂∗2m at t. Since σ̂∗2m (·) is increasing, we have

T̂ (λ) = [t̂0(λ), t̂1(λ)] with t̂0(λ) ≤ t̂1(λ). If λ /∈ {y : σ̂∗2m (t) = y for some t ∈ [0,m]} then

t̂0(λ) = t̂1(λ) is a jump point, otherwise T̂ (λ) is the closure of the interval on which σ̂∗2m is

constant equal to λ. Further, Ĥm,λ(c, d) equals the integral of the difference σ̂∗2m (t)− λ over

[c, d], and since σ̂∗2m is monotonically increasing, we have Ĥm,λ(c, t) ≤ 0 for c ≤ t ≤ t̂0(λ) and
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Ĥm,λ(t, d) ≥ 0 for d ≥ t ≥ t̂1(λ). It follows that we can write

∆̂m(δ;λ) = sup
c≤t̂0(λ)

d≥t̂1(λ)

{
d− c : −Ĥm,λ(c, t̂0(λ)) ≤ δ and Ĥm,λ(t̂1(λ), d) ≤ δ

}
. (7)

Thus, we can envision constructing [ĉλ(δ), d̂λ(δ)] by extending T̂ (λ) to the left and to the

right, such that the areas between the resulting horizontal line and σ̂∗2m to the left and to the

right of T̂ (λ) both either are equal to δ or we hit one of the boundaries of [0,m], whichever

comes first. The largest of the intervals [ĉλ(δ), d̂λ(δ)], λ > 0, then gives [â∗δ , b̂
∗
δ ]. Figure 2.2

schematically shows, for a continuous function, two such sets for two different values of λ.

Figure 2.2: Indicated are two optimal sets [cλ(δ), dλ(δ)] for two different values of λ and a contin-
uous function σ∗2(·). The four individual shaded regions have areas equal to δ.

2.5 Consistency of the estimation method.

In analogy to the above, define the quantities ∆m(δ;λ), ∆m(δ), T (λ) = [t0(λ), t1(λ)], [cλ, dλ]

and the optimal set [a∗δ , b
∗
δ ] = [cλ∗δ , dλ∗δ ] by replacing Σ̂∗m and σ̂∗2 in the above definitions by

Σ∗m and σ∗2, respectively. We assume that

(A0) the function σ2(·) is bounded;

(A1) supu∈[0,1]

∣∣Σ̂(u)− Σ(u)
∣∣ = oP (1);

(A2) the estimator m̂ is weakly consistent for m;

(A3) (δ,m)→ supλ≥0 ∆m(δ;λ) is continuous in (0, δ0]× (0, 1] for some δ0 > 0;

(A4) the parameter δ is such that the maximizing set [a∗δ , b
∗
δ ] is unique, i.e. there exists

a unique level λ∗δ and a unique corresponding optimal set [cλ∗δ , dλ∗δ ] = [a∗δ , b
∗
δ ] such that

supλ≥0 ∆m(δ;λ) = ∆m(δ;λ∗δ) = |cλ∗δ − dλ∗δ |. We also have |b∗δ − a∗δ| > 0.
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Lemma 1 Let the estimator [â∗δ , b̂
∗
δ ] be defined by using Σ̂∗bm with an estimator m̂, and suppose

that assumptions (A1) - (A4) hold. Then, as n→∞, we have

∣∣ [â∗δ , b̂∗δ ] ∆ [a∗δ , b
∗
δ ]
∣∣ = oP (1).

Fact 1. Assumption (A1) holds under the assumptions of Theorem 1.

Lemma 2 For δ > 0 sufficiently small we have

T (λ∗) ⊂ [a∗δ , b
∗
δ ]

This result says that the theoretically optimal set contains the longest constant stretch.

This together with the consistency of our estimate implies that an appropriate pruning of

the initial estimated set provides an estimated set that stabilizes inside T (λ∗) as desired.

Bias correction. The proposed pruning step, i.e. to cut off β
2
× 100% from each side

of the interval [âδ, b̂δ], can be understood as a bias reduction. The heuristic behind this is

the following. Suppose we are to the left of the mode and the null hypothesis is true (σ2

increasing), but a flat set exists. Then the distribution of large residuals will not tend to

be uniform over the entire estimated flat set due to the way we are estimating σ2(u). To

understand this, notice that σ̂2(u) being flat over an extended period (to the left of the

mode, say) means that Σ̂(u) lies strictly above Σ̂∗(u) in the interior of this extended period.

For this to happen, the jumps of Σ̂(u), given by the squared residuals at the corresponding

locations, have to be relatively small in the interior of the flat set. In other words, it is likely

that there exist relative extremes of the squared residuals near the endpoints of the flat set.

As a remedy we thus propose to run the test on a slightly smaller set, removing a small

percentage of the data at each endpoint. Such a procedure will not harm the test under the

null, as the data is still homoscedastic on the smaller interval (should the original interval

be homoscedastic). The pruning of the interval [â∗δ , b̂
∗
δ ] leads to the set

[â∗δ,β, b̂
∗
δ,β].

While any (strict) subset of the interval on which σ is constant serves the purpose of per-

forming the test, the smaller the interval that is used for testing, the less is the available

information, and thus less power can be expected.
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2.6 Choosing δ and β.

The choice of δ depends on the behavior of the variance function just beyond the boundaries

of the set on which the function is constant, which is generally unknown. (It also depends on

the sample size, and we might think to let δ → 0 as T →∞). Under the null hypothesis, for

a fixed value of β, choosing δ too large will cause the set on which the test is run to tend to

be too large as well. Thus, the variance function will only be monotone on the interval, not

constant. Theoretically, we don’t provide a result for the behavior of the test statistic in this

case. Empirically, however, the actual level of the set will be smaller than the designated

value of α as the small residuals will tend to be near the left hand boundary, with large

residuals tending to be near the right, the opposite of what the test is looking for. While

a conservative test is not a major problem, the loss of power under the alternative causes

some concern. On the other hand, if δ is chosen too small, relative to the sample size, the

level of the test is actually larger, as the estimated set tends to vary too much. We propose

choosing δ via a semi-parametric bootstrap procedure, searching over a grid of δ with fixed

β until the level in the bootstraped tests is approximately α. We simulate from the model

Yt =

p∑
k=1

θ̂kYt−k + σ̂
( t
T

)
e∗t

where both the AR parameters and the variance function are estimated from the data and

the e∗t are bootstrapped from the centered standardized residuals η̂t/σ̂
∗( t
T

) where σ̂∗ is any

consistent estimator of σ (notice that the unimodal estimator is only consistent everywhere

should H0 be true, and thus should not be used). The test is then run on these simulated

data sets and the best value of δ is chosen (i.e. the one that results in the level being closest

to the nominal level). Simulation results show that the selected value of δ from the bootstrap

procedure is often close to the best value of δ coming from sampling from the true underlying

model.

3 From testing for modality to antimode counting.

Given an initial estimate of the mode in the data, we can perform tests of monotonicity on

either side of it. Our test of monotonicity by design comes with an estimated set [â∗δ,β, b̂
∗
δ,β],

which by construction can be expected to contain a second mode and the corresponding

anti-mode, should they exist. We estimate the maximum and minimum of σ̂2(·) on this
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region. This partitions the interval from the boundary to the mode into three new intervals,

and we can run the test on each of these. We can do this repeatedly until no estimated

set has length exceeding some lower bound η > 0. This method, which exhibits the flavor

of a multi-scale procedure, leads to an estimate of the number of sufficiently pronounced

antimodes in the data, given by the number of rejections in this procedure. Here we call an

antimode of σ2(u) sufficiently pronounced if the corresponding critical set [a∗δ,β, b
∗
δ,β] is long

enough, meaning that it satisfies b∗δ,β − a∗δ,β > η.

The requirement to only consider sufficiently pronounced antimodes is due to the fact that

this lower bound keeps the maximum number of tests we will run finite, which keeps multiple

testing corrections under control.

Discussion of consistency. Let mη denote the number of sufficiently pronounced antimodes

of σ2(·), and m̂η the number of antimodes estimated by applying our test repeatedly with

critical values kn. To see consistency of the antimode counting procedure, we need to show

(i) that with probability tending to 1 our algorithm will find all the critical sets [a∗δ,β, b
∗
δ,β]

with b∗δ,β − a∗δ,β > η; (ii) that we can consistently estimate the local maxima and minima of

σ2(u) for u ∈ [a, b], where [a, b] is an arbitrary given interval with b − a > η; and (iii) that

the power of each individual test tends to one for each individual antimode tested, and the

level tends to zero to avoid wrongly rejecting the null. Thus, we need the critical value to

tend to infinity, but it cannot exceed
√
n supα∈[0,1]

(
α (1− γ)−Ψa,b(α, qγ)

)
in order for the

power to tend to one (see proof of Theorem 2). In other words, if we choose a critical value

kn for our test statistic with kn → ∞ and kn = o(
√
n) then for each of the finitely many

tests that we will have to perform the level tends to 0 and the power tends to 1. For more

details of this see Appendix, section 5.4.

4 Simulations and Applications

4.1 Simulations.

Data was simulated under the null hypothesis using an AR(1) model with φ = .9 and three

different variance functions, the two pictured in figure 2.1 as well as a strictly monotone

function where the modes of the bimodal function shown in figure 2.1 are connected linearly.

Errors were generated from a standard normal distribution. We used β = 0.2, and the

bootstrap procedure generally suggested a value in the neighborhood of δ = .3. Under the
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null hypothesis with a flat set, the empirical level based on 1000 simulations was .049 using

an α = .05. The p-value was calculated using the limiting Brownian Bridge distribution.

Under the strictly monotone null, the level was approximately .02. Under the alternative

hypothesis, the power of the test was .809 in 1000 simulations. Using errors that are t-

distributed with 5 degrees of freedom decreased the power of the test to .646. It is not

surprising that the power decreased some amount with a heavier tailed distribution, though

the results are still promising.

We also considered the full tvAR model, using a first order model with θ(u) being quadratic.

The parameter functions and an example of a simulated example are pictured in figure 4.2.

Using normal errors, the power of the test was estimated to be .832 in 1000 simulations,

insignificantly larger than under the constant AR parameter simulations above. The AR

parameter function was estimated using a local least squares estimator (see Dahlhaus and

Giraitis, 1998) with θ̂(u) coming from a quadratic fit of the local estimates.

Figure 4.1: A simulated data set from AR(1) with normal errors. The variance function used
(solid) and its estimate (dashed) are overlayed. A rug plot of the location of the largest residuals
is also shown.

As our squared residuals are estimates of the quantity σ2( t
T

)ε2t , we might consider looking

at log(η̂2) which is approximating log(σ2( t
T

)) + log(ε2t ), i.e. a regression function plus (mean

zero) white noise. Thus, we might use a test for modality designed for the regression case

after computing the log of the squared residuals. In particular, we consider the method of

Davies and Kovac (2001). For residuals close to zero, taking the log results in outliers in the

data, and thus the multi-resolution criterion struggles. We replace this with a bandwidth,

using their R package ftnonpar (Davies, 2010). We sample under the null hypothesis, using
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Figure 4.2: The AR parameter function (top), the variance function (middle) and a realization of
this model (bottom).

the same process as in the first simulation above, and perform a grid search over bandwidths

to identify the bandwidth that achieves a type I error rate of .05 (so that the method

recognizes that there are no local extrema approximately 95 percent of the time). We then

sample under the alternative, recording the power as the proportion of times the method

recognizes there are (at least) two local extrema, which we calculate to be .386, well below

the results using the proposed method.

Our final simulations explore the behavior of the test under model misspecification. We use

a constant variance function, and an AR(1) model that is a white noise sequence (θ(u) = 0)

except in two intervals where θ(u) smoothly increases up to a height h and back to 0 over

about 10 percent of the total time interval (T=1000). This is followed by identical behavior

h .1 .2 .3 .4 .5 .6 .7 .8 .9
β 0.05 0.05 0.06 0.07 0.10 0.13 0.20 0.30 0.46

Table 1: The type II error probability under a misspecified model of constant AR parameter vs
the maximum of θ(u) on the two intervals where it is not 0.

a short time later (allowing θ to briefly return to 0) to give the impression of an anti-mode

should one näıvely fit a constant AR parameter model. The behavior of the test is given

in table 4.1. Unsurprisingly, the more pronounced these peaks are, the more likely the test
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will conclude the presence of an anti-mode. However, the effect is relatively small even when

h = .5. This is partly due to θ̂ being wrong essentially everywhere, and thus the residuals

are larger than they should be on the white noise segments of the data. The solution is of

course to fit the appropriate model, having time varying autoregressive parameters.

4.2 Applications.

4.2.1 Seismic Data and reflection waves We consider testing for modality of a

seismic time series. Seismograms generated by earthquakes are known to include a reflection

(pP-)wave that follows the primary (P-)wave, arriving at a delay due to the depth of the

event. Shumway et al. (2004) proposed estimation for the time delay which can be used

to estimate the depth of the event, as well as possibly give some information towards the

type of event, as shallow explosions should not exhibit such a reflection wave. Consider the

filtered seismogram shown in figure 4.3, generated by an earthquake in northern Chile. For

more information about the time series, see Shumway et al. (2004). We are interested in

testing if the estimated pP-wave is in fact a second mode from the P-wave.

Figure 4.3: Seismic reading of an earthquake centered in northern Chile.

Selecting observation 184 as the primary mode (the maximum of the absolute series), a

decreasing estimate of the variance was fit to the squared residuals from the estimated mode

on using isotonic regression. The boostrap procedure suggested δ = .125. The resulting set

before trimming extended from time points 204 to 795, i.e. from just after the first mode to

beyond the mode caused by the arrival of the pP-wave. Again using β = .2, the resulting

set was the interval [293, 706], which contains the antimode as hoped. The test statistic

was 3.33, with a corresponding p-value of 2 ∗ 10−10 based on the limiting distribution. Thus,
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the method correctly identifies the second mode resulting from the reflection of the p-wave.

As such, we would suspect the origin of the event was an earthquake, rather than a shallow

explosion, nuclear or otherwise.

4.2.2 Footstep Counting Our second application regards the problem of tracking ele-

phants via geo-phones. Wood et. al. (2005) were interested in tracking the size of elephant

populations in forested areas of their habitat where aerial surveillance is not possible.

Figure 4.4: A geo-phone recording of an elephant’s footfall (top) and the estimated time-dependent
variance function (bottom) assuming unimodality.

In order to differentiate between single elephants and small groups of elephants, one possible

solution is to attempt to count the number of footsteps in a certain time frame. We can

model footsteps using an autoregression with unimodal variance function. An example of a

single footfall is provided in figure 4.4. Figure 4.5 is a recording taken from a geo-phone of

Figure 4.5: A geo-phone recording of footsteps from two elephant bulls.

seismic vibrations created by the footsteps of two elephant bulls (n=758). An AR(1) model
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is used, with φ̂ = .9975, and the mode is chosen to be at observation 186. The bootstrap

procedure suggests δ = 1. The set on which the test was run, using β = .2, was [255, 437],

which graphically matches the apparent anti-mode in the data. The resulting test statistic

is 2.65, with corresponding p-value 7 ∗ 10−7, thus confirming the presence of two footsteps in

the given window, corresponding to the fact that there were two elephant bulls passing the

geo-phone array.

4.2.3 Peak picking and beat detection We consider the problem of finding individ-

ual drum hit events in an audio recording, a problem that is related to both tempo estimation

and onset detection. Here, we consider the problem of automatically transcribing a single

measure of isolated drums, commonly referred to as a ‘drum break’. The repetitive looping

of these drum breaks are ubiquitous in modern popular music, especially the genre of rap.

In the example below, we consider the first measure of the drum break of the song ‘Amen

Brother’ by the band The Winstons. The notated drum pattern is shown in Figure 4.6,

with the sound recording pictured in Figure 4.7 (T=4796). Grid lines are added according

to where the events occur as stated in the notated drum pattern, though there is some vari-

ability as to when the actual event occurs. In this particular example, we have additional

information regarding the possible location of modes. Should they exist, they should fall

roughly on 16th notes. Exploiting this information, we apply our method repeatedly over

dyadic subsets of the data, half notes, quarter notes, eighth notes, and sixteenth notes. We

assume a model of the form

Yt;T = θ(
t

T
)Yt−1;T + σ(

t

T
)εt,T

and θ is estimated by a windowed estimate that is then smoothed via a normal kernel (we

might also assume that θ is piecewise constant for such data). The squared residuals are

then calculated based on this estimate.

Figure 4.6: Notation for measure one of the ‘Amen Brother’ break. The top notes represent the
ride cymbal, the middle notes correspond to the snare drum, and the bottom notes to the bass
drum.

We mention only a selection of the results of the iterative procedure for brevity. On the first
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Figure 4.7: Data for measure one of the ‘Amen’ break. Grid lines correspond to the notated
pattern.

eighth note segment of the measure, we calculate a p-value of .14, leading us to conclude

there is no drum hit between the first and second eighth notes, consistent with the notation.

Similarly, with the second eighth note, a p-value of .433, and the third, a p-value of .299 is

found, again suggesting the lack of a drum being played between these eighth notes. Testing

whether there is in fact a hit on the 4th eighth note, which may be questionable based on

a visual inspection of the series, the resulting p-value is .019. This was based on testing

the interval that ran from the 3rd eighth note to a sixteenth note past the 4th eighth note.

Similarly, the test detects the presence of the snare drum being played on the sixteenth note

following the 4th eighth note.

5 Appendix

5.1 Assumptions

First we formulate the assumptions underlying our results. For a function h : [a, b]→ R we

denote

‖h‖∞ := sup
u∈[a,b]

|h(u)| and ‖h‖2
n :=

1

n

∑
t∈[aT,bT ]

h2
(
t
T

)
.

Let H denote a class of functions defined on [a, b]. For a given δ > 0, a δ-bracket in H with

respect to ‖ ·‖n is of the form Bk = [g, g] := {h ∈ H : g ≤ h ≤ g} for pairs of functions g ≤ g
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with ‖g − g‖n ≤ δ. Then the minimal number N = NB(δ,H) of brackets B1, . . .BN with

H ⊂
⋃N
k=1 Bk is called a bracketing covering number, and logNB(δ, H) is called the metric

entropy with bracketing of H with respect to ‖ · ‖n.

Assumptions. (i) The process Yt = Yt,T has an MA-type representation

Yt,T =
∞∑
j=0

at,T (j)εt−j

where εt ∼i.i.d. (0, 1). The distribution F of εt has a strictly positive Lipschitz continuous

Lebesgue density f. The function σ(u) in (1) is Lipschitz continuous with 0 < m∗ < σ(u) ≤
σ(m) = m∗ <∞ for all u ∈ [0, 1] and a unique global maximum m ∈ [0, 1].

(ii) The coefficients at,T (·) of the MA-type representation of Yt,T given in (i) satisfy

sup
1≤t≤T

|at,T (j)| ≤ K

`(j)

for some K > 0, and where for some κ > 0 we have `(j) = j (log j)1+κ for j > 1 and `(j) = 1

for j = 0, 1.

(iii) There exists a class G with

θ̂n,k(·)− θk(·) ∈ G, k = 1, . . . , p,

such that supg∈G ‖g‖∞ <∞ and for some γ ∈ [0, 1) and C, c > 0 and for all δ > 0

logNB(δ,G) ≤

C δ−γ, for c
n
< γ < 1

C log
(
δ−1
)
, for γ = 0.

(iv) For k = 1, . . . , p we have 1
T

∑T
t=1

(
θ̂n,k(

t
T

) − θk(
t
T

)
)2

= OP (m−1
n ) as T → ∞ with

n1/2

m2
n logn

= o(1).

We refer to Chandler and Polonik (2012) for a discussion of these assumptions. Here we only

mention that the wavelet estimators θ̂n of Dahlhaus et al. (1999) satsify conditions (iii) and

(iv). (See Chandler and Polonik, 2010 for more details.)

A crucial ingredient into the proofs of our results is the following theorem that is proven (for

[a, b] = [0, 1]) in Chandler and Polonik (2012). Their proof directly translates to the case

[a, b] ⊂ [0, 1].
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Theorem A (Chandler and Polonik, 2010). Let γ ∈ [0, 1] and suppose that 0 ≤ a < b ≤ 1

are non-random. Assume further that E|ε|k < Ck for some C > 0 and all k = 1, 2, . . . Then,

under assumptions (i) - (iv), with n1/2

m2
n logn

= o(1) we have

√
n sup
α∈[0,1]

∣∣ Ĝn,γ(α)−Gn,γ(α) + c(α)
(
Gn,γ(1)− EGn,γ(1)

) ∣∣ = op(1), (8)

where c(α) =

∫ a+α(b−a)

a

[
fu(qγ)) + fu(−qγ)

]
du∫ b

a

[
fu(qγ) + fu(−qγ)

]
du

, ]

and fu(x) = 1
σ(u)

f
(

x
σ(u)

)
. Under the null-hypothesis σ(u) ≡ σ0 > 0 for u ∈ [a, b] we have

c(α) = α. Moreover, in case the AR-parameter in model (1) are constant, and
√
n-consistent

estimators are used, then the moment assumptions on the innovations can be significantly

relaxed to E ε 2
t <∞.

5.2 Proofs

5.2.1 Sketch of the proof of Theorem 1 First we consider that case of [a, b] and

m being known. The above theorem from Chandler and Polonik (2012) says that under

certain assumptions, Ĝn,γ(α) can be approximated well by a sum of independent random

variables, Gn,γ(α) plus a correction term −c(α)
(
Gn,γ(1) − EGn,γ(1)

)
that in fact accounts

for the estimation of qγ. Thus, under the null hypothesis of a constant variance function (on

[a, b]), we obtain that the process
√

n
γ(1−γ)

(
Ĝn,γ(α)− γα

)
has the same asymptotic behavior

as
√

n
γ(1−γ)

(
Gn,γ(α)− γα − α (Gn,γ(1)− γ)

)
. And under H0 the latter obviously converges

to a standard Brownian Bridge. This implies the asserted asymptotic distribution.

First notice that the estimation of the set is not influenced by the consistent estimation of

m since by assumption the mode is unique and thus the mode does not lie in the theoretical

optimal set [a, b], and since by assumption P ([â, b̂] ⊂ [a, b])→ 1, the estimation of the mode

does not have an effect asymptotically.

To see that we can use a consistent estimator [â, b̂] instead of [a, b], first notice the obvious

fact that n, qγ, q̂γ and the parametrization itself, used in the definition of Ĝn,γ(α), all

depend on the interval used in the definition. In order to make this more clear, we denote by

Ĝn,γ(α; [c, d]) the quantity defined as Ĝn,γ(α) but with [a, b] replaced by [c, d] ⊂ [0, 1], and

let Ψc,d(α, z) = α−Ψc,d(α, z). Define

Znc,d,γ(α; [c, d]) =
√
n
[
Gn,γ(α; [c, d])−Ψc,d(α, qγ;c,d)−cc,d(α)

(
Gnc,d,γ(1; [c, d])−Ψc,d(1, qγ;c,d)

) ]
,

23



where nc,d denotes the number of observations in [c, d], qγ;c,d and cc,d(α) are defined as

qγ and c(α) (cf. (4) and in Theorem A, respectively), but with [a, b] replaced by [c, d].

To ease the notation we write n̂ = nba,bb and ĉ(α) = cba,bb(α). We now indicate that

max{ |â − a|, |̂b − b| } = oP (1) for some estimate [â, b̂] with P ([̂b, b̂] ⊂ [a, b]) → 1 implies

that we have

sup
α∈[0,1]

∣∣√n (Ĝbn,γ(α; [â, b̂])−Ψba,bb(α, qγ;ba,bb))− Zbn,γ(α; [â, b̂])
∣∣ = oP (1), (9)

and that

sup
α∈[0,1]

|Zbn,γ(α; [â, b̂])− Zn,γ(α; [a, b])| = oP (1). (10)

These two approximations implies the desired result by noticing that for any set [c, d] ⊂ [a, b]

(whether random or not) we have under the null hypothesis σ2(u) ≡ c for u ∈ [a, b] that

Ψc,d(α, z) = α − Ψc,d(α, z) = α(1 − γ) and cc,d(α) = α. The proof of (9) follows similar

ideas as the proof of Theorem A (see Chandler and Polonik, 2012), and (10) follows from

asymptotic equicontinuity of the Kiefer-Müller-type process

νn(α, z) =
1√
n

bαnc∑
s=1

[
1
{
σ(a+ s

T
) εt ≤ z

}
− P

{
σ(a+ s

T
) εt ≤ z

} ]
, (11)

by using the fact that |qγ;ba,bb−qγ;a,b| = oP (1). The latter follows easily by observing that under

our assumptions Ψa,b(1, z) is continuous in a and b, uniformly over z, and that γ → Ψ−1
a,b(1, γ)

is continuous. The fact that under our assumption the equicontinuity of (11) holds follows

from empirical process theorem. (For instance, it is a special case of Lemma 1 in Chandler

and Polonik (2012).)

5.2.2 Proof of Theorem 2 Let n = nc,d and n̂ = n̂ba,bb denote the numbers of observa-

tions in [c, d] and [â, b̂], respectively. Let further Ψ(α, qγ) = Ψc,d(α, qγ).

Properties (9) and (10) say that
√
n̂
(
Ĝbn,γ(α; [â, b̂])− γα

)
has the same asymptotic behavior

as
√
n
(
Gn,γ(α; [c, d])− γα− α (Gn,γ(1; [c, d])− γ)

)
. We have

EGn,γ(α; [c, d]) =
1

n

ddT e+bαnc−1∑
t=dcT e

P
(
ε2t ≥

q2γ
σ2( t

T
)

)
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= α− 1

n

ddT e+bαnc−1∑
t=dcT e

[
F
( qγ
σ( t
T

)

)
− F

( −qγ
σ( t
T

)

) ]
+O

(
1
n

)
= α−Ψ(α, qγ) +O

(
1
n

)
,

where the O( 1
n
)-term comes from the fact that by our assumptions u → F

( qγ
σ(u)

)
− F

(−qγ
σ(u)

)
is of bounded variation. Thus we can write

√
n
(
Gn,γ(α)− γα− α (Gn,γ(1)− γ)

)
=
√
n
(
Gn,γ(α)− EGn,γ(α)− α (Gn,γ(1)− γ)

)
−
√
n
(
Ψ(α, qγ)− α(1− γ)

)
+O

(
1
n

)
.

The fact that under model (1) we have

sup
α∈[0,1]

∣∣√n(Gn,γ(α)− EGn,γ(α)− α (Gn,γ(1)− γ)
) ∣∣ = OP (1)

follows from the fact that the process
√
n
(
Gn,γ(α)−EGn,γ(α)− α (Gn,γ(1)− γ)

)
converges

weakly (in the sense of Hoffmann-Jørgensen) to a Gaussian process D(α) with mean zero and

covariance Cov(D(α), D(β)) =
(
α∧β−Ψ(α∧β, qγ)

)
−
(
α−Ψ(α, qγ)

)
(β−Ψ(β, qγ)

)
. This weak

convergence follows from asymptotic stochastic equicontinuity of the process (which in turn

follows from Lemma 1 of Chandler and Polonik, 2010) together with the asymptotic normality

of the finite dimensional distributions which follows from a straightforward application of

Lindeberg-Feller CLT coupled with the Cramer-Wold-device. Thus, if supα∈[0,1] |Ψ(α, qγ)−
α(1 − γ) | 6= 0 then the above implies that supα∈[0,1] |

√
n
(
Gn,γ(α) − γα − α (Gn,γ(1) − γ)

)
|

is not stochastically bounded, and the assertion follows by utilizing (9).

5.2.3 proof of Lemma 1. We first replace (A1) and (A2) by the stronger assumptions

(A1)′ supu∈[0,1]

∣∣Σ̂(u)− Σ(u)
∣∣ = o(1) a.s.

(A2)′ |m̂−m| = o(1) a.s.

Under these stronger assumptions we first show strong consistency of the set estimate. Then

we utilize this result together with a well-known characterization of convergence in proba-

bility via the almost sure convergence of sub-subsequences to obtain the desired result.

We first show that
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∣∣ sup
λ≥0

∆̂ bm(δ;λ)− sup
λ≥0

∆m(δ;λ)
∣∣ = o(1) a.s. (12)

To this end, observe that

Ĥbm,λ(u) = Hm,λ(u) + Σ̂∗bm(u)− Σ∗m(u).

Further, because taking the greatest convex minorant (and also the least concave majo-

rant) is a contraction with respect to the supremum-norm, assumption (A1)′ implies that

‖Σ̂∗bm(·)− Σ∗bm(·)‖∞ ≤ ‖Σ̂(·)− Σ(·)‖∞ = o(1) a.s.. This, together with assumption (A3) now

implies that ‖Σ̂∗bm − Σ∗m‖∞ = o(1) a.s., and thus we have

D̂n = sup
λ>0

sup
u∈[0,1]

|Ĥbm,λ(u)−Hm,λ(u)| = o(1) a.s. (13)

Write

∆̂ bm(δ;λ) = sup
[c,d]⊂[0,bm]

{
|c− d| : −Hm,λ(c, t) ≤ δ + Ĥbm(c, t)−Hm(c, t)

and Hm,λ(t, d) ≤ δ + Ĥbm(t, d)−Hm(t, d); for all t ∈ [c, d]
}

and a similar rewriting can be done for ∆ bm(δ;λ). Consequently, we have for each ω ∈ A and

for n sufficiently large (such that δ − 2 ‖Σ̂∗bm − Σ∗m‖∞ ≥ 0), that

∆ bm(δ − 2Dn;λ) ≤ ∆̂ bm(δ;λ) ≤ ∆ bm(δ + 2Dn;λ). (14)

Assumption (A3) and the assumed consistency of m̂ now imply (12).

Now let A denote the event of probability 1 on which (A1)′ and (A2)′ hold. Let further λ̂∗δ
be such that ∆̂ bm(δ; λ̂∗δ) = supλ≥0 ∆̂ bm(δ;λ) and let [â∗δ , b̂

∗
δ ] be the corresponding maximizing

set, i.e. by definition of ∆̂ bm(δ;λ) we have

∆̂ bm(δ; λ̂∗δ) = |â∗δ − b̂∗δ| (15)
and

−Ĥbm,bλ∗δ (â∗δ , t) ≤ δ for all t ∈ [â∗δ , b̂
∗
δ ]; (16)

Ĥbm,bλ∗δ (t, b̂∗δ) ≤ δ for all t ∈ [â∗δ , b̂
∗
δ ]. (17)
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We will show below, that for ω ∈ A fixed, there exists L > 0 such that λ̂∗ ≤ L for n ≥
n0. Thus, we can assume that {(λ̂∗δ , â∗δ , b̂∗δ)}n ∈ [0, L] × [0, 1]2, and since [0, L] × [0, 1]2 is

compact, we can assume that {(λ̂∗δ , â∗δ , b̂∗δ)}n converges. (Otherwise we have to work with

subsequences.) Let (λ̃δ, ãδ, b̃δ) denote the corresponding limit.

It follows from (13) and (15) - (17) that |ãδ− b̃δ| = |a∗δ−b∗δ|, and that −Hm,eλ(ãδ, t) ≤ δ for all

t ∈ [ãδ, b̃δ], and Hm,eλ(t, b̃δ) ≤ δ for all t ∈ [ãδ, b̃δ]. The uniqueness assumption (A4) implies

that [ãδ, b̃δ] = [cλ∗δ , dλ∗δ ]. This implies almost sure consistency of [â∗δ , b̂
∗
δ ] as an estimator for

[a∗δ , b
∗
δ ].

The existence of an upper bound for λ̂∗ can be seen as follows. By assumption, σ2(·) is

bounded, and thus for λ > M∗ = maxu∈[0,1] σ
2(u) we have −Hm,λ(c, d) ≥ (λ−M∗)|c−d| ≥ 0.

Consequently, we have −Hm,λ(c, d) ≤ δ only if |c − d| ≤ δ/(λ −M∗). This implies that the

length of the optimal interval in the definition of ∆m(δ;λ) tends to zero as λ→∞. Utilizing

(12) we can find an L such that for n sufficiently large, the largest empirical optimal interval

is attained at a level λ < L. This completes the proof for the strong consistency under the

assumption (A1)′.

The proof of weak consistency utilizes the well know fact that Xn = oP (1) iff every

subsequence of Xn has a further subsequence that converges a.s. Consider the sequence

(λ̂∗δ , â
∗
δ , b̂
∗
δ) and pick a subsequence (n′) ⊂ (n). This provides a corresponding subsequences

Zn′ = supu∈[0,1] |Σ̂(u) − Σ(u)| and Wn′ = |m̂ − m|. Since Zn = oP (1) and Wn = oP (1),

there exists a further subsequence (n′′) such that both {Zn′′} and {Wn′′} converge to zero

almost surely. Then, utilizing the above proof we can conclude that the sub-subsequence of

{(λ̂∗δ , â∗δ , b̂∗δ)}n′′ converges a.s. to (λ∗δ , a
∗
δ , b
∗
δ). For any sub-subsequnce this is the same limit,

and thus we know that every subsequence of {(λ̂∗δ , â∗δ , b̂∗δ)} has a further subsequence that

converges a.s. to (λ∗δ , a
∗
δ , b
∗
δ). By the above fact this means that (λ̂∗δ , â

∗
δ , b̂
∗
δ) converges in

probability to (λ∗δ , a
∗
δ , b
∗
δ).

5.2.4 Proof of Fact 1. We have

Σ̂
(
k
T

)
− Σ

(
k
T

)
=

1

T

k∑
t=1

[ (
Yt − θ̂n( t

T
)′Yt−1

)2 −
(
Yt − θ( t

T
)′Yt−1

)2
]

= − 2

T

k∑
t=1

(
θ̂n( t

T
)− θ( t

T
)
)′
Yt−1 σ( t

T
)εt +

1

T

k∑
t=1

( (
θ̂n( t

T
)− θ( t

T
)
)′
Yt−1

) 2

.

Consequently,
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E sup
1≤k≤T

∣∣Σ̂( k
T

)
− Σ

(
k
T

) ∣∣
≤ E

2

T

T∑
t=1

∣∣∣ (θ̂n( t
T

)− θ( t
T

)
)′
Yt−1 σ( t

T
)εt

∣∣∣+ E
1

T

T∑
t=1

( (
θ̂n( t

T
)− θ( t

T
)
)′
Yt−1

) 2

. (18)

It will become clear from the below that these expectations exist. The proof is complete if

we have shown that the two expectations in the last line converge to zero as n → ∞. By

utilizing the Cauchy-Schwarz inequality we have

E
1

T

T∑
t=1

∣∣∣ (θ̂n( t
T

)− θ( t
T

)
)′
Yt−1 σ( t

T
)εt

∣∣∣
≤

p∑
j=1

E


√√√√ 1

T

T∑
t=1

(
θ̂n,j(

t−j
T

)− θj( t−jT )
)2

√√√√ 1

T

T∑
t=1

Y 2
t−j σ

2( t
T

)ε 2
t


≤

p∑
j=1

√√√√E
( 1

T

T∑
t=1

(
θ̂n,j(

t−j
T

)− θj( t−jT )
)2
) √√√√E

( 1

T

T∑
t=1

Y 2
t−j σ

2( t
T

)ε 2
t

)

≤ m∗
p∑
j=1

√√√√E
( 1

T

T∑
t=1

(
θ̂n,j(

t−j
T

)− θj( t−jT )
)2
) √

sup
−p≤t≤T

EY 2
t .

Assumptions (i) and (ii) imply that sup−p≤t≤T EY 2
t < ∞ (cf. Chandler and Polonik, 2010,

proof of (22)). Since further 1
T

∑T
t=1

(
θ̂n,j(

t−j
T

)− θj( t−jT )
)2

is bounded and converges to zero

stochastically (cf. assumptions (iii) and (iv)), it follows that the first expectation in (18)

converges to 0 as n → ∞. The second expectation in (18) can be treated similarly by the

following crude estimation. We have

1

T

T∑
t=1

[ (
θ( t

T
)− θ̂n( t

T
)
)′
Yt−1

)] 2

=

p∑
j=1

p∑
k=1

1

T

T∑
t=1

(θk(
t−k
T

)− θ̂n,k( t−kT )) (θj(
t−j
T

)− θ̂n,j( t−jT ))Yt−jYt−k

≤ 2

p∑
j=1

p∑
k=1

√√√√ 1

T

T∑
t=1

(θk(
t−k
T

)− θ̂n,k( t−kT )) 2 (θj(
t−j
T

)− θ̂n,j( t−jT )) 2

√√√√ 1

T

T∑
t=1

Y 2
t−kY

2
t−j
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and thus by another application of the Cauchy-Schwarz inequality we obtain

E
1

T

T∑
t=1

[ (
θ( t

T
)− θ̂( t

T
)
)′
Yt−1

)] 2

≤ 2

p∑
j=1

p∑
k=1

√√√√E
1

T

T∑
t=1

(θk(
t−k
T

)− θ̂n,k( t−kT ))2 (θj(
t−j
T

)− θ̂n,j( t−jT )) 2

√√√√E
1

T

T∑
t=1

Y 2
t−kY

2
t−j

≤ 2 pC

p∑
k=1

√
E‖θk − θ̂n,k‖n

√
sup

1≤s,t≤T
E(Y 2

t Y
2
s ).

Here we again used the fact that by assumption θk(·)− θ̂k(·) is bounded. Also the quantity

sup1≤s,t≤T E(Y 2
t Y

2
s ) is bounded (cf. proof of Var

(
1
n

∑n
t=1 Y

2
t

)
= o(1) given in Chandler and

Polonik, 2010). Since ‖θk − θ̂n,k‖n = oP (1) for all 1 ≤ k ≤ p (and since each of these

quantities also is bounded), the assertion follows.

5.2.5 Proof of Lemma 2. Consider λ ≥ 0 and let λ̃ be closest to λ among the levels

L = {µ ≥ 0 : |T (µ)| > 0}. If λ ∈ L, then obviously T (λ) ⊂ [cλ(δ), dλ(δ)]. However, λ does

not need to be in L for [cλ(δ), dλ(δ)] to contain a flat set. We only need λ to be close enough

to L in the following sense. Let T (λ) = {t(λ)} (since λ /∈ L the set T (λ) consists only of one

point). If λ < λ̃ and we have
∫ t1(eλ)

t(λ)
(σ∗2(u)−λ)du ≤ δ, then we have T (λ̃) ⊂ [cλ(δ), dλ(δ)]. To

see this, we only have to observe that T (λ̃) ⊂ [t(λ), t1(λ̃)] and use the definition of ∆m(δ;λ).

For λ > λ̃ a similar condition, where we integrate from t0(λ̃) to t(λ), is sufficient. These

conditions hold for λ close enough to λ̃, because t(λ) → t0(λ̃) as λ → λ̃ and σ̃2(u) = λ̃ on

T (λ̃) = [t0(λ̃), t1(λ̃)] by definition of T (λ̃). For λ not close enough to L (in the sense just

described), the length of [cλ(δ), dλ(δ)] tends to zero as δ tends to zero. The assertion follows.

5.3 Consistency of mode estimator discussed in section 2.3.1.

Suppose that σ̂2(u) is such that

sup
u∈[h,1−h]

|σ̂2(u)− σ2(u)| = oP (1).

(See Dahlhaus and Polonik (2009) for an estimator and conditions under which this holds.)

Let m = arg maxu∈[0,1] σ
2(u) be the unique maximizer of σ2(u) with m ∈ (0, 1), and define

m̂ = arg maxu∈[h,1−h] σ̂
2(u). Since σ2(u) is continuous (in a neighborhood of m) there exists

a δ > 0 such that m ∈ [δ, 1− δ] ⊂ [h, 1− h] for n sufficiently large. For such n we have
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|σ̂2(m̂)− σ2(m)| = | sup
u∈[h,1−h]

σ̂2(u)− sup
u∈[h,1−h]

σ2(u)| ≤ sup
u∈[h,1−h]

|σ̂2(u)− σ2(u)| = oP (1).

We obtain that

|σ2(m̂)− σ2(m)| ≤ |σ̂2(m̂)− σ2(m)|+ |σ̂2(m̂)− σ2(m̂)|

≤
n sufficiently large

|σ̂2(m̂)− σ2(m)|+ sup
u∈[h,1−h]

|σ̂2(u)− σ2(u)| = oP (1).

Using the uniqueness of the mode together with the continuity of σ2(·) at m it is straight-

forward to conclude that this implies |m̂−m| = oP (1) as n→∞.

5.4 Consistency of antimode counting methodology discussed in section 3.

Recall that the sets [a∗δ,β, b
∗
δ,β] correspond to sufficiently pronounced antimodes of σ2(·), i.e.

the sets satisfy b∗δ,β − a∗δ,β > η for some pre-specified η > 0. First we indicate that under

appropriate conditions all the set estimates of the sets [a∗δ,β, b
∗
δ,β] used in our algorithm are

consistent. To see this we need to generalize Lemma 1 to include the case of the GCM/LCM

being applied on an estimated set [â, b̂] (rather than [0, 1]). To this end consider the function

Σa,b(u) =
∫ u
a
σ2(v)dv, u ∈ [a, b] on a set [a, b] and denote by Σ∗m;a,b its GCM/LCM with m

being the mode of σ2(u) on [a, b]. Replace assumption (A3) by the stronger assumption

(Ã3) (δ,m, c, d) → supλ≥0 ∆m;c,d(δ;λ) is continuous in (0, δ0] × (0, 1] × {(c, d) : d − c ≥ 0}
with respect to sup-norm.

With this stronger assumption the lines of arguments of the proof of Lemma 1 can be followed

(and appropriately modified) to result in consistency of each of the (finitely many) sets

[a∗δ,β, b
∗
δ,β] corresponding to sufficiently pronounced antimodes. The fact that this estimation

is performed iteratively does not have an impact asymptotically, since there will be only

finitely many iterations.

Our algorithm also involves the estimation of maxima and minima of σ2(u), and consistency

of these estimates is needed for consistently estimating the critical sets to run our tests for

monotonicity. The fact that all these estimates of local extrema are consistent follows from

uniform consistency of σ̂2(u) as an estimator of σ2(u). This is discussed in section 5.3. (One

such uniformly consistent estimator is the one from Dahlhaus and Polonik (2009).)
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