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Abstract We introduce a weighted method of clustering the individual
units of a segmented image. Specifically, we analyze geologic maps gener-
ated from experts’ analysis of remote sensing images, and provide geologists
with a powerful method to numerically test the consistency of a mapping
with the entire multi-dimensional dataset of that region. Our weighted
model-based clustering method (WMBC) employs a weighted likelihood
and assigns fixed weights to each unit corresponding to the number of pixels
located within the unit. WMBC characterizes each unit by the means and
standard deviations of the pixels within that unit and uses the Expectation-
Maximization (EM) algorithm with a weighted likelihood function to clus-
ter the units. With both simulated and real data sets, we show that WMBC
is more accurate than standard model-based clustering. Specifically, we an-
alyze Magellan data from a large, geologically complex region of Venus to
validate the mapping efforts of planetary geologists.
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1 Introduction

As advancements in technology increase our ability to collect massive data
sets, statisticians are in constant pursuit of efficient and effective meth-
ods to analyze large amounts of information. There is no better example
of this than in the study of multi- and hyperspectral images that com-
monly contain millions of pixels. Powerful clustering methods that auto-
matically classify pixels are in high-demand in the scientific community.
Image analysis via clustering has been used successfully with problems
in a variety of fields, including tissue classification in biomedical images,
unsupervised texture image segmentation, analysis of images from molecu-
lar spectroscopy, and detection of surface defects in manufactured products
(see [1] for more references). Model-based clustering [2,3] has demonstrated
very good performance in image analysis [4,5]. Model-based clustering uses
the Expectation-Maximization (EM) algorithm to fit a mixture of multi-
variate normal distributions to a data set by maximum likelihood estima-
tion.

In this paper, we present a novel method to numerically perform clas-
sification in the case where manual partitioning of the image has been per-
formed prior to attempts to classify each resulting partition. This situation
often arises in the analysis of remote sensing data' where geologic maps?,
divisions of regions of land into units, are created by geologists based on
analysis of radar and physical property images (see [6]). The particular
data set we will analyze in this paper is the Ganiki Planitia (V14) quad-
rangle, a large section of Venus covering about 750,000 square km that was
retreived by the Magellan Spacecraft in the early 1990s. These data con-
sist of 130,000,000 synthetic aperture radar (SAR) pixels with 75m/pixel
resolution and courser resolution physical property data of surface reflec-
tivity, emissivity, elevation, and RMS slope. Prior to our work, a group of
planetary geologists has spent months carefully using standard qualitative
planetary mapping techniques to divide the region into 200 units [7].

In this and other planetary geology data sets, although the regions are
already subdivided into disjoint material units, our goal as statisticians
is to allocate the units into disjoint clusters defined by the quantitative
pixel measurements. Clustering geologic units using the numeric pixel val-
ues permits us to quantitatively evaluate the (usually qualitative) work
performed by the geologists and gives geologists a powerful method to nu-
merically validate their work, compare different geologic maps of the same
region, and test the consistency of the defined material units with respect
to the entire available multi-dimensional dataset. A geologic map is meant
to convey the mapmaker’s interpretation of the region depicted. If multiple
geologists map the same area and then compare their results, it is likely
that some percentage of their boundaries and unit definitions will be very
closely matched, while other areas will bear little resemblance from one
map to the next. To improve the mapping process and enhance what can
be learned from the maps that are generated, it is necessary to develop

1 Image data for many different planets can be accessed at the USGS site Map-a-
Planet, http://www.mapaplanet.org/. Raw versions of the data in standard PDS (Plan-
etary Data System) format can be found at http://pds.jpl.nasa.gov/.

2 Map unit data can be located at http://astrogeology.usgs.gov/Projects/PlanetaryMapping/
or at http://webgis.wr.usgs.gov/.



new approaches that can be used to evaluate whether material units, de-
fined qualitatively on the basis of geological criteria within a given region,
also have robust, self-similar quantitative properties that can be used to
characterize the nature of the surface more completely. This is particularly
critical for maps generated on the basis of radar data interpretation, as
the quantitative properties recorded by the data depend strongly upon the
sub-pixel scale physical characteristics of the planet’s surface.

The thesis of our paper is that by using the means and standard devia-
tions of the pixel values within each unit of a segmented image, one obtains
accurate clustering results from a model-based clustering likelihood that
weights each unit by the number of pixels contained within the unit. Us-
ing the means and standard deviations of the pixel values simultaneously
reduces the size of our data set (from millions of pixels to a few hundreds
of units) while preserving crucial information about the central tendencies
and variability of the pixels in a unit. Geologically, this combination can
yield important quantitative insight into the properties of the surface. For
instance, in topography data a smooth, flat plains unit and a highly de-
formed unit may lie at the same mean elevation, but the high standard
deviation for the deformed unit provides a quantitative way to assess the
amount and pervasiveness of deformation which has occurred. Similarly, in
backscatter data a uniform, flat plains unit formed during regional flooding
by lavas may share a mean value with a heavily mottled plains unit formed
by overlapping deposits erupted from thousands of small volcanoes, but the
two will have distinct variances.

We weight each geologic unit based on the number of pixels contained
in the unit because units with few pixels will have highly variable pixel
means and standard deviations due to pixel-level noise. Large units, on the
other hand, will have sample means and variances that are less influenced
by pixel-level noise and hence are closer to the true physical values. The
standard, non-weighted technique ignores the tendency of larger units to
have sample statistics that more accurately approximate the true, under-
lying values. In this paper, we show that our weighted clustering method
highly outperforms the non-weighted method and generally yields better
results than a technique that downweights observations based on large dis-
tances. We also apply our techniques to the V14 quadrangle of Venus to
show that they can be used with large, complex data sets to yield results
that are useful for geologists.

In Section 2, we briefly describe model-based clustering and the weighted
likelihood function and integrate the two into a weighted model-based clus-
tering method. In Section 3, we design and perform simulations to compare
our weighted model-based clustering technique to other model-based clus-
tering techniques in a variety of situations. In Section 4, we apply our
technique to the V14 quadrangle. Finally, we conclude with a few com-
ments in Section 5, and analyze the results from the application of our
techniques to the Venus data set.

2 Weighted Model-Based Clustering (WMBC)

In standard model-based clustering, multivariate observations (x1,...,X;)
are assumed to come from a mixture of G multivariate normal distributions



with density
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where G is the number of clusters, the 7;’s are the strictly-positive mixing
proportions of the model that sum to unity and ¢(x|p,X) denotes the
multivariate normal density with mean vector p and covariance matrix X
evaluated at x. In this paper, each multivariate observation is a vector of
pixel means and standard deviations of multiple data layers.

The general framework for the geometric constraints across clusters was
proposed by Banfield and Raftery [2] through the eigenvalue decomposition
of the covariance matrix in the form

¥, = MDAy DY, (2)

where Dy, is an orthogonal matrix of eigenvectors, Ay, is a diagonal matrix
whose entries are proportional to the eigenvalues, and A is a constant that
describes the volume of cluster k. These parameters are treated as indepen-
dent and can either be constrained to be the same for all clusters or allowed
to vary across clusters. For example, the model 3 = )\kaADkT (denoted
VEV) assumes varying volumes, equal shapes, and varying orientations for
each cluster. The completely unconstrained model is denoted VVV. For a
thorough discussion of these and other models and the MLE derivation for
3, see [8].

Starting with some initial partition of the n units into G clusters, we
use the Expectation-Maximization (EM) algorithm [9,10] to update our
partition such that the parameter estimates of the clusters maximize the
mixture likelihood. The EM algorithm iterates between an M-step and an
E-step. The M-step calculates the cluster parameters g, 3 and 7 using the
maximum likelihood estimates (MLEs) of the complete-data loglikelihood,

n
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based on the current value of Z;, the probability that unit ¢ belongs to
cluster k, which is computed in the previous E-step. The MLEs of our
cluster parameters are

ﬁ _ Z?:l %\ikxi

k Z?:l /Z\ik ’
n ~

T = Zi:l Zlk, (5)

n

(4)

and a model-dependent estimate of s [8]. For example, in the VEV model
X = )\kaADkT, if we define

Wi = Zij(xi — fir) (xi — i) " (6)
1=1



and take the eigenvalue decomposition of Wy, Wy = LkaLg, then the

MLE for the k' covariance matrix is f)k = Xkﬁkgﬁ,{, where each com-
ponent is found by iteratively solving
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where d is the dimensionality of each data point x;.
The E-step calculates the conditional probability that a unit x; comes
from the k** cluster using the equation
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based on the current cluster parameters. The M-E iteration continues until
the value of the loglikelihood function converges. Under mild conditions,
the EM algorithm is guaranteed to converge to a local maximum of the log
likelihood, (3). See [11] for a discussion of the convergence properties of the
algorithm.

In standard model-based clustering (SMBC) described above, each data
point is given equal importance in the model. However, there are situations
in which some data points are more accurately measured than others, and
therefore deserve higher weight in the model. For example, in segmented
pixelated image data, those units with more pixels will have means and
standard deviations that better approximate the true parameters of the
underlying distribution since random noise at the pixel level is suppressed
in computations with large numbers of pixels.

For example, consider the case of univariate data where each unit ¢ =
1,...,n, has m; independent identically-distributed pixels. Then by the Cen-
tral Limit Theorem (CLT), asymptotically both the sample means (Z;) and
standard deviations (s;) of the pixels within each unit are Normally dis-
tributed:

; (10)
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where p, 02 and 14 are the true underlying mean, variance, and fourth cen-
tral moment of the pixel distribution of the unit. Note that each asymptotic
distribution is centered around the true paramater, and the asymptotic
variance of each distribution is proportional to 1/m;, meaning for larger
m;, (Z;,8;) will be closer (in probability) to (u,o). This fact is not ac-
counted for in SMBC. The asymptotic distribution for s; was determined
using a combination of the CLT, Slutsky’s Theorem, and the Delta Method.
Note that these results are analogous for multi-dimensional data. In reality,
adjacent pixels need not be independently distributed. However, if the de-
pendence of pixels quickly degrades to 0 as the pixel separation increases,



then we can invoke a version of the CLT under weak dependence (strong
mizing) [12], where our sample statistics converge to normality as in equa-
tions (11) and (12) as the number of pixels gets large.

In SMBC, the ability of data point x; to determine the parameters of
cluster k only depends on z;i, the posterior probability that the unit belongs
to that cluster. To give units unequal weights, we introduce the weighted
likelihood (WL), where each data point receives a fixed weight, w; € (0, 1]
based on the number of pixels located inside the unit, where higher weights
are given to units with more pixels to give them more influence in estimating
the mixture parameters (for an example of a different application of the WL
in a related field, see [13]). In general, the WL function for n independent
data points is

L(9) = Hfz'(rcz'I@)wi (13)

where f; is the density function for point x; and 6 is a set of parameters.
The weighted maximum likelihood estimator (WLE) has been shown to be
consistent and asymptotically normal under fixed weights [14].

The weighted mixture model loglikelihood equation [15] is

n G
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whose only difference from (3) is the additional weights, w;. Note that we
use fixed weights which is slightly different from [15]. As in SMBC, weighted
model-based clustering (WMBC) begins with some partition of the data
points and proceeds to the M-step, where the WLEs are computed. For
each k =1,...,G, the WLE for py, is

o o WiZikX; (15)
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compared to the MLE for py, (4). Similarly, the WLE for the mixing pro-
portion 7 is
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compared to the MLE for 7y, (5), while the WLE of the covariance matrix
is analogous to the MLE, where instead of (6), we have

Wi = Zwﬁij(xi — k) (xi — fie) " (17)
i=1

The E-step uses these estimates exactly as in the standard E-step (10), and
the algorithm continues until the weighted loglikelihood (14) converges. All
EM convergence results that hold for SMBC also hold for WMBC, as the
form of the likelihood equation does not change convergence criteria.



3 Simulated Data

Before using our WMBC technique to cluster real data sets, we use sim-
ulated data to compare the accuracy of WMBC clusters to those of other
model-based clustering techniques in a variety of situations. In our sim-
ulations we mimic the real Magellan Venus data set analyzed in Section
4 by simulating multi-dimensional data with many units of differing sizes
separated into multiple groups. In the remainder of this paper, we will use
the word group to refer to the true class of a unit and will reserve use of
the word cluster to refer to the class of a unit as predicted by the clustering
algorithm.

3.1 Simulation Design

In each simulation we generate several units, where each unit consists of
a random number of pixels generated from a uniform [500,50000] distribu-
tion and each pixel is assigned a value from a predefined bivariate normal
distribution based on the group to which its unit belongs. We are justified
in simulating the pixel values with a normal distribution (when in actuality
pixel values need not be distributed normally) because the data summaries
we use in the mixture likelihood are the means and standard deviations of
these pixels. Regardless of the distribution of the pixel values, if individual
pixel values are independent then their mean and standard deviation will
be asymptotically normally distributed as in (11) and (12) for fixed pixel
size, as the number of pixels grows large.

In actuality, pixel values need not be independent on small scales. To
alleviate the concern of pixel correlations we could downgrade the spatial
resolution of our data set to eliminate any small-scale correlations in the
data before invoking the Central Limit Theorem. In practice, however,
we use the original high-resolution pixel information in our computations
because i) we need a large number of pixels for the sample statistics to be
approximately normal by the CLT, and ii) in the Venus V14 data set the
pixel correlations degrade to zero quickly as a function of pixel separation.
This allows us to invoke the CLT under weak dependence [12] and claim
that our sample statistics will be approximately normal. We believe that
the decay in dependence of our pixels is fast enough for the asymptotic
distribution to be a reasonable approximation.

We simulate units from different bivariate normal distributions corre-
sponding to different groups. Since we are simulating the data, we know
from which distribution (population) each data point is generated. There-
fore we can compare different clustering techniques by comparing the num-
ber of units that are correctly classified in each. Throughout this section
we assume that the number of groups is known, and we initialize the clus-
ters with unsupervised model-based hierarchical classification. We use the
covariance model VEV described in Section 2 because in the real data ap-
plication in Section 4, this is the most flexible model available to us with
the given number of degrees of freedom.



3.2 Two Group Simulations

In this section, we compare WMBC to SMBC for situations where there
are two groups (i.e. unit types). In each trial we simulate 200 units: 100
from each of two bivariate normal distributions. These distributions have
parameters

N E. 180 r1V/180 170
Pr=15| %17 |, \/I80% 170 170

4] 5, 170 1o/T70 % 160
2= 5| 2= | /T70% 160 160

where r; and 72 are independent, random (uniform on -1 to 1) correlations
between the two properties of each pixel that are allowed to vary between
each simulated data set, and x takes on each of 21 values ranging from 2 to
4, in steps of 0.1. Each pixel is generated from a Na(uj,Xyx) distribution
(k = 1,2, depending on that pixel’s group) and each unit is represented
by the sample mean Z; = (Z;1,%;,2) and sample standard deviation s; =
(84,1, 8:,2) of its two-dimensional pixels. For each of these 21 spacings of
the means of the two groups, we generate 1000 data sets and cluster each
one using both the weighted and standard model. Because we cluster each
data set with both WMBC and SMBC, we can directly compare the two
techniques for a variety of situations (ranging from widely spaced to heavily
overlapping clusters).

Results show that WMBC is more accurate for each separation of the
means of the two groups, and is far superior than SMBC when the groups
are closer together. Table 1 reveals that for each separation in the two
groups, the average number of correct classifications for WMBC is greater
than the average number of correct classifications for SMBC, and each dif-
ference is significant at the 0.0001 level using both a paired t-test and a
non-parametric paired Wilcoxon test. Figure 1 shows that for each of the 21
separations of the group means, WMBC produces a more accurate cluster-
ing than SMBC in a higher proportion of data sets than vice versa. When
cluster means are close together, WMBC is highly superior, averaging more
than 4.5 more correctly-classified units per data set and better clusterings
in over 75% of simulations. When clusters are widely-spaced, WMBC is also
significantly better but loses much of its superiority because the majority
of simulations result in ties between WMBC and SMBC.

WMBC performs better than SMBC because it is not easily distracted
by observations with highly variable data values. Data generated from a
small number of pixels are typically highly variable, and WMBC down-
weights the observation with a small number of pixels. In SMBC, however,
clusters react more strongly to highly variable observations, growing in vol-
ume and subsequently claiming points that belong to other groups. When
clusters are close or overlapping, highly variable observations can cause a
cluster to grow to encompass a large part of another cluster, producing
a highly erroneous classification. In WMBC this is avoided because only
units with many pixels are given large weights, and large units are likely
to have sample pixel statistics that are close to the true underlying cluster
parameters. When clusters are widely spaced, the advantage enjoyed by



WMBC is somewhat lost, as clusters are less likely to grow so much as to
claim data points belonging to another cluster.

3.3 Different Sized Group Simulations

Using the same simulation model described above, we also simulate groups
of several different sizes to show that WMBC is superior to SMBC under
varied conditions. To simplify our results, instead of considering all 21
spacings of the groups as we did above, we will only look at three: widely
spaced (separation of means of 1.5), intermediately spaced (separation of
0.7), and overlapping (separation of 0.1). When there are an equal number
of units in each group, a much higher percentage of the simulations result
in more accurate clusters by the WMBC method (Table 2). The average
number of correct classifications is higher for the weighted method in each
simulation and for all but the smallest group size (10) is significant at
the 0.0001 level using a paired Wilcoxon test. Again, WMBC performs
comparatively best when the cluster centers are very close together. When
the groups have an unequal number of units, we again observe that WMBC
outperforms SMBC (Table 3).

3.4 Distance Weights

Our WMBC technique outperforms SMBC in simulations mainly due to
the fact that highly variable observations will generally come from small
units and thus will be downweighted in WMBC. Alternatively, we could use
a weighting scheme that explicitly downweights discrepant data values. A
weighted-likelihood model that downweights observations inconsistent with
the model was introduced by Markatou et al. [16]. They introduce weights
based on the Pearson residual, §, where the weights are defined as
52

w(d) =1 Dk (18)
The weights take on values on the interval [0,1], with smaller weights cor-
responding to data points with high Pearson residuals. For a thorough
discussion of the construction of the weight equation, see [16].

Using similar ideas to Markatou et al. [16], we compare a clustering
method that weights based on Mahalanobis distance (DW) to our previ-
ously described pixel-weighting technique (PW). In DW we use (18) and as
a measure of distance, 6(x, k) = \/(z — px)T Xk (z — py), where data point
x belongs to group k on the current iteration. PW is different than DW be-
cause PW weights are not intrinsically based on the amount of discrepancy
of a point. However, PW downweights small units which produce highly
variable data points that are more likely to give anomalous values.

Results in Table 4 show that relative performances of the two methods
are dependent on the amount of separation in the clusters. When the clus-
ters are widely spaced, DW tends to do better: in 5 of the 6 simulations
DW had a higher average number of correct classifications than PW. How-
ever, only one of these simulations yielded a significant result at the 0.1
level (simulation with 2 groups of 20 units each). Additionally, over 96%
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of the simulations resulted in ties in each widely-spaced comparison. When
the clusters are intermediately-spaced, PW outperformed DW in 5 of the 6
simulations, and produced significant differences at the 0.05 level in each of
these five. When the clusters were closely spaced, PW outperformed DW
in all six simulations, with significant differences in 5 of the 6 at the 0.0001
level.

Overall, PW outperformed DW: in 10 of our simulation scenarios PW
yielded significantly better results (at the 0.05 level) as compared to only
2 simulation settings where DW significantly outperformed PW. Relative
advantage in PW depends largely on the spacing in the clusters. Highly-
spaced clusters produce insignificant advantages for DW, while closer clus-
ters give significant and highly-significant advantages to PW. There was
one anomalous situation, where the two group sizes were 20 and 20, in
which DW consistently performed better than PW.

A critical drawback to DW is that it requires many more iterations to
converge. In 100 simulations, it took PW an average of 7.49 iterations to
converge and DW an average of 18.68 iterations. Also, because the weights
in DW are based on the Mahalanobis distance from each data point to the
center of its cluster, these values continually change as points are reallo-
cated and covariance matrices change and thus have to be recalculated,
causing each iteration to take longer. The changing weights also account
for the difficulty of the algorithm to converge. For example, if a point is re-
allocated, it will cause its new cluster to stretch somewhat in its direction,
subsequently causing the point’s Mahalanobis distance to decrease and its
weight to rise. On the next iteration, the point’s higher weight will cause
the cluster to stretch even more and the pattern to continue, resulting in
clusters that are more unstable and less accurate than those produced by
the fixed-weight, PW method.

3.5 Three Group Simulations

We also applied our method to the situation with three groups. As before,
we considered three possibilities: highly spaced, intermediately spaced, and
overlapping groups. We compared our method to the standard, unweighted
model-based clustering method for a variety of different sample sizes.

Again, WMBC is superior to SMBC (Table 5). For each situation,
WMBC outperforms SMBC at a highly significant level. Also, WMBC is
particularly good when groups are large and/or overlapping. These results
are important because in most circumstances, including the remote sensing
example in Section 4, groups are not widely separated.

4 Example: Magellan Venus Data
4.1 Data Background

On May 4, 1989 the National Aeronautics and Space Administration (NASA)
launched the Magellan Spacecraft to study the surface of Venus. From
September 15, 1990 until September 14, 1992, Magellan radar-mapped 97%
of the planet’s surface at resolutions that were ten times better than any
previous mapping of the planet, transmitting back to Earth more data than
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from all previous planetary missions combined [17]. A set of about 30,000,
1024 x 1024 pixel, synthetic aperture radar (SAR), 75m/pixel resolution
images were transmitted by Magellan.

The Ganiki Planitia (V14) quadrangle (180°-210° E, 25°-50° N) is a
section of Venus that has been studied by geologists [7] as part of a global
mapping effort (see [6]). Situated between regions where extensive tectonic
and volcanic activity has occurred in the past, Ganiki Planitia consists of
what are interpreted as volcanically-formed plains which embay older units
and are themselves modified by tectonic, impact and volcanic processes.
Before studying complex geological issues such as whether there have been
systematic changes in the volcanic and tectonic activity in the V14 quad-
rangle over time, a working geologic map of the region was created on the
basis of standard geological criteria, dividing the continent-sized area into
200 material units (Figure 3).

To create the geologic map (e.g., [7]), standard qualitative planetary
mapping techniques (use of crosscutting and superposition relationships,
unit geomorphology, etc.) were used to analyze the full resolution SAR
map (at FMAP resolution, 75 m/pixel) of V14 as well as four physical
property data images; however, the numerical information encoded in the
data was not used quantitatively when defining the material units. The
FMAP for V14 is a mosaicked SAR data set consisting of 131,316,652 pixels.
The physical property data sets are: surface reflectivity (gredr), emissivity
(gedr), elevation (gtdr), and RMS slope (gsdr), and each contains between
380,585 and 382,324 pixels. See Figure 2 for the pixelated FMAP and three
physical property data sets. We will only consider three of the physical
property datasets: gedr, gtdr, and gsdr, because gredr and gedr are close
to inversely proportional.

Throughout this section we will take the geologists’ classification (Fig-
ure 3) to be our baseline. It is reasonable to assume that the geologists’ work
is accurate because they have spent countless hours creating the geologic
map and manually classifying its units, but where deviations between the
geologists’ baseline and our numerical classification efforts arise then this
approach also becomes useful for geological interpretation, identifying areas
where the internal self-consistency of the geologists’ unit definitions may be
flawed. We can compare the accuracy of WMBC and SMBC by observing
how close the clusters are to the geologists’ classification. Plots of the raw
data show that groups overlap heavily, and are essentially indiscernible to
the eye (Figure 4). Hence, we expect that WMBC will outperform SMBC,
as it did in simulations where groups were substantially overlapping.

4.2 Clustering Entire Data Set

Starting from the geologists’ classification, we cluster the 200 units and
observe the rate of discrepancies to the geologists’ classification for different
methods. The material units on V14 vary widely in size: the largest unit has
22,000 times the number of FMAP-scale pixels as the smallest. Moreover,
the areas of the units are very highly skewed: there are a handful of units
that are extremely large compared to the mean size (Figure 5 (a)). If we
assign weights directly proportional to unit area, the very large units are
given weights that completely dominate over the vast majority of material
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units, rendering extremely insignificant the propensity of small and even
medium-sized units to affect cluster parameters. To alleviate this, we take
a standard log transformation of the pixel weights before clustering, which
results in a symmetric distribution of weights (Figure 5 (b)) and preserves
the order of the unit areas. Clustering under this weighting system results
in WMBC clusters that have a lower percentage of discrepancies to the
geologists’ classification than SMBC clusters (Table 6).

4.3 Clustering Background Plains

One important problem for the V14 quadrangle is classifying its 54 back-
ground plains units. Background plains, inferred to be of volcanic origin,
dominate V14, containing 62.3% of the pixels of the FMAP. They are di-
vided into three types: prl, pr2, and pr3, (i.e. plains, regional, 1) corre-
sponding to three general states of appearance (caused by surface mor-
phology, modification, etc.) in the radar backscatter images. Determining
which units belong to each group is important to constrain the character-
istics and possibly the evolution of each unit. However, it is also a difficult
problem because it is primarily based on a geologist’s interpretation of the
brightness and morphology of the FMAP image.

We clustered the background plains units with WMBC and SMBC.
Again, because of the presence of a very large unit, we used the log of
the pixel weights in WMBC. Results show extremely close concordance of
clustering and geologist classifications for both techniques (Table 6), with
no advantage for either WMBC or SMBC.

5 Conclusions

In this paper, we have introduced a weighted model-based clustering method
that can be used to classify collections of pixels in previously-segmented
images by employing the means and standard deviations of the pixel values
within each unit. We have shown, with both simulated and real data sets,
that one obtains more accurate clustering results using our WMBC method
than with SMBC. WMBC is superior to SMBC in the segmented-image
context because it both ignores small, highly-variable units and strongly-
defines cluster centers. It performs comparatively best when group centers
are close because whereas SMBC clusters tend to merge into one another,
WMBC clusters have a stronger propensity to stay separated since they
pay stronger attention to those points situated near the true group center.

Weighted mixture models that downweight observations based on dis-
tance had previously been introduced [16]. However, our method is prefer-
able for this particular task because it produces more accurate results for
close and overlapping groups, and because it uses fixed weights, creates
more stable results, and converges in fewer iterations.

Our method is a powerful tool for planetary mappers who wish to nu-
merically validate the robustness of their qualitative analyses. The results
from the application of WMBC to the V14 quadrangle demonstrate that
most units remain classified the same way as specified by the original ge-
ologic map, meaning, for example, that all areas mapped as background
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plains prl units quantitatively resemble one another more than they resem-
ble any of the other unit types mapped. Under WMBC, 41 units (20.5% of
the total) were assigned to different groups, and for each case the geologists
then examined the unit to determine if it had been mapped incorrectly. In
all but one instance, the mismatch between the numerical and geologists’
classifications resulted when a geologically important piece of information
integrated into definition of the unit during the mapping process, normally
morphological, was not quantitatively distinctive enough to be perceived
by the statistical algorithm. For instance, five units created by extensive
flow of lavas from a large but very flat central edifice recognized by the
geologists were reclassified numerically as regional plains units because in
each instance the topography was gentle enough that the presence of the
edifice was not detected by the means and standard deviations of pixel
values within units. Similarly, plains characterized by overlapping systems
of eruptions from small (1-10 km diameter) shield volcanoes were in some
instances reclassified because the subtle morphology of the small shield
volcanoes yields no quantitatively robust signature with which the classifi-
cation algorithm can work.

Ultimately, while user insight is still required to examine any possible
misclassifications that get called out, the strength of the statistical tech-
nique we have developed is that it quantitatively uses all available raster
data to test the internal self-consistency of the map units defined within
the quadrangle. This is of great value to the mappers, demonstrating for
the first time whether each type of unit is statistically distinctive from all
the others when the full suite of quantitative data at our disposal is em-
ployed, and thus validating independently the robustness of the material
units defined qualitatively using standard geological mapping techniques.

Our method can only be used with previously-segmented images, such
as geologic maps, and therefore relies heavily on the initial partitioning of
an image. It is primarily used to assess and analyze work that has already
been manually performed instead of as a tool to automatically classify pix-
els. However, this situation arises often in planetary mapping research and
our method provides a powerful tool for geologists who desire to numerically
analyze their classification of geologic units by standard, non-quantitative
analysis in order to determine if the material units, as defined, are consis-
tent with the total available set of numeric data.

The methods developed in this paper can be expanded to integrate other
information such as density of tectonic deformations or number of shield
volcanos within a unit or other statistics derived from the pixelized data we
have used in our analyses. The techniques can also be used to numerically
find the optimal number of clusters, using, for example, Bayesian informa-
tion criterion (BIC). Also, they can be modified to determine the uncer-
tainty in each classification (using, e.g. resampling techniques or MCMC
algorithms).
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Table 1 Number of Correct Classifications Comparison of the accuracy of WMBC
versus SMBC for 21 different separations of the means of the two groups. There are 200
total units in each simulation. Averages are from 1000 simulated data sets. One Monte
Carlo standard deviation is in parentheses.

Separation of Average number of
group means correct classifications
WMBC SMBC Difference *
2.0 199.957 (0.208)  199.854 (0.524) 0.103
1.9 199.924 (0.273)  199.800 (0.655) 0.124
1.8 199.940 (0.280)  199.764 (0.733) 0.176
1.7 199.923 (0.278)  199.721 (0.823) 0.202
1.6 199.888 (0.346)  199.728 (0.723) 0.16
1.5 199.857 (0.398)  199.627 (0.888) 0.23
1.4 199.829 (0.427)  199.507 (1.050) 0.322
1.3 199.778 (0.507)  199.443 (1.123) 0.335
1.2 199.735 (0.541)  199.336 (1.208) 0.399
1.1 199.686 (0.571)  199.094 (1.570) 0.592
1.0 199.602 (0.650)  198.895 (1.717) 0.707
0.9 199.501 (0.771)  198.634 (1.852) 0.867
0.8 199.377 (0.852)  198.291 (2.281) 1.086
0.7 199.232 (0.888)  197.738 (2.957) 1.494
0.6 198.899 (1.244)  196.904 (3.526) 1.995
0.5 198.689 (1.394)  196.239 (4.028) 2.45
0.4 198.451 (1.632)  195.458 (4.610) 2.993
0.3 198.281 (1.584)  194.690 (5.101) 3.591
0.2 197.807 (2.105)  193.596 (5.645) 4.211
0.1 197.577 (2.214)  193.062 (6.207) 4.515
0.0 197.490 (2.537)  192.873 (6.584) 4.617

*Each difference significant at 0.0001 for two-sided paired t-test and paired Wilcoxon
test
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Table 2 Comparison of WMBC and SMBC, even groups Percentage of simula-
tions (out of 1000) each clustering method outperformed the other for various equal-sized
groups. Groups are widely-spaced (a), intermediately spaced (b), and overlapping (c).

(a)

% of times better average diff. in # of correct two-sided p-value
Group sizes WMBC SMBC classifications (WMBC - SMBC)  (Paired Wilcoxon)
90 18.3 2.7 0.247 < 0.0001
80 15.1 2.7 0.203 < 0.0001
70 14.2 2.8 0.178 < 0.0001
60 13.2 1.4 0.232 < 0.0001
50 13.7 1.7 0.224 < 0.0001
40 13.0 1.4 0.196 < 0.0001
30 13.7 1.0 0.194 < 0.0001
20 8.2 0.9 0.094 < 0.0001
10 1.0 0.4 0.006 0.117
(b)
% of times better average diff. in # of correct two-sided p-value
Group sizes WMBC SMBC classifications (WMBC - SMBC)  (Paired Wilcoxon)
90 47.2 7.9 1.318 < 0.0001
80 47.2 4.5 1.304 < 0.0001
70 40.5 6.3 0.972 < 0.0001
60 39.5 5.8 0.898 < 0.0001
50 38.7 5.6 0.817 < 0.0001
40 314 4.8 0.588 < 0.0001
30 27.2 4.6 0.412 < 0.0001
20 17.6 3.7 0.205 < 0.0001
10 3.5 2.1 0.022 0.051
(©)
% of times better average diff. in # of correct two-sided p-value
Group sizes WMBC SMBC classifications (WMBC - SMBC)  (Paired Wilcoxon)
90 70.9 6.0 3.948 < 0.0001
80 73.0 6.5 3.825 < 0.0001
70 66.7 6.3 3.050 < 0.0001
60 62.6 7.5 2.488 < 0.0001
50 58.2 7.6 1.916 < 0.0001
40 54.3 7.0 1.500 < 0.0001
30 41.1 7.6 0.852 < 0.0001
20 28.0 7.5 0.335 < 0.0001

10 5.2 4.6 0.331 0.736
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Table 3 Comparison of WMBC and SMBC, 2 uneven groups Percentage of
simulations (out of 1000) each clustering method outperformed the other for six uneven
groups. Groups are widely-spaced (a), intermediately spaced (b), and overlapping (c).

(a)

% of times better

average diff. in # of correct

Group sizes WMBC SMBC classifications (WMBC - SMBC) *
75 / 25 15.8 1.7 0.451
90 / 10 27.4 0.3 1.577
50 / 25 12.5 1.4 0.202
40 / 10 9.6 0.5 0.219
25 / 10 5.4 0.1 0.083
25 /5 6.9 0.7 0.087

(b)

% of times better

average diff. in # of correct

Group sizes WMBC SMBC classifications (WMBC - SMBC) *
75/ 25 43.7 5.5 2.152
90 / 10 60.1 6.0 3.658
50 / 25 33.9 5.3 0.814
40 / 10 26.3 3.8 0.576
25 / 10 15.3 3.1 0.173
25 /5 15.6 4.2 0.206

(©)

% of times better

average diff. in # of correct

Group sizes WMBC SMBC classifications (WMBC - SMBC) *
75 / 25 63.1 8.2 4.096
90 / 10 56.3 24.3 2.167
50 / 25 53.0 8.1 1.802
40 / 10 37.7 13.6 0.801
25 /10 24.4 9.3 0.277
25 /5 20.2 12.4 0.137

*Each difference significant at 0.0001 for two-sided paired t-test and paired Wilcoxon

test
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Table 4 Comparison of Weighting Procedures Percentage of simulations (out of
1000) our pixel weighting method (PW) outperformed distance weighting based on the
Pearson residual (DW) and vice versa. Groups are widely-spaced (a), intermediately
spaced (b), and overlapping (c).

(a)

% of times better  average diff. in # of correct  two-sided p-value

Group sizes PW DW classifications (PW - DW) (Paired Wilcoxon)
100 / 100 1.1 2.0 -0.009 0.138

50 / 50 0.9 1.2 -0.002 0.721

20 / 20 1.2 2.6 -0.025 0.005

75/ 25 1.6 2.2 -0.002 0.841

50 / 25 1.3 1.5 -0.003 0.617

25 /10 1.0 1.2 0.029 0.931
(b)

% of times better  average diff. in # of correct two-sided p-value

Group sizes PW DW classifications (PW - DW) (Paired Wilcoxon)
100 / 100 7.2 4.6 0.031 0.021

50 / 50 7.7 5.3 0.031 0.024

20 / 20 4.0 6.3 -0.029 0.019

75/ 25 9.5 5.8 0.578 < 0.0001

50 / 25 8.5 4.5 0.152 0.0005

25 / 10 7.1 5.2 0.152 0.005

(c)

% of times better

average diff. in # of correct

two-sided p-value

Group sizes PW DW classifications (PW - DW) (Paired Wilcoxon)
100 / 100 18.2 10.5 0.314 < 0.0001

50 / 50 15.4 9.6 0.227 < 0.0001

20 / 20 11.5 9.5 0.034 0.350

75 /25 36.4 6.6 4.015 < 0.0001

50 / 25 19.6 10.9 1.042 < 0.0001

25 /10 20.3 9.1 0.531 < 0.0001
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Table 5 Comparison of WMBC and SMBC, 3 uneven groups Results of simu-
lations (1000 trials each) comparing performance of WMBC and SMBC for three groups.
Groups are widely-spaced (a), intermediately spaced (b), and overlapping (c).

(a)

% of times better average diff. in # of correct
Group sizes WMBC SMBC classifications (WMBC - SMBC) *
50 / 50 / 50 33.5 1.3 0.746
25 /25 /25 28.8 1.0 0.489
10 /10 / 10 3.0 0.5 0.027
50 /25 /25 32.9 1.1 0.793
50 /25 /10 24.6 1.7 0.700
50 /10 / 10 17.5 1.5 0.429
25 /25 /10 21.6 1.0 0.462
25 /10 / 10 9.5 1.1 0.134
(b)
% of times better average diff. in # of correct
Group sizes WMBC SMBC classifications (WMBC - SMBC) *
50 / 50 / 50 48.5 5.9 1.288
25 /25 /25 34.8 3.3 0.615
10 /10 / 10 5.6 1.5 0.047
50 /25 /25 41.7 4.4 1.136
50 /25 /10 37.8 4.8 1.165
50 /10 / 10 26.5 5.7 0.619
25 /25 /10 25.0 5.7 0.427
25 /10 / 10 18.9 34 0.26
(c)
% of times better average diff. in # of correct
Group sizes WMBC SMBC classifications (WMBC - SMBC) *
50 / 50 / 50 63.5 7.0 2.278
25 /25 /25 44.5 8.8 0.854
10 /10 / 10 8.6 5.9 0.039 **
50 /25 /25 50.8 9.9 1.549
50 /25 /10 44.9 13.6 1.087
50 /10 / 10 41.7 14.5 0.707
25 /25 /10 33.7 9.4 0.592
25 /10 / 10 23.7 6.7 0.304

*Each difference significant at 0.0001 for two-sided paired t-test and paired Wilcoxon
test
** Result significant at 0.01

Table 6 % of Discrepancies Percent of discrepancies to geologists’ classification for
clustering the Venus V14 Quadrangle geologic units with WMBC and SMBC. The al-
gorithms were initialized with the geologists’ classification. Truth is taken to be the
geologists’ classification.

% of Discrepancies
Situation WMBC SMBC
All 200 units 20.5 27.5
All 54 background units 9.3 9.3




20

o
g -
s ¥ 3
[
o 3
5 @ | 3
z o WMBC
° $ A SMBC
w
£
(o]
5 [}
s s :
g Q] [
£
[0
E [
2 [
£
5 [
= g ¢y
- %
[
[) [}
z
o s B & & & &
T T T T I
0.0 0.5 1.0 15 20

Separation in group means

Fig. 1 Dominance of WMBC over SMBC The number of times WMBC (o) and
SMBC (A) produced more accurate results in each of 1000 simulated data sets at 21
different separations of the means of each group. Plus and minus one Monte Carlo
standard deviation has been plotted on each estimate.
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Fig. 2 Images of V14 Four data sets that we use: (a) FMAP, (b) RMS slope, (c)
emissivity, and (d) elevation. The FMAP image is over 300 times the resolution of the
other data sets.



22

Fig. 3 Geologists’ classification of V14 The original geologic map of V14 created
by geologists. The region is divided into 200 units, which are distributed into 16 different
groups. Each color in the image represents a different group.
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Fig. 4 Relationship Between Variables of Interest Plots of the means and stan-
dard deviations of FMAP and elevation pixels within each unit. The geologists’ allocation
of each unit is denoted by symbols.
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Fig. 5 Relative Size of Area Units In the histogram of the areas of units on V14
(a), it is apparent that very few units dominate the total area of the quadrangle. Taking
the log of these weights (b) preserves their order, but produces a much more symmetric
distribution of weights that prohibits any single unit from adversely controlling cluster
parameters in WMBC.



