
Pathways Change in Expression During Replicative Aging in  
Saccharomyces cerevisiae 

 
Gloria Yiu1, Alejandra McCord1, Alison Wise2, Rishi Jindal1, Jennifer Hardee1, Allen 

Kuo1, Michelle Yuen Shimogawa1, Laty Cahoon1, Michelle Wu1, John Kloke2, Johanna Hardin2, 

and Laura L. Mays Hoopes1 * 

Biology Department1 and Mathematics Department2 

Pomona College, Claremont, CA 91711 

*  Corresponding author:  Laura L. Mays Hoopes 

Biology Department, Pomona College 

609 N College Avenue 

Claremont, CA 91711 

(909) 607-7438 

FAX (909)621-8878 

lhoopes@pomona.edu 

  

 
  
Running head: Gene Expression in Yeast Aging 
 
 
 
 
 



 2

Abstract 
 
Yeast replicative aging is a process resembling replicative aging in mammalian cells.  During 

aging, wild type haploid yeast cells enlarge, become sterile, and undergo nucleolar enlargement 

and fragmentation; we sought gene expression changes during the time of these phenotypic 

changes.   Gene expression studied via microarrays and qPCR has shown reproducible, 

statistically significant changes in mRNA of genes at 12 and 18-20 generations.  Our findings 

support previously described changes towards aerobic metabolism, decreased ribosome gene 

expression, and a partial Environmental Stress Response.  Our novel findings include a pseudo-

stationary phase, down-regulation of methylation-related metabolism, increased Nucleotide 

Excision Repair related mRNA, and a strong up-regulation of many of the regulatory subunits of 

protein phosphatase I (Glc7).  These findings are correlated with aging changes in higher 

organisms as well as with the known involvement of protein phosphorylation states during yeast 

aging.   
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Introduction 
 

Replicative aging in the budding yeast, Saccharomyces cerevisiae, is an asymmetric 

process that affects mother cells, but not daughter cells until late in the aging process (1, 2).  In 

each division, the mother cell becomes a generation older, enlarges, and acquires a chitin-

containing bud scar, while the daughter cell emerges at age 0 generation (g). An average mother 

cell of typical wild type yeast strains lives ~25g.   

Dysregulation of genes has been proposed to underlie part of the aging process   (3, 4).    

In mouse liver cells, DNA methylation diminishes through much of the life span with consequent 

expression of repressed genes (5-8).  Large scale comparative microarray studies of mRNAs in 

aging animals, and in mutants considered to affect the aging process, have found many mRNA 

differences, especially in expression of stress related genes (9-13).    

 Age-related mRNA changes have also been described in yeast (14-16).  Often, few ages 

and/or few replicate microarrays were examined.  In addition, precautions to make the young 

controls equivalent in stress to the aged cells were difficult to perform and were handled 

differently in each case.  A few findings run throughout the experiments, but many findings are 

not consistent.    

The earliest yeast microarray study published (14) used three pairs of microarrays each 

for young and 8g yeast cells and showed that 8g cells had shifted from ethanol fermentation to 

gluconeogenesis and lipid metabolism. They grew the isolated aging mother cells for 30 minutes 

after magnetic sorting to alleviate sorting stress, but that growth may have introduced newborn 

daughters.  The gene expression changes seen on the arrays were not extensive.  For example, 

the only genes from aerobic alcohol metabolism and energy storage (including gluconeogenesis) 

found up-regulated in wild type were PCK1 (for phosphoenolpyruvate carboxykinase) and 
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ADH2 (for alcohol dehydrogenase).  These inductions agreed with their microchemical analyses.  

Metabolic changes were more evident in a sip2 mutant strain with a shortened life span and less 

evident in a snf4 mutant strain with a longer life span. Their conclusions have held up quite well 

through the other studies.   Age-related metabolic changes are particularly interesting since yeast 

respond to glucose limitation with an extended life span (17, 18), an analog of the caloric 

restriction that extends mammalian life spans.   

 In another microarray-based study, much older cells were isolated using centrifugal 

elutriation, a method that makes it difficult to obtain a similarly stressed control population (15).  

Two replicate arrays were performed for young and for old cells; RNAs were prepared from a 

pool of samples of aged cells in an effort to average out biological variation.  The mRNA 

differences were checked via quantitative PCR. In wild type replicative aging, many genes of the 

~900-gene regulon called the Environmental Stress Response (ESR) pathway (19) changed 

expression in the aged cells, and the DNA double strand break repair genes were induced.   

However, another group found few of the ESR genes responded in aging (16).   These 

authors used duplicate microarray slides from magnetically sorted cells at 8-12g and 18-24g 

(designated 10g and 20g).  They found a decrease at 10g and 20g in expression of glycolysis 

genes, proteasome subunit genes, and protein folding chaperones.  There was more mRNA for 

glycogen related genes, permeases, some regulatory genes, and a few others with no known role.  

The magnetic sorting process used by these authors was found to induce some genes for the 

stress response and cell wall and repress the fatty acid metabolism and histone genes in young 

cells.     

In our study, we used 6 to 7 microarrays each at 1g, 8g, 12g, and 18-20g, including 

biological and technical replication as well as dye inversion. We tested important conclusions 
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using quantitative real time reverse transcription PCR (qPCR).  In each case, we used a log phase 

culture grown in parallel as the microarray control. During magnetic sorting, this log phase 

culture was exposed to all of the same temperature conditions in parallel with the aging culture 

being sorted.   In our view, this study has both sufficient replication and appropriate young 

control cells to allow accurate conclusions about age-related gene changes.  In common with 

others, we have found a metabolic shift and a decrease in ribosome and nucleolus gene 

expression.  In addition, we have found evidence for a down-regulation of methylation related 

pathways, an up-regulation of Nucleotide Excision Repair genes, a pseudo-stationary phase, and 

an up-regulation of many targeting subunits of protein phosphatase I. 

Methods 

 Aging Cell Preparation 

 All experiments were conducted with W303Ra, the W303 wild type in which the RAD5 

gene has been corrected by Rodney Rothstein from its mutation in W303-1A.  Aging cells were 

prepared via magnetic sorting using Miltenyi microbeads and columns (20).  The average age of 

at least 20 mother cells was determined after staining the bud scars with Fluorescent Brightener 

28 (Sigma). We performed bud scar counting using multi-plane focusing, employing a Zeiss 

epifluorescence microscope.  Our samples were collected from log phase 1g, 8g, 12g, and 18-20g 

cells; cells were never permitted to go into stationary phase of growth (<0.8 A600). 

Microarrays and RNA 

 Microarrays were printed for Genome Consortium for Active Teaching (GCAT, 

Davidson College, NC) at Washington University, St Louis with 70-mers corresponding to non-

overlapping regions of all ORFs of budding yeast (21). Total RNA was prepared from cells at 

different ages via Qiagen RNeasy, in parallel with young cells sorted from the same preparation 
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and subjected to exactly the same conditions of temperature, etc to ensure that the control and the 

aging cells would have the same extent of stimulation of the Environmental Stress Response 

genes (19).  The controls normalize the environmental response, and only the aging effects are 

seen.  Control experiments showed that this procedure identified fewer genes as ‘age-related 

changes in expression’ than comparing all ages with a single young preparation that may have 

experienced small differences in protocol.   

For each labeled probe preparation, we started with 50 µg of total RNA and amplified 

aRNA using the Ambion Amino Allyl MessageAmp II Kit and the Ambion Fragmentation Kit.  

For each age, there were three different RNA samples prepared and compared against matched 

young controls.  Six to seven arrays were analyzed at each age.  Three microarrays of each age 

set were analyzed with the dyes reversed.  Arrays were scanned using an Axon Gene Pix 4000B 

scanner and GenePix Pro 5.1 software. The quality control report was used for all arrays; 

Supplementary Table 1 shows the quality control cutoff values used for all arrays in this study.   

Statistical Analysis 

Before running statistical models, we normalized the data using Bioconductor Software 

(22-24).  The pre-processing included removing all empty, control, and flagged genes.  Also, if 

the fluorescence signal was under 100 in one channel it was increased to 100; if it was under 100 

in both channels, the spot was removed from the analysis.  The background fluorescence was 

subtracted from the foreground, and a lowess smoother was used to normalize the genes for each 

array.  If more than 50% of the array spots were missing for a particular gene, the gene was 

removed from the analysis. 

For each gene, we fit a linear model using the limma function (22,23) in Bioconductor.  

After fitting the model, we were able to look at particular comparisons and contrasts (e.g., 1g vs. 
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18-20g).  Genes that were significantly changed across the comparison according to the adjusted 

p-value < 0.05 by the Holm step-down method (25) were designated as significant 

(Supplementary Tables 2 and 3).   

To identify potential functional regulons, we used three software programs.  First, we 

imported the data into GeneSpring 7.0 (Agilent) to cluster.  Our second software program was 

GenMAPP2 (26) plus MAPPFinder (27), which identified Gene Ontology (GO)-term-based 

functional groups that were changed in expression.  For GenMAPP2, we selected only genes that 

changed at least three fold, therefore not all significantly changed genes are included in the 

GenMAPP2 analysis.  However, the analysis can identify the most consistently up- and down-

regulated pathways with high confidence.  The third software we used was GOCluster (28), 

which uses the Gene Ontology designations for every gene to detect statistically significant 

cellular constituents, molecular functions, and processes that differ between samples.  This 

software adjusts the p values for multiple sample errors using the Bonferroni correction.   

 To test the microarray averages for particular genes that fit our patterns of pathway 

regulation in aging, we used quantitative reverse transcription PCR (qPCR).  The primer sets 

were designed to amplify a region of about 100 bp near the 3’ end of the mRNA.  An ABI Prism 

7000 sequence detection system was used.  Reactions were run in 96-well plates using the ABI 

standard curve method.  Three replicates were performed for each concentration for the standard 

curve of each gene, and 4 replicates for each test sample at each age for each gene.  The ABI RT 

kit and SYBR green reagent mixture were used.  TUB1 served as our internal standard gene for 

the qPCR (15).  After data were collected, the samples were subjected to thermal denaturation to 

verify that single species had been synthesized. Figure 3 and Supplementary Figure 1 show the 

strong correlation between the qPCR results and the average microarray results.   
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 Abbreviations used in this paper are: g: generation, qPCR: Quantitative reverse transcription 

PCR, NER: Nucleotide Excision Repair of DNA, DSB: Double Strand Break, ESR: 

Environmental Stress Response, GO: Gene Ontology, MIAME: Minimal Information About 

Microarray Experiments. 

 

Results 

General Aspects of Data 

 Age-related changes in gene expression accumulate during mother cell aging; in our 

preliminary statistical analysis, we predicted and found that the variation in ratios of mRNA 

from older cells compared to 1g mRNA became larger as the cells aged (29).  In order to make 

our data available for general access and analysis, we have put all genes with mRNA changes 

significant at the p <0.05 with the Holm correction into Supplementary Table 3(18-20 g analysis) 

and Supplementary Table 2 (12g analysis); both tables are based on t-tests which compare the 

experimental condition to the control at 1g on a gene by gene basis.  The microarray MIAME 

information and the raw data will be posted through the account of LLMH at Gene Expression 

Omnibus (30) upon acceptance of the paper for publication. 

 The timing of initiation of age-related changes in gene expression is later than previously 

appreciated.  Our data indicate that for genes with p<0.05 (again, t-tests of experimental 

condition versus control at 1g using the Holm correction), there are no genes with statistically 

significant expression changes in the 8g arrays.  There is a substantial overlap between the genes 

significantly changed at 12g and 18-20g, as shown in Figure 1.  Figure 2 shows the major 

categories of gene annotation that were notable among significantly changed genes in aging 
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yeast.   These functions were determined using Saccharomyces Genome Database annotations 

for the genes identified as significant at 18-20g in Bioconductor.   

   To explore the gene functions, we began with GenMAPPII/MAPPFinder.  This GO 

analysis software identified ribosome-related genes as the top category of age-related changes at 

18-20g (Table 1) and also at 12g (data not shown).   Metabolism, amino acid and nucleotide 

metabolism, mating-related functions, and several categories related to methylation were also 

significantly changed at 18-20g.  Table 1 shows a z-score and two probabilities produced by 

MAPPFinder.  A z-score of 1.96 would be consistent with a p value of 0.05.  Positive z-scores 

indicate that the experiment found more genes changed in expression than randomly expected in 

the category, while negative values indicate fewer genes than expected.  The permuted 

probability is a calculated non-parametric statistic based on 2000 permutations of the data, with 

gene associations randomized for each sample.  The adjusted probability is adjusted for multiple 

testing using the Westfall-Young adjustment, which calculates the family-wise error rate for each 

sample.  Table 1 summarizes GO categories with p < 0.05 for one or both types of p value.  

Except for DNA repair, the categories had a positive z-score meaning that the gene types were 

over represented among genes that changed in expression. 

 We also used GOCluster (28) to examine the classes of genes that had changed 

significantly during aging.  We used the K-Means clustering with four clusters.  We considered a 

category important if it appeared significant 50 or more times out of 200 tries.  In general, the 

findings of this method agree with the results of GenMappII, highlighting changes in the cellular 

constituents affecting ribosome and nucleolus.  There were important changes in transcription 

(especially of rRNA) and translation. Changes were strong in carbohydrate/energy metabolism 
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and amino acid metabolism.  In addition, GOCluster’s findings highlight changes in protein 

catabolism (especially ubiquitin-related). 

 We had a clear correlation between qPCR and microarray results.  Figure 3 shows the 

correlation between average quantitative PCR results and average microarray results for specific 

genes of interest.   The Wilcoxon rank sum test (p=0.23) and paired t-test (p=0.9, two tailed) 

both test the hypothesis of differences across the two types of measurements (qPCR versus 

microarray).  The large p-values tell us that we cannot reject the null hypothesis of no difference. 

Correlation tests showed p < .001 of collecting our data set if in fact there was no correlation, so 

they corroborate that qPCR and microarray values provide similar information about mRNA 

expression.  All mRNAs were found to change in the same direction with similar magnitudes in 

both assays, supporting the functional group changes we have identified.  

 In Figure 3 and Supplementary Table 3, results for PNC1 and SIR2 indicated that the 

former is increased in expression in the aging cells while the latter is not.  In  aging, a pseudo-

diploid state is established by expression of the silent mating type locus; we have found that 

IME1 is significantly induced at 12g and 18-20g as expected in a cell that acts diploid, while 

there is no induction of STE12, HO, or RME1, haploid-specific genes.  Not all genes we have 

examined follow this prediction, however.  For example, SPO13, which is thought to control 

aspects of the first meiotic division, is not significantly induced in 18-20g cells.  In addition, 

HMLalpha1 and HMLalpha2 did not behave identically.  The latter was significantly increased 

in expression, but not the former.  The strong expression of IME1 supports an effective 

transcription from the HML, in any case.   

Ribosome and Nucleolus-Related Functions 
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 Our first conclusion is that the most significant age-related changes affect ribosome 

biogenesis.  Ribosomal protein genes and ribosomal RNA processing/nucleolar function genes 

are often co-regulated but constitute separate regulons (31, 32).  Figure 4a shows the overlap 

between the ribosomal protein regulon with the genes we have found significantly changed that 

have ribosomal protein GO annotations; Figure 4b shows similar overlap for the rRNA and 

ribosome biosynthesis regulon.   

Pseudo-Stationary Phase in Aging Cells 

We propose the term pseudo-stationary phase to characterize many of the metabolic and 

other changes that we see as the mother cells undergo replicative aging.  There are several 

groups of gene expression changes that support that suggestion.  First, in the process of entering 

stationary phase, the Environmental Stress Response genes (19) respond.  We see a major 

overlap between the genes that undergo significant age-related changes and the ESR group, as 

shown in the Venn diagram in Figure 5a. The ESR genes include some that are induced while 

others, such as the ribosomal genes, are down-regulated.  We examined the issue of whether or 

not the aging genes are regulated in the same direction as the ESR by means of a correlation plot 

shown in Figure 5b, finding a strong tendency for expression to change in the same direction in 

aging and in stress.   

Also with regard to pseudo-stationary phase, genes known to be up-regulated in 

stationary phase, such as the SNZ genes and the glycogen-related genes, are affected during 

aging (Table 2).  One of the important genes in this group, GSY2 encoding glycogen synthase, is 

regulated by Snf1 protein kinase and Glc7-Gac1 protein phosphatase I.  The mRNAs for GSY2 

and its homolog GSY1 were significantly up-regulated by 18-20g (Supplementary Table 3).  As 
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shown for GSY1 in Figure 6a, the graph of which is virtually identical with a graph for GSY2, the 

increase had not yet begun at 8g and is barely significant at 12g, but strong at 18-20g .    

Another interesting feature of the pseudo-stationary phase involves the hexose transport 

proteins.  In spite of the fact that glucose is still present and sufficient for logarithmic growth of 

the young cells in the same culture, we found mRNAs for a group of hexose transporters to be 

almost three-fold higher at both 12g and 18-20g (Figure 6b).  

The transcription factors Msn2, Msn4, and Yap1 regulate many of these genes (19).  

MSN2 is constitutive but MSN4 is inducible.  We found significant increases in expression at 18-

20g for both MSN4 and for another transcription factor that regulates some of the stress response 

genes (19), YAP1 (Supplementary Table 3).  

Down-Regulation of Methylation-Related mRNAs   

 Methylation-related genes have not been previously recognized as an important regulon 

in yeast aging.  This lack of identification might be partly because methylation is not a GO 

category, an annotation problem mentioned in the MAPPFinder Analysis (Table 1).  The 

methylation-related genes that were significantly decreased in expression are shown in Table 3.  

Most of these mRNAs, including SAM1-SAM4, were decreased in the older cells, with very low 

p values.   Genes encoding proteins that affect both folate-derivative metabolism and S-adenosyl 

methionine metabolism are reduced in expression. Importantly, genes for rRNA and tRNA 

methylation showed decreased expression.  Since there is no DNA methylation in yeast, genes 

for that process were not present in the study. 

DNA Damage Repair Genes in Aging 
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Scattered DNA repair gene expression changes at 18-20g occurred, resulting in under-

representation of the DNA Repair category in the MAPPFinder analysis (Table 1).  Only 

Nucleotide Excision Repair showed several genes induced at 18-20g (Figure 7).     

Protein Phosphatase I Targeting Subunit mRNAs Up-regulated 

 Protein kinase cascades are important in yeast aging, as has been described by several 

groups.  We have made a related discovery, namely an up-regulation of the mRNAs for the 

regulatory subunits of Glc7, protein phosphatase I.  Table 4 shows the effects of replicative aging 

on the mRNAs encoding these subunits and except for two that are related specifically to 

budding, they exhibit significant up-regulation.  The gene for the catalytic subunit (GLC7) was 

found to be constitutive, in agreement with previous work showing the gene is constitutive 

during growth and is only induced in stationary phase (33). 

The effect of this transcriptional increase could be to allow more of the transcription 

factors Msn2 and Msn4 to enter the nucleus and turn up expression of genes with STRE 

promoters.  A number of those genes are indeed up-regulated in our data, a selection of which 

are shown in Figure 8.  Thus, microarray analysis supports the notion developed by genetic 

analysis, that the protein phosphorylation cascades affecting Msn2 and Msn4 are important in 

yeast aging.   

Discussion. 

One of the novel findings of the current study was the notable decrease in mRNAs of a 

group of genes related to methylation.  In higher eukaryotes such as rodents and humans, there is 

evidence that methylation of DNA decreases during aging (5-7).  In addition, modification of 

tRNA changes in aging (34).  It was not clear in these studies whether methylation decrease was 

protective or deleterious.  However, recently it has been found that limiting the methionine in the 



 14

diet of mice extends life span, enhances stress resistance, and retards a number of age-related 

chemical changes (11).   In C. elegans, a recent RNAi-based screen for aging-related genes 

identified a gene encoding S-AdoMet Synthase (sams1) as one of 23 such genes (35). They noted 

that down-regulation of methylation of macromolecules is an important aspect of lifespan 

extension by caloric restriction in C. elegans. It is particularly interesting to find SAM genes 

repressed in yeast replicative aging since S-Adenosyl Methionine has been found to regulate the 

yeast G1 Start signal (36). We have thus identified a new homology between yeast and animal 

aging processes.   

We also found age-related effects that implicate regulation of Msn2/Msn4 transcription 

factors by phosphorylation.  Replicative aging in yeast is regulated by the Msn2 and Msn4 

transcription factors (37).  Msn 2 and 4 cannot go to the nucleus to activate genes if 

phosphorylated.  A variety of protein kinases appear capable of phosphorylating them, such as 

Protein Kinase A, Sch9, Snf1/Snf4/Sip1 protein kinase, and possibly the TOR pathway kinases.  

Of these, the Sch9 and TOR kinases appear important in matching the replicative aging process 

to nutritional cues (38,39).   

Our finding related to these protein kinase pathways concerns protein phosphatase I 

(PP1), which activates Msn2 and 4 by removing phosphate.   The Protein phosphatase I catalytic 

subunit encoded by GLC7 is constitutive during logarithmic growth but increases in stationary 

phase (33), and we maintained our aging cells in logarithmic phase.  As noted above, we found 

the catalytic subunit mRNA not to vary with mother cell age, consistent with our growth regimen 

and our designation of the aged metabolic state as pseudo-stationary phase. The genes for 

numerous regulatory protein phosphatase I subunits are inducible.  Our novel contribution is the 

finding that five of the regulatory subunits of this phosphatase are up-regulated more than three 
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fold, and another is up-regulated two fold in aging yeast cells.  Known targets of the two 

transcription factors are also up regulated, as would be expected if Msn2 and Msn4 reach the 

nucleus.  Lin et al. (14) had found an up-regulation of one of the regulatory subunits of protein 

phosphatase I at 8g.  We have found almost all of the regulatory subunits up-regulated (Table 4, 

Figure 8). 

Another finding that relates to this convergence of protein kinase/phosphatase pathways 

involves Sip2, a myristoylated beta subunit of the protein kinase Snf1.  In young cells, this 

protein acts as a negative regulator of nuclear Snf1 by sequestering its activating gamma subunit, 

Snf4, at the plasma membrane.  During aging, Sip2 shifts from the plasma membrane to the 

cytoplasm, along with a redistribution of Snf4 from the plasma membrane to the nucleus.  

Deletion of sip2 releases the activator Snf4 and increases the activity of the Snf1 protein kinase 

within nuclei (40).  That activity in turn can phosphorylate Msn2 and 4, sending them out of the 

nucleus.  We found that the mRNA for Sip2 is increased over two-fold in both 12g and 18g 

samples. This induction is predicted to have a similar effect to the up-regulation of Protein 

Phosphatase I activity, more of the two transcription factors could enter the nucleus. Our finding 

fits well with the fact that the sip2 deletion has a shorter life span and a faster metabolic shift 

(40).       

 This protein kinase nexus may also have a connection to the genomic instability at the 

ribosomal DNA locus noted during aging (41,42).  The sip2 deletion has higher H3 histone 

kinase activity, more rDNA recombination, and loss of silencing at sites affected by histone H3 

ser10 phosphorylation by Snf1, such as the INO1 promoter and targets of the Adr1 transcription 

factor (38, 46).  Supporting a similar change in chromatin silencing during replicative aging, we 

have noted significant up-regulation of several genes under the control of Adr1p, such as ADH2, 
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ALD4, GUT2, POX1, and PEX1 (Supplementary Tables 2 and 3.) In the earlier study, deletion of 

the gene for Fob1, a protein that binds the replication fork block site in each rDNA repeat and 

prevents replication forks and transcription forks from colliding, stopped the rDNA effects of the 

sip2 deletion (38). Thus, the aging effects of protein kinase cascades can extend far beyond 

simple metabolic regulation. 

  Our third significant finding relates to pseudo-stationary phase.  One hallmark of 

stationary phase in budding yeast is the accumulation of glycogen, particularly through the 

approximately 10 fold induction of the glycogen synthase 2 gene, GSY2, during the normal 

logarithmic to stationary phase transition (43).  This gene and many other genes related to 

glycogen metabolism are induced in old mother cells.  Induction of glycogen-related genes had 

been noted before (14, 16).  Early in aging, 8g cells accumulate glycogen and have increased 

expression of a few glycogen- related genes (14).  Extensive study of stationary culture gene 

expression has been carried out (44), showing glycogen gene induction and stationary phase gene 

induction.  We are intrigued by the earlier finding that experiencing stationary phase results in an 

advancement of the replicative aging clock (45). 

We compared our age-related changes in gene expression with stationary phase 

expression changes found by Martinez et al. (44) and note that the two also share decreased 

ribosome and nucleolar gene expression.  Recently, it has been found that ribosomal protein gene 

deletions in diploids, or deletions of one of a pair of paralogs, lengthen life span (38, 46), 

heightening the potential importance of the ribosomal/nucleolar down-regulation we found.  In 

addition, SNZ stationary phase-related genes are induced at least 2.4 fold in 18-20g cells (Table 

2).  We have dubbed this effect ‘pseudo-stationary phase’, since the cell growth regimen keeps 

the cells from ever achieving a cell density that would result in stationary phase in young 



 17

cultures.  In addition to the criteria of low cell density and measurable glucose in the medium, 

we can verify that the cells are not in real stationary phase by the lack of induction of GLC7 (see 

under Protein Phosphatase below).   

A typical feature of cells entering stationary phase is the diauxic shift, monitored 

elegantly by DeRisi et al. (47 in one of the earliest microarray studies.  A change away from 

glycolysis and towards aerobic metabolism of ethanol and gluconeogenesis occurs early in 

diauxie, along with many of the gene expression changes found in the ESR.   Aerobic 

metabolism of ethanol provides an abundance of ATP so that biosyntheses of glucose and 

glycogen become more feasible than under fermentation.  The changes in metabolism reported 

by us and others for aging mother cells of yeast show them to be undergoing diauxie under 

conditions that do not induce diauxie in young cells, i.e. early cultures with glucose remaining in 

the medium.  

Since the cells act as if they are running out of glucose when they are not, we were 

interested to find mRNAs for most of the hexose transporters were increased with aging.  Koc et 

al. (14) had also noted an increase in transport proteins during aging, and Lin et al. (16) noted 

two HXT genes were up-regulated at 8g.  This inaccurate detection of glucose limitation by 

mother cells might be related to a surface-to-volume ratio decrease as the mother cells enlarge.  

When the cells detect (or seem to detect) a limitation in glucose, it is likely that the cells respond 

by inducing the stress/diauxie pathways and preparing for stationary phase prematurely.  A 

recent study using alpha factor arrest to regulate cell size has shown that size is related inversely 

to replication potential (48).  We note that the recent suggestion that yeast may undergo altruistic 

aging (49, 50) fits well with the existence of the pseudo-stationary phase gene expression pattern 

because stationary phase is often followed by death in yeast.  Cells that enter the pseudo-
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stationary phase, we propose, can more easily sacrifice themselves for the well being of nearby 

young cells.  In addition, the recently discovered gene sets that are important in aging and also in 

apoptosis (49, 50) suggest the altruistic response is readied in aging cells. 

Different growth regimens could potentially result in different gene expression patterns, 

so it is important to note that these results apply to dilute cultures grown in liquid medium.  For 

example, they need not be identical with the gene expression patterns to be found in cells 

undergoing life span studies by dissection on agar plates, essentially at infinite dilution (not near 

any other cells and growing at an air/liquid interface).  The authors urge the gerontological 

community to take this caveat into consideration when applying our results to other aging studies. 

Like Lesur and Campbell (15), we found that the ribosomal protein (RP) regulon is 

down-regulated.  We also note that the ribosome maturation regulon (Ribi or RBB), is heavily 

down-regulated in aging mother cells.  With the current data, we cannot tell whether or not this 

decrease results from the slower growth experienced by older cells, but growth rate and ribosome 

gene expression are clearly linked (31).  The mRNAs for two important proximal regulators of 

ribosomal gene expression, Rap1 and Ifh1 (53, 54) are significantly down-regulated at 18-20g.  

The Ifh1 mRNA was down-regulated by 0.54 fold compared to the young expression (p = 0.013 

with Holm adjustment) and the Rap1 mRNA decreased 0.47 fold (p = 0.019 with Holm 

adjustment) as shown in Supplementary Table 3.  However, it is likely that these are not the sole 

determinants of the ribosome gene expression decline because the set of ribosome genes that 

decrease in expression in aging are not identical with those regulated by Ifh1 in association with 

Rap1 (54,55).  For example, we found that genes that RPL18B and HYP2, genes that were 

unresponsive to Ifh1, were both down-regulated to similar extents as the responsive genes such 

as RPL12A, RPS11B, and RPL40A.   



 19

There are connections between stress and ribosome gene expression.  For example, the 

non-essential stress responsive genes YAR1 and LTV1 function in 40s ribosomal subunit 

production (55).  The expression of these two genes is significantly decreased at 18-20g 

(Supplementary Table 3).    

The Ribi and RP regulons are under the control of Sch9 (32), a protein kinase that has 

been implicated in yeast aging (37-39, 50-52).  This protein kinase also interacts with the Msn2/4 

pathway described above.  Thus, the examination of mRNA patterns in aging yeast cells has 

unexpectedly led us to consider the prime importance of this covalent modification cascade 

involving Sch9 and Snf1 on one hand and protein phosphatase 1 on the other. 

Acknowledgements 

This research was supported by NSF-RUI MCB 113937 to LH, NIH-AREA R15AG21907-01A1 

to LH and JH, and NSF-MRI DBI 318944 to Pomona College for equipment.  Stipends and 

supplies were provided by a Beckman Scholars grant from the Beckman Foundation for MYS 

and GY, the Merck/AAAS Fellowship program for support for AK, and Pomona College 

Research Committee for RJ and JH.  We thank Rodney Rothstein for W303Ra and Genome 

Consortium for Active Teaching and Institute for Systems Biology for the microarray slides.  We 

thank Charles Kang, Krassen Dimitrov, Leroy Hood, Steven Proper, Allison Golden, Barbara 

Dunn, Malcolm Campbell, and Laurie Heyer for insightful discussions about microarrays and 

Caleb E. Finch for a helpful review of the manuscript. Preliminary presentations of material in 

this paper have been made at the following conferences:  Molecular Genetics of Aging 

conference, Cold Spring Harbor, NY, October, 2006; American Society for Microbiology, May, 

2006, Orlando, FL; Yeast Genetics and Molecular Biology Meeting, Genetics Society of 

America, July 27-Aug 1, 2004, Seattle, WA; and Miami Biotechnology Symposium, Jan, 2004.  



 20

Authors’ present addresses: Rishi Jindal, University of Pittsburgh School of Medicine, Pittsburgh, PA 

15260; Jennifer Hardee, Yale University, New Haven, CT 06511;  Allen Kuo, New York Medical 

College, Valhalla, NY 10595; Michelle Yuen Shimogawa, University of Washington, Seattle 

WA 98195; Laty Cahoon, Northwestern University Biology Department, Evanston, IL 60218; 

Michelle Wu, Amgen, Thousand Oaks, CA 91321-1799.  Correspondence should be addressed to 

Laura Hoopes, Biology Department, Pomona College, Claremont, CA 91711, 

lhoopes@pomona.edu 



 21

References 
 

1. Jazwinski, S.M., (1990) An experimental system for the molecular analysis of the aging  
 

process: the budding yeast Saccharomyces cerevisiae.  J Gerontol 45 (3):B68-74. 
 

2. Kennedy, B.K., Austriaco, N.R., Jr, Guarente, L.  (1994) Daughter cells of  
 

Saccharomyces cerevisiae from old mothers display a reduced life span.  J Cell  
 
Biol 127(6 pt 2):1985-93. 

 
3. Dean, R.G., Socher, S.H., and Cutler, R.G.  (1985) Dysdifferentiative nature of aging:  

 
age-dependent expression of mouse mammary tumor virus and casein genes in  
 
brain and liver tissues of the C57BL/6J mouse strain.  Arch Gerontol Geriatr  
 
4(1):43-51. 
 

4. Powers R.W. 3rd, Kaeberlein M., Caldwell S.D., et al. (2006) Extension of chronological life  

span in yeast by decreased TOR pathway signaling.  Genes Dev. 20 (2):174-84.   

5. Singhal, R.P., Mays-Hoopes, L.L., and Eichhorn, G.L. (1987) DNA methylation in aging  

of mice.  Mech Ageing Dev 41(3):199-210. 

6. Wilson, V.L., Smith R.A., Ma S., Cutler, R.G.. (1987) Genomic 5-methyldeoxycytidine  
 

decreases with age.  J Biol Chem 262(21):9948-51. 
 

7. Mays-Hoopes, L.L., Brown, A., Huang R.C. (1983).  Methylation and rearrangement of  

mouse intracisternal A particle genes in development, aging, and myeloma.  Mol Cell 

Biol 3(8):1371-80. 

8. Barbot, W., Dupressoir, A., Lazar, V., Heidmann, T. (2002) Epigenetic regulation of an  
 

IAP retrotransposon in the aging mouse: progressive demethylation and de- 
 
silencing of the element by its repetitive induction.  Nucleic Acids Res 30  
 
(11):2365-73. 



 22

9. Johnson, T.E., Henderson, S., Murakami, S., et al. (2002) Longevity genes in the nematode  
 

Caenorhabditis elegans also mediate resistance to stress and prevent disease. J  
 
Inherit Metab Dis 25(3):197-206. 

 
10. Dozmorov, I., Galecki, A., Chang, Y. et al. (2002) Gene expression profile of long-lived  

 
snell dwarf mice.  J Gerontol A. Bio Sci/Med Sci 57 (3):B99-108. 

 
11.Miller, R..A., Buehner, G., Chang, Y.,  et al. (2005) Methionine-deficient diet extends mouse  

lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and  

increases hepatocyte MIF levels and stress resistance.  Aging Cell 4(3):119-25. 

12. Miller, R.A., Chang, Y., Galecki ,A.T. et al. (2002) Gene expression patterns in calorically  

restricted mice: partial overlap with long- lived mutant mice.  Mol Endocrinol 16  

(11):2657-66. 

13. Weindruch, R., Kayo, T., Lee, C.K., Prolla, T.A. (2001) Microarray profiling of gene  

expression in aging and its alteration by caloric restriction in mice.  J Nutr  

131(3):918s-923s. 

14.  Lin, S.S., Manchester, J.K., Gordon, J. I. (2001) Enhanced gluconeogenesis and increased  

energy storage as hallmarks of aging in Saccharomyces cerevisiae.  J Biol Chem  

276(38): 36000-7. 

15. Lesur, I., Campbell, J.L.  (2004). The transcriptome of prematurely aging yeast cells is  

similar to that of telomerase-deficient cells. Mol Biol Cell 15 (3):1297-312. 

16. Koc, A., Gasch, A.P., Rutherford, J.C. et al. (2004)  Methionine sulfoxide reductase  
 
regulation of yeast lifespan reveals reactive oxygen species-dependent and –independent  
 
components of aging.  Proc Natl Acad Sci USA. 101(21):7999-8004. 
 

17. Lin, S.J., DeFossez, P.-A., and Guarente, L. (2000) Requirement of NAD and SIR2 for  



 23

life-span extension by calorie restriction in Saccharomyces cerevisiae. Science  

289:2126-2128.   

18. Jiang, J., Jaruga, E., Repnevskaya, M., Jazwinski, S.M. (2000) An intervention  

            resembling caloric restriction prolongs life span and retards aging in yeast.  

           FASEB J 14:2135-2137.   

19. Gasch, A., Spellman P.T., Kao C.M. et al. (2000) Genomic expression programs in the  

response of yeast cells to environmental changes.  Mol Biol Cell 11:4241-57. 

20. Chen, C., Dewale, S., Braeckman, B. et al. (2003)  A high-throughput screening system for  

            genes extending life-span. Exp Gerontol. 38:1051-1063. 

21. Campbell A.M., Eckdahl T.T., Fowlks E. et al. (2006) Genome Consortium for Active  
 

Teaching (GCAT).   Science 311:110-111. 
 

22. Smyth, Gordon K. (2005).  Limma: linear models for microarray data.  In:  

Bioinformatics and Computational Biology Solutions using R and Bioconductor,  

In R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds.), Springer, New  

York, pages 397-420. 

23. Smyth, Gordon K. (2004).  Linear models and empirical Bayes methods for assessing  

differential expression in microarray experiments.  Statistical Applications in 

 Genetics and Molecular Biology, vol 3, No 1, Article 3. 

24. Gentleman, R., Carey, V., Bates, D., et al.  (2004). Bioconductor: Open software  

 development for computational biology and bioinformatics.  Genome Biology,  

 vol 5, pages R80. 

25. Holm, S. (1979) A Simple Sequentially Rejective Multiple Test Procedure.  
 

Scand J  Stats 6: 65-70. 
 



 24

26. Dahlquist, K.D., Salomonis, N., Vranizan, K. et al. (2002)  GenMAPP, a new tool for  

viewing and analyzing microarray data on biological pathways.  Nat Genet 31:19-20. 

27. Doniger, S.W., Salomonis, N., Dahlquist, K.D et al.(2003) MAPPFinder: using Gene  

Ontology and GenMAPP to create a global gene-expression profile from microarray data.   

Genome Biol 4 (1):R7.   

28.  Wrobel, G., Chilmet, F., and Primig, M. (2005).  GOCluster integrates statistical  

analysis and functional interpretation of microarray expression data.   

Bioinformatics 21:3575-3577. 

29.  Wise, A., Hardin, J., and Hoopes, L. (2006) Yeast through the ages: A statistical analysis of  
 

genetic changes in yeast aging. Chance (Publication of the American Statistical  
 
Association) 19 (3): 39-44. 
 

30. Edgar, R., Domrachev, M., and Lash, A.E. (2002) Gene Expression Omnibus: NCBI   

gene expression and hybridization array data repository.  Nucleic Acids Res 30: 207-210. 

31.  Wade, C., Umbarger, M.A., and McAlear, M.A. (2006). The budding yeast rRNA and  

ribosome  biosynthesis (RBB) regulon contains over 200 genes.  Yeast 23:293- 

306. 

32. Jorgensen P., Rupes I., Sharom J.R. et al. (2004)  A dynamic transcriptional network  
 
communicates growth potential to ribosome synthesis and critical cell size.  Genes Dev  
 
18 (20); 2491-505. 

 
33. Feng, Z., Wilson, S., Peng, Z. et al, (1991) The yeast GLC7 gene required for glycogen  

 
accumulation encodes a type I protein phosphatase.  J Biol Chem 166:23796-23801. 
 

34. Mays, L.L., Lawrence, A.E., Ho, R.W., and Ackley, S. (1979), Age-related changes in  

function of transfer ribonucleic acid of rat livers.  Federation Proceeding 838(6):1984-8. 



 25

35. Hansen, M., Hsu, A.-L., Dillin, A., and Kenyon, C.  (2005) New genes tied to endocrine,  

       metabolic, and dietary regulation of life span in a Caenorhabditis elegans genomic  

       RNAi screen. PLoS Genetics 1:0119-0128.  

36. Mizunuma, M., Miyamura, K., Hirata, D., et al. (2006) Involvement of S-adenosyl  

methionine in G1 cell-cycle regulation in Saccharomyces  cerevisiae. Proc Natl Acad Sci  

USA 101:6086-91.  

37.   Fabrizio P., Pletcher S.D., Minois N. et al. (2004) Chronological aging-independent  
 
replicative life span regulation by Msn2/Msn4 and Sod2 in  Saccharomyces cerevisiae.   
 
FEBS Lett 557(1-3):136-42. 

 
38. Kaeberlein, M., Powers R.W. 3rd, Steffen K.K., et al. (2005). Regulation of yeast  

 
replicative life span by TOR and Sch9 in response to nutrients.  Science  

 
210(5751):1193-6. 

 
39. Powers, R.W., Kaberlein, M., Caldwell, S. et al.  (2006)  Extension of chronological life sapn  

in yeast by decreased TOR pathway signaling. Genes & Dev. 20:174-184. 

40.  Lin, S.S., Manchester, J.K., Gordon, J.I. (2003) Sip 2, an N-myristoylated beta subunit of  

         Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular  

         histone kinase activity, recombination at rDNA loci, and silencing.  J Biol Chem  

         278 (15): 13390-7. 

41. Sinclair D., Mills, K., and Guarente L. (1997) Accelerated aging and nucleolar  

fragmentation in yeast sgs1 mutants.  Science 277:1313-1316. 

42.  Sinclair, D., and Guarente, L. (1997)  Extrachromosomal rDNA circles—A cause of  

aging in yeast.  Cell 91:1033-42. 

43.  Hardy, T., Huang, D., Roach, P.J. (1994). Interactions between cAMP-dependent and  
 



 26

SNF1 protein kinases in the control of glycogen accumulation in Sachharomyces  
 
cerevisiae.  J Biol Chem 269(45):27907-13. 

 
44.  Martinez, J., Roy, S., Archuletta, A., et al.  (2004). Genomic analysis of  

stationary-phase and exit in Saccharomyces cerevisiae: Gene Expression and  

Identification of Novel Essential Genes.  Mol Biol Cell 15: 5295-5305. 

45.  Ashrafi, K., Sinclair, D., Gordon, J.I., and Guarente, L (1999). Passage through stationary  

phase advances replicative aging in Saccharomyces cerevisiae. Proc Natl Acad Sci, USA,  

96 :9100-5. 

46. Chiocchetti, A., Zhou, J., Zhu, H. et al. (2007) Ribosomal proteins Rpl10 and Rps6 are potent  

regulators of yeast replicative life span.  Exp Gerontol. 42 (4):275-286. 

47.  DeRisi, J., Iyer, V.R. , and Brown, P.O. (1997) Exploring the metabolic and genetic  

 control of  gene expression on a genomic scale.  Science 278: 680-686. 
 

48. Zadrag, R., Kwolek-Mirek., M.. Bartosz, G., and Bilinski, T. (2006) Relationship  

       between the replicative age and cell volume in Saccharomyces cerevisiae.  Acta  

       Biochim Pol 53:747-751. 

49. Longo, V.D., Mitteldorf, J., and Shulachev, V.P.  (2005). Programmed and altruistic  

       aging.  Nature Reviews Genetics 6: 866-872. 

50. Longo V.D. (2003) The Ras and Sch9 pathways regulate stress resistance and  

longevity.   Exp Gerontol 38(7):807-11. 

51.  Kaeberlein, M., Kirkland, K.T., Fields, S., Kennedy, B.K. (2005) Genes determining yeast  
 

replicative life span in a long-lived genetic background.  Mech Ageing Dev  
 
126:491-504. 
 

52. Laun, P., Ramachandran, L., Jarolim, S. et al.  (2005)  A comparison of the aging and  



 27

apoptotic transcriptome of Saccharomyces cerevisiae.  FEMS Yeast Research  

5:1261-1272. 

53. Wade, J., Hall, D., and Struhl, K. (2004) The transcription factor Ifh1 is a key regulator of  

yeast ribosomal protein genes.  Nature 432:1054-1058. 

54. Schawalder, S., Kabani, M., Howald, I. et al. (2004) Growth-regulated recruitment of the  

essential yeast ribosomal protein gene activator Ifh1.  Nature 432: 1058-1061. 

55. Loar, J., Sieser, R., Sundberg, A. et al. (2004) Genetic and biochemical interactions among  

Yar1, Ltv1, and Rps3 define novel links between environmental stress and ribosome  

biogenesis in Saccharomyces cerevisiae.  Genetics 168:1977-1889.  



 28

Figure Legends. 

Figure 1. Overlap in Statistically Significant Changes (p<0.05) Among Age Classes in 

Microarray Data.  Using Bioconductor (22-24), the p values have been adjusted for multiple 

testing by the method of Holm (25).   

Figure 2. Functional Categories Among Statistically Significant Gene Expression Changes at 18-

20g.  Genes were identified by Bioconductor (22-24) as significant. 

Figure 3. Correlation Between Average Expression Ratios from Quantitative RT PCR (qPCR) 

and Microarrays.  Genes were selected from categories important in yeast aging.  Average ratios 

of old to young mRNA for each gene, plus or minus standard deviations, are shown.  Microarray 

data are from Bioconductor (22-24) using lowess smoothing; qPCR data are from standard curve 

method (ABI) with standard deviations calculated according to the ABI Guide, “Performing 

Relative Quantitation of Gene Expression Using Real-Time Quantitative PCR,” available from 

the ABI web site.  The RNA prepararations used for qPCR were from 18-20g cells for GLC7, 

MF(alpha)2 given as MF-A2, MET6, MIS1, PNC1, RPA12, SSB2, SUN4, and TRM82.  The RNA 

preparations assayed for ACO1, ASF1, SIR2, and TYE7 were from 12g cells.  The preparations 

assayed for CLA4 and MNN1 were from 8g cells. 

Figure 4.  Ribosome-Related Gene Expression Changes in Yeast Replicative Aging.  

a. Overlap Between the RP Regulon and the Ribosomal Protein Genes that Change 

Significantly in Expression at 18-20g compared to 1g via Bioconductor (22-24) Analysis 

Using Lowess Smoothing.  

b. Overlap Between the RBB Regulon and Aging Ribosomal RNA-Nucleolar Genes.  The 

aging group included the Ribosomal rRNA Processing and Nucleolar Ribosome assembly 
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and export genes that change significantly in expression at 18-20g compared to 1g in 

Bioconductor (22-24) analysis using lowess smoothing. 

Figure 5. Pseudo-stationary Phase Genes that Affect Environmental Stress Responses in 

Replicatively Aging Yeast.  Data from Bioconductor (22-24) analysis using lowess smoothing. 

a. Overlap Between Significantly Changed mRNAs in Aging and in ESR (19).   

b. Age and Stress Affect ESR Genes Similarly.     A sample of 25 arbitrarily chosen genes 

that take part in the Environmental Stress Response was tested for correspondence 

between expression in cells treated 45 minutes with 0.2% MMS (data from reference 19) 

and 18-20g cells.  The log (base 2) of the expression ratio was plotted.  The 

preponderance of the data fall in the negative/negative and positive/positive quadrants 

indicating similar changes in gene expression induction/repression from aging and from 

stress. 

Figure 6.  Pseudo-stationary Phase Gene Expression Patterns in Yeast Replicative Aging.   

a. Expression of Glycogen Synthase GSY1 as a Function of Age.  Data from Bioconductor (22-

24) analysis using lowess smoothing.  The expression of the second gene for this enzyme, GSY2, 

with age is virtually identical with this graph (Supplementary Tables 2, 3). 

b. Hexose Transporter mRNAs During Yeast Aging.  Data from Bioconductor (22-24) analysis 

using lowess smoothing. The genes significantly induced during aging and averaged for this 

figure were: HXT2, HXT3, HXT5, HXT6, HXT7, HXT9, HXT15 and HXT17.  

Figure 7.  Nucleotide Excision Repair mRNAs Were Significantly Induced in Old Mother Cells.   

The six NER Genes significantly induced (p < 0.05 with Holm correction at 18-20g compared to 

1g) and averaged for this figure are RAD2, RAD4, RAD7, RAD10, RAD14, and RAD28.    
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Figure 8. Pathways of Regulation of Stress Response Genes by Protein Kinases and Protein 

Phosphatase I in Yeast, Showing Effects of Replicative Aging.  Numbers following gene names 

show the expression ratio of 18-20g cells compared to 1g cells calculated in Bioconductor with 

lowess smoothing (22-24).  

Supplementary Figure 1. Correlation Between qPCR and Microarray data.  The log base 2 of the 

average microarray ratio with old divided by young from Bioconductor (22-24) analysis was 

plotted against the log base 2 of the average qPCR ratio.  The R square value is high, showing 

that the two methods are highly correlated.     
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Table 1. Gene Ontology Terms Over-represented at 18-20g from MAPPFinder (26, 27).   The 
GO name is the name of the category considered to be over-represented among the changed 
genes.  GO is the category: Cellular location C, Pathway P, or Function F.  Changed, the number 
of genes considered to have changed in mRNA concentration when comparing 18-20g cells to 1g 
cells, was limited to changes of greater than three fold.  Those categories with asterisks had 
fewer than four genes changed and are considered less reliable.  Total, the total number of genes 
within the GO category.  Z indicates the Z score, Permuted P value indicates the probability for 
chance to have caused that level of representation among the total genes in the category, 
Adjusted P Value, the probability adjusted for the permutations of the terms. 
GO name GO Changed Total z  Permuted Adjusted
      P value P value 
Cytosolic ribosome(sensu Eukaryota) C 77 153 23.7 0 0
Ribosome biogenesis and assembly P 68 221 16 0 0
Nucleolus C 51 210 11.6 0 0
rRNA processing P 39 160 10.1 0 0
Primary metabolism P 228 2930 6.45 0 0.041
Mating behavior* P 2 2 5.66 0 0.74
Amino acid metabolism P 29 230 4.43 0 0.98
Methionine metabolism P 8 34 4.38 0 0.98
tRNA modification P 11 67 3.68 0 1
RNA methylation P 4 11 4.3 0.001 0.98
Carboxylic acid metabolism P 35 335 3.66 0.001 1
Protein modification P 14 514 2.72 0.001 1
Methionine adenosyltransferase 
activity F 2 2 5.66 0.002 0.74
rRNA modification P 5 16 4.32 0.002 0.98
RNA polymerase complex C 7 31 3.96 0.002 1
Nucleotide metabolism P 17 127 3.63 0.002 1
tRNA(guanine-N7-)-
methyltransferase* F 2 2 5.66 0.004 0.74
One-carbon compound metabolism P 5 18 3.95 0.004 1
Nucleotide transport* P 2 3 4.47 0.005 0.98
Mating pheromone activity* F 2 4 3.75 0.008 1
Acetate biosynthesis* P 2 4 3.75 0.01 1
RNA methyltransferase activity P 5 22 3.36 0.01 1
Fatty acid biosynthesis P 4 17 3.1 0.011 1
Methyltransferase activity F 10 76 2.71 0.015 1
DNA repair* P 2 150 -2.4 0.02 1
Biopolymer methylation P 5 26 2.9 0.021 1
tRNA methylation P 3 10 3.24 0.025 1
Folic acid derivative metabolism* P 2 11 3.02 0.029 1
rRNA methyltransferase activity* F 2 5 3.24 0.03 1
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Table 2.  Induction of Genes for Stationary Phase and Starvation in Aging Yeast.  Average and 
standard deviation of expression ratios determined using Bioconductor (22-24) with lowess-
smoothed data. 

ID name Avg 1g  SD 1g 
Avg 
8g  SD 8g 

Avg 
12g  

SD 
12g 

Avg 
18g  

SD 
18g 

YFL059W SNZ3 1.0206 0.1409 1.4388 0.4298 1.9820 0.9638 2.5410 0.6001
YOR027W STI1 0.8995 0.1094 0.8503 0.9322 1.6204 0.6621 2.6528 1.4236
YER150W SPI1 1.0165 0.0692 0.9432 0.1495 2.3104 1.0157 4.3893 1.1000
YNL333W SNZ2 1.1314 0.1958 1.5657 0.7702 2.2121 0.8372 2.5176 0.7519
YLR258W GSY2 1.0700 0.0376 0.9123 0.1156 1.6803 1.3599 4.5849 2.7983
YGL208W SIP2 1.0132 0.1467 0.9834 0.5962 2.0004 0.5360 2.3379 0.9386
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Table 3. Significant Age-Related Decreases in Methylation Gene Expression. Average and 
standard deviation of expression ratios determined using Bioconductor (22-24) with lowess-
smoothed data. 

ID Gene Avg 1g  SD 1g Avg 8g SD 8g 
Avg 
12g  

SD 
12g 

Avg 
20g  

SD 
20g 

YPL266W DIM1 0.9674 0.0660 1.2129 0.2104 0.4266 0.2607 0.2483 0.1193
YPL208W RKM1 1.0586 0.0655 0.9247 0.1542 0.7579 0.2366 0.5472 0.2434
YNL062C GCD10 1.0467 0.0877 1.0311 0.3832 0.8174 0.1976 0.5618 0.1055
YDR120C TRM1 1.1122 0.1534 1.1094 0.3552 0.4883 0.3867 0.3513 0.2045
YKR056W TRM2 0.9938 0.0356 0.9280 0.1527 0.5037 0.3987 0.4116 0.1401
YDL112W TRM3 0.9671 0.1570 1.0034 0.1911 0.8412 0.5165 0.3133 0.0819
YML014W TRM9 0.9503 0.0968 1.0219 0.3355 0.6265 0.3903 0.3871 0.0900
YOL124C TRM11 0.9816 0.0500 1.2151 0.2408 0.6500 0.5144 0.1238 0.0373
YDR165W TRM82 0.9570 0.0979 0.8098 0.2685 0.3978 0.1213 0.2439 0.1018
YNR046W TRM112 1.0357 0.1442 1.2315 0.3727 0.4733 0.1150 0.4064 0.1435
YBR261C YBR261C 1.0225 0.0603 1.2230 0.2258 0.5189 0.1713 0.3420 0.1090
YGR001C AML1 0.9295 0.1812 0.9957 0.4376 0.4452 0.3190 0.1506 0.0610
YIL064W YIL064W 1.0370 0.0565 1.1154 0.3571 0.3845 0.2100 0.2185 0.0680
YIL110W MNI1 1.0687 0.1258 1.0836 1.4986 0.4454 0.1369 0.3463 0.0939
YDR465C RMT2 0.9797 0.0713 0.8974 0.1249 0.4237 0.3451 0.2617 0.0560
YCR047C BUD23 1.0770 0.1300 1.1256 0.3104 0.6436 0.2390 0.4019 0.1939
YLR180W SAM1 1.0262 0.0893 1.0127 0.6826 0.4334 0.2381 0.1613 0.0503
YLDR502C SAM2 1.0172 0.1139 0.7624 0.3788 0.2925 0.1215 0.1305 0.0549
YPL274W SAM3 0.9487 0.0676 0.7908 0.2100 0.4396 0.1377 0.3823 0.0960
YPL273W SAM4 0.8874 0.1417 0.8453 0.6518 0.4326 0.1802 0.3810 0.1343
YOL052C SPE2 1.0254 0.0725 0.8776 0.3301 0.6228 0.1887 0.4469 0.1611
YER091C MET6 0.9488 0.1522 0.8233 0.5831 0.4652 0.2225 0.2368 0.0983
YBR081W MIS1 1.0015 0.0428 0.9123 0.3840 0.6090 0.3430 0.2399 0.0914
YGR264C MES1 0.9286 0.0837 0.8257 0.1616 0.2504 0.1901 0.1401 0.0591
YOR201C MRM1 1.0907 0.1094 1.1826 0.3216 0.4784 0.2272 0.6020 0.2406
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 Table 4.  Induction of Many Regulatory Subunits of Protein Phosphatase I in Yeast Aging.  
Average and standard deviation of expression ratios from Bioconductor (22-24) using lowess-
smoothed data. 
 
 
 

Name 
Subunit 
encoded 

Avg 
1g  

SD 
1g 

Avg 
8g  

SD 
8g 

Avg 
12g  

SD 
12g 

Avg 
20g  

SD 
20g 

GLC7 Catalytic   1.059 0.153 1.030 1.305 1.204 0.558 1.018 0.106 
SDS22 Regulatory   1.139 0.260 1.179 0.918 2.918 1.677 3.862 1.345 
REG1 Regulatory   1.072 0.145 1.273 0.542 1.550 0.281 2.427 1.648 
REG2 Regulatory   1.122 0.139 0.885 0.235 4.630 1.735 7.707 2.054 
SIP5 Regulatory   0.976 0.085 0.863 0.373 1.636 0.730 1.510 0.416 
GAC1 Regulatory   1.027 0.107 0.779 0.165 2.497 1.352 3.367 3.328 
GLC8 Regulatory   1.023 0.143 0.982 0.561 1.736 0.622 3.262 0.585 
SHP1 Regulatory   0.976 0.066 1.119 0.402 1.869 1.293 2.077 0.264 

BUD14 
Reg, 
budding 0.981 0.100 0.963 0.284 0.845 0.132 0.866 0.321 

BNI4 
Reg, 
budding 1.042 0.111 0.993 0.077 1.118 0.332 1.004 0.545 
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Supplementary Table 1.  GenePix Pro 5.1 Microarray Quality Control Measurements.  All 

arrays used satisfied the criteria in the table below.  Bkgrd is background intensity of the 

microarray.  Included are measures of the signal strength, slide background strength  

compared to signal, non-roundness of spots, background variability across and down the slide, 

signal saturation of spots, spots not found by the software, and spots designated as bad due to 

smearing or wrong positioning.   

 
Median 
signal 
to 
bkgrd 

Mean 
of 
median 
bkgrd 

Median 
signal 
to noise 

Median 
%>bkgrd+1SD

Feature 
variation

Bkgrd 
variation Saturated Not found 

Bad 
spot 

>2.5 <500 >4 >90 <0.5 <1.2 <3.3% <18% <7% 
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