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Abstract

The application of statistical tools to microarray analysis can help to advance genetic re-
search. The microarrays of interest in this study measure gene expression levels in seventeen
samples from four generations of yeast. The goal of this paper is to help analyze the changes
in gene expression levels in aging yeast by the identification of specific genes that are sen-
sitive to aging through the application of various statistical techniques. The two tools
described here are analysis of variance (ANOVA) and prediction analysis for microarrays
(PAM). ANOVA models the variability and effect of different factors, such as generation.
PAM classifies microarray samples based on the gene expression levels and allows us to mea-
sure the strength of groups based on gene expression across age categories. Both techniques
identify specific genes which may be of interest for biologists to study further.
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Chapter 1

Introduction

Microarray technology allows for the expression levels of thousands of genes in a cell to be
measured simultaneously. This technology provides great potential in the fields of biology
and medicine as the analysis of the data obtained from the microarray experiments provide
insight into the roles of specific genes. This paper focuses on the analysis of data from a
yeast DNA microarray experiment. In order for meaningful results to be obtained, numerous
analytical techniques were applied to this data. Microarrays provide an exciting means
through which to explore different statistical techniques.

The biological question that motivates the research of these data is how yeast genes
change over time. Therefore, our primary interest in the analysis of yeast gene expression
is to further uncover the quantitative relationship between the gene expression levels, both
individually and as a whole, and the generation (age) of the yeast cell. The analysis will
be performed using two different techniques, analysis of variance (ANOVA) and prediction
analysis for microarrays (PAM). Through the use of these two statistical techniques, we
will uncover genetic patterns in aging yeast. Through the similarities and differences in
the results from and mathematics behind the various techniques, relationships between the
techniques and their results can be inferred.

Analysis of variance (ANOVA) is a method that studies the variation in the data. With
ANOVA we can create a linear model of the gene expression using generation and additional
factors, including dye, which exist in our data. The resulting analysis identifies the specific
genes for which generation had a significant effect given that we accounted for other forms
of variability such as array and dye color.

Another method for analyzing the differences between generations is prediction analysis
of microarrays (PAM). PAM is a clustering tool that provides insight into the robustness
of different groupings of the generations of yeast [7]. PAM isolates and identifies specific
genes using a threshold value and creates a model to predict the generation for a sample
array.
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Chapter 2

Background Biology and Data

The yeast data was collected by Professor Hoopes of the biology department at Pomona
College. Yeast are single cellular organisms, so for a given yeast all the genetic information
is isolated to one cell. To study the genetic effects of aging in yeast, yeast were obtained
from generations 1.5, 4, 8, and 12. The genes from these cells were then analyzed through
17 array experiments (see Table 2.1). Generation 1.5 is a mixture of cells from the first
and second generation yeast cells, which is a consequence of the challenge for biologists to
isolate cells from the first generation.

For each of the microarray experiments, ‘spotted arrays’ were used. On each glass slide
(array) there is a single spot which measures the expression levels for a specific gene. The
gene expression levels for 6528 ‘spots’ across these four generations of yeast were measured.
Of these ‘spots’, only 6310 are genes of interest, the remaining 218 are either control genes
or spots on the array that were empty of genetic information. The measurements of all
the expression values were modified with a normalization program used by the biologists
before releasing the data. Additional normalization techniques performed on this data will
be described in section 3.1.

To measure the expression level of the genes, for each slide two mRNA samples are
reverse transcribed into cDNA samples for a specific cell and compared. The first cDNA
sample is from the generation of interest (1.5, 4, 8 or 12) and is labeled using a fluorescent
dye of one color (often red); the second sample is from the base generation (1.5) and is
labeled using a different fluorescent dye (often green). Note that the red and the green dyes
will emit different levels of intensities for the same gene expression level. To control for
biases in dye intensity due to the differences in the dye color, for certain arrays the labels
for the red and the green dyes were switched (see Table 2.1). Throughout the equations in
this paper, when we refer to the red(R) and the green(G) dye intensities, we mean those
representing the interest and base generation respectively.

On each array, for each spot, the intensity ratio between the generation of interest and
the base generation reflects the change in the gene activity for the generation of interest as
compared to the baseline generation [8]. For example, consider array 8 in which the genetic
information from generation 1.5 was labeled with green dye and the genetic information
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Array Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Generation 1.5 1.5 1.5 1.5 1.5 4 4 4 4 8 8 8 8 12 12 12 12

Base Dye Color R G G G G R G G R G G R R G G R R

Table 2.1: The generation and base dye color of each of the 17 arrays. If the base dye color is
red (R), then the expression level of the generation of interest was measured by the green(G) dye
intensity.

from generation 4 was dyed red. For a given spot, the measurement of red dye intensity
reflects the amount of that gene present in fourth generation yeast cells. Similarly, for a
given gene the measurement of the green dye intensity reflects the amount of that gene in
generation 1.5 yeast cells. T a particular spot, if the red dye intensity is greater than the
green dye intensity, the expression level for the fourth generation is greater than the 1.5
generation for the gene on that spot. In this example the ratio of the red to the green dye
(or generation 4 to generation 1.5) is greater than one and so the gene measured at this
spot has become more active in the fourth generation as the yeast has aged.
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Chapter 3

Initial Methodology

3.1 Normalization

The microarray procedure is subject to biases both within arrays, for example, the location
of the gene on the array and dye intensity for each spot, and between the arrays, for example,
the specific slide a cell is on. These biases affect the measured gene expression of this data.
Before the data are analyzed, the values obtained from each array should be adjusted to
remove biases. We can apply a normalization technique that uses loess smoothing and
scaling to minimize systematic location variations in the gene expression levels. Once the
spatial location and dye biases have been accounted for, expression levels across the slides
and the biological differences between the genes and samples can be better measured [8].

3.1.1 MA-plot

MA-plots are a helpful way to observe the biases described previoulsy and assist in the
normalization of the data [8]. To create the plot, the data must first be transformed into
values representing ratios(M) and overall intensity(A). We want to modify our data so that
our ratios of interest(M) are not dependent on overall intensity(A). The adjustment will
help remove the effects of the differences between the red and green dye. For each of the
17 arrays, the red(R) and the green(G) intensity values have been measured for each gene.
Therefore, for each gene on each array we set Mij = log2(

Rij

Gij
) and Aij = 1

2 log2(Rij · Gij),
where i = 1, 2, . . . , 17 is the array number and j = 1, 2, . . . , 6528 is the gene. Note that
for samples with dye swawps, Mij = log2(

Gij

Rij
). Hence, Mij represents the log of the ratio

of the dye intensities while Aij represents the average log intensity for a specific gene on
a specific array. Because Mij is the log ratio, Mij = 0 reflects no change in gene intensity
over the generation. In the calculation of Aij , the (1

2) term is so Aij will have the same log
range as log2(Rij) and log2(Gij),while log-base two is used because it is easier to express
ratios in powers of two (twice as big, four time as big,. . . ). Also note that our original data
is not lost in these transformations as we can back solve for Rij and Gij from Mij and Aij

and obtain equations 3.2 from equations 3.1.
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Mij = log2(
Rij

Gij
) and Aij =

1
2
log2(Rij · Gij) (3.1)

⇔
Rij = (22Aij+Mij )

1
2 and Gij = (22Aij−Mij )

1
2 (3.2)

After transforming the yeast data, for each array i a scatter plot of the j Mij values is
plotted against the corresponding Aij values. In total there are 17 plots with 6528 spots,
assuming that no data points are missing. See figure 3.1(a) for an example MA-plot of array
12.

The normalization technique applied to the data expressed in the MA-plots requires
multiple steps.

3.1.2 Within print-tip group normalization

When the cDNA array is printed, the spots are broken up into 24 groups based on their
location. Each group contains 272 genes (6528/24) and uses a different print tip. The
24 print tips work simultaneously on their groups, each moving in the same order [1].
One method for removing unwanted variability in the data is to perform within print-tip
normalization. Within print-tip group normalization removes the intensity dependence of
M and the unwanted variability within each print-tip group that results from the location
of the print-tip group on the array and the amount of dye the group received, by assuming
that all of the genes should be centered at M = 0. If the data values were all without
the potential errors caused by the aforementioned sources of variability, or “true”, then the
intensity log ratios M in an MA-plot should be symmetrically distributed around some
horizontal line, indicating no ratio dependence on intensity. The line will be centered at
M = 0 as we assume that most genes do not change from generation to generation, so
the the R to G ratio is 1 [8]. Furthermore, genes with “true” non-zero log ratios (genes
which have a change in expression level as the yeast aged) should be randomly distributed
both throughout the slide and the print-tip groups so that the distribution of these genes is
the same between the 24 print-tip groups. Hence, the intensity ratios within each print-tip
group should be centered around M = 0.

Within print-tip group normalization uses a loess smoothing technique. The specific
smoother used on our data was derived by Cleveland and is often referred to as Cleveland’s
smoother or a locally weighted running-line smoother [2]. The idea behind this smoother is
that a regression line will not accurately fit the data over the entire range of X because the
data are not linear, however over small intervals of X the data model can be approximated
with a regression line. These regression lines are calculated by locally weighting the data
at given points, and then connecting these lines to create a smoothing spline. Due to the
local weighting, this smoother is robust as it will not be affected by a small percentage of
differentially expressed genes that appear as outliers in the MA-plot [8].

The specifics of Cleveland’s technique will be described with respect to the calculation
of the smoothing spline for a given print-tip group on a given array. We begin with some
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notation: let the subscripts i, k and l denote the ith array, kth print-tip group and lth gene in
a print-tip group, where i is as described section 3.1.1, j = 1, 2, . . . , 24 and k = 1, 2, . . . , 272.
So Mikl denotes the lth log ratio in the kth print-tip group on the ith array, and similarly for
Aikl with log intensity. For a specific print-tip group from a given array, we are interested
in estimating the expected value of Mikl that corresponds to a specific Aikl value.

First we need to choose in advance the value of f , the proportion of points from a
specific print-tip group on a given array used to estimate Mik . f is often referred to as the
span. If f is too close to zero, then the lines will be too ragged, and if f is too close to 1,
a weighted least squares line will result. We used a standard f value of 0.4, and hence the
272 × 0.4(∼ 109) nearest neighbors. Next, let A∗ = Aikl for some l, and we measure the
distance of A∗ from each of the observed Aikl values so that:

δijk = |Aikl − A∗| (3.3)

The 109th Aikl values that correspond to smallest 109 δikl are the nearest neighbors to
A∗. Set the maximum of these 109 δikl equal to δik(max). Let Qikl = δikl

δik(max)
. The weight,

wikl, of each gene is then calculated as follows:

wikl =
{

(1 − Q3
ikl)

3 if 0 ≤ Qikl < 1
0 otherwise

(3.4)

Hence, a very close Aikl to A∗, will have a small δikl resulting in a small Qikl and a large
weight wikl. Whereas an Aikl value that is far from A∗ will either have a large weight or no
weight at all.

Next, weighted least squares are used to predict M̂ikl that corresponds to A∗. Choose
b0 and b1 that minimize

272∑

l=1

wikl(Mikl − b0 − b1Aikl)2

are used in our equation. An estimate of M̂ik is then:

M̂ik. = b0 + b1A
∗ (3.5)

Note how M̂ikl changes as A∗ is altered. We find A∗ for all values k, and solve for M̂ikl

to get the estimated expected value of Mikl. The smoothing spline, which we will denote
cik(A), is then obtained by the lines connecting the points (Aikl, M̂ikl). The loess smoother
is applied separately to each of the 24 print-tip groups in each array so that all of the cik(A)
are calculated. For array 12, the 24 loess fits to the MA-plot can be viewed in figure 3.1(b).

We are assuming that for each print-tip group, Mik = 0. Therefore, for each gene on
each array from the kth print-tip group, a new normalized value for Mikl(new) is calculated
by subtracting cik(Aikl)from the old Mikl value as shown below

Mikl(new) = Mikl − cik(Aikl) (3.6)

Which normalizes each gene within its print-tip group. See the normalized data and the
smoothing spline calculated from the new data in figure 3.1(b).
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3.1.3 Scaled print-tip normalization

The within print-tip group normalization removed the print-tip and some of the spatial bias
as well as the intensity dependence. However, to more thoroughly remove the spatial bias
we must scale across all of the print-tip groups, which is accomplished through scaling the
print-tip group data. Scaling data that has undergone within print-tip group normalization
is called scaled print-tip normalization. The scaling method assumes that the log ratios
from each of the kth print-tip group follows a distribution with mean zero and variance
s2
ik . Furthermore, as mentioned before, we assume that the print-tip groups would have the

same distributions on each of the ith arrays. If we lets2
ik = a2

ikσ2
i , where σ2

i is the variance
of the log ratios if there is no error within the ith array and a2

ik is the scale factor for the
kth print-tip group, then to scale the data we want all of the s2

ik/a2
ik so that all print-tip

groups on array i have variance σ2
i .

To estimate aik the median absolute deviation (MAD) is used. MAD is a robust
alternative method to the maximum likelihood estimate for aij ,which is affected by outliers
[8]. MAD is defined as follows:

MADik = medianl(|Mikl − medianil(Mikl)|) (3.7)

where Mikl denotes the lth log ratio in the kth print-tip group on the ith array that has been
normalized as described in section 3.1.2.

Next we estimate aik with âik, where MAD is described in equation 3.7.

âi = (MADik)/[(
24∏

k=1

MADik)1/24]

Once all the âik have been estimated, the print-tip groups on all of the arrays can be
scaled. See the normalized data in figure 3.1(c).

3.1.4 Across array normalization

While scaled print-tip normalization has removed the spatial bias and intensity dependence
that exist within the slide, the difference in variability that exists between the 17 arrays has
not been accounted for. For instance, room temperature when an experiment is performed
may affect the dyes and causes variability across the slides. Therefore, the method used to
scale the print-tip groups, see section 3.1.3, is applied to all of the arrays to scale the variance
between them. Now, we assume that the data from the ith array follows a distribution with
mean zero and variance s2

i = σ2
i , as calculated for each array in section 3.1.3. σ2

i = a2
i σ

2,
where σ2 is the variance of the “true” log ratios if there is no error with or across arrays
and a2

i is the scale factor for the ith array. We can estimate a2
i as described in equation 3.8,

and then scale across our arrays.
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(a) Array 12: pre−normalization MA− plot
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(b)Array 12: within print−tip group location normalization MA− plot
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Figure 3.1: MA-plots of array 12, the different lines represent the loess smoothing splines for each
print tip group. a)The plot and splines before normalization. b)The plot and splines after within
print-tip group location normalization. c)The plot and splines after the data shown in (b) has been
scaled across print-tip group, known as scaled print-tip normalization.
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(a) Yeast Array 12 print−tip groups: pre−normalization
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(b) Yeast Array 12 print−tip groups: within print−tip group location normalization
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(c) Yeast Array 12 print−tip groups: scaled print−tip normalization
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Figure 3.2: Box plots of the 24 print-tip groups from array 12. a)Plots of the print-tip groups before
normalization. b)Plots of the print-tip groups after within print-tip group location normalization.
c)Plots of the print-tip groups after the data shown in (b) has been scaled across print-tip group,
known as scaled print-tip normalization. Notice both the centering and the spread of the box plots.
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(c) Yeast Arrays: across slide normalization
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Figure 3.3: Box plots of M for all 17 arrays. a)The plots before normalization. b)The plots of
the after scaled print-tip normalization. c)The plots after normalization has been applied across the
arrays in addition to the normalization in b). Notice both the centering and the spread of the box
plots.
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3.1.5 Results of Normalization

The results of the of the different stages of normalization can be seen in figures 3.1, 3.2
and 3.3. The original pre-normalization smoothing splines for the different print tip groups
are not always close to zero; whereas, after print-tip normalization, the smoothing splines
are much closer to a horizontal line at zero, as depicted by the MA-plots of array 12
(which measures generations 1.5 and 8) in figures 3.1(a) and 3.1(b), respectively. As can be
observed from comparing the boxplots of the print-tips groups of array 12 in figure 3.2(a)
to 3.2(b), the print-tip normalization centers the data around zero. However, from figure
3.2(b) we can also see that the variability between the print-tip groups was not the same.
Scaled print-tip normalization remedied this problem as shown in figures 3.2(c) and 3.1(c).
Furthermore, as depicted in figure 3.3(b) as compared to figure 3.3(a), the loess smoothing
technique consistently normalizes the data within each of the arrays. These results reflect
that within a given array, the average log ratio values, M , across the log intensity values,
A, are no longer dependent on A. They also reflect the removal of unwanted data biases
due to differences in location on array, and print tip group between all of the genes.

After print-tip normalization there still exists biases between the arrays as depicted by
the variability between the arrays in figure 3.3(b). The across array normalization adjusted
for this variability, see figure 3.3(c). The addition of this normalization reduces the biases
between the arrays. We can’t remove all the variability across A because the print-tip runs
all along A. The lower A will naturally have more variability because it has smaller raw
values which reflect low gene activity and dye intensity at spot. These smaller amounts
will be harder to measure and small imprecision measurements will have more of an effect
on the ratio value. In addition, there still remains some bias from the differences in dye
color, this will be accounted for in the ANOVA application in Chapter 4. Although not all
of the bias that exists due to the microarray procedure can be removed, the normalization
technique has improved the quality of the data and allows for the natural variability of the
data to be better observed.

After normalization, as the biologists are interested in studying only the yeast’s genes,
the empty and control genes are removed from the data set to isolate the genes of interest.

3.2 Imputing Missing Data

Once the data have been normalized, the missing values can be estimated. The technique we
used is one available in R by the PAM package that uses a “k-nearest neighbor” imputation
method [3]. Once the data have been imputed using PAM, all techniques can be applied to
a full data set.

To understand the “k-nearest neighbor” imputation method, consider all of the Mij

data to be placed in a 6310 × 17 matrix, where the columns represent the array and the
rows represent the genes of interest. To begin, we chose the chose k=10, so we will use
the 10 nearest neighbors to estimate the missing values. For each row with missing data, if
there are too few data points in that row (we used the number of arrays with missing values
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for that gene to be > 15),we discard that entire row (gene) as there is not enough data to
calculate the 10 nearest neighbors. 301 genes are discarded, resulting in a 6009×17 matrix.

Using the new matrix, for each row with any missing data, the 10 nearest neighbors
are calculated using a Euclidean metric based on the columns with pre-existing data. The
10 genes who have coordinate gene values closest to the pre-existing coordinate values of
our gene of interest are used as neighbors. If any of the gene rows (not including the one
to be filled) are missing some of the coordinates used to calculate the distance, then the
average of the distance from the non-missing coordinates is used. Once the 10 neighbors are
determined, the missing value of the gene of interest in column (array) i,where i = 1, 2, ..., 17,
is imputed from the average of the non-missing values from column i in these 10 neighbors.
This procedure is preformed for every missing data point, so all of the entries in the matrix
are filled.

Unless all of the data across all of the generations for a given gene is present, PAM
cannot use any of the data from that gene. There are 3610 genes that have no missing
data across all 17 arrays. Without imputation almost half of the genes and the data they
contain will be lost. With imputation there are 6009 genes which have a complete data set.
Imputing data has a positive affect in that it allows us to work with more data points, and
we don’t lose existing data from a gene if there are any missing data for that gene across
the arrays. However, we are not fully confident in the accuracy of this method and whether
the imputed data should be used or not. Therefore, throughout this analysis, the imputed
data will be used to explain the techniques and the results, although the non-missing data
are also run simultaneously.
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Chapter 4

ANOVA

To study the effect that generation has on the intensity of a gene, analysis of variance
(ANOVA) will be used. ANOVA is an analytical tool that models sources of variability
from different factors. ANOVA analyzes the variability of the factors from the model in the
data, compares the variability within these factors to the variability between these factors,
and computes the significance of the effects on the model.

4.1 Methodology

As we are interested in how the gene ratio changes over time, we model the M values. There
are two sources of variability we feel obliged to deal with in our data: dye color (D) and
generation (G). Note that we are not modeling the array factor as we are assuming that our
normalization technique has adequately accounted for this variability, and we do not have
enough degrees of freedom. Let Mdgj be the be the log ratio reading for jth gene of the dth

dye color used for the base geneation and gth generation group of which there are ndg values.
Note that j = 1, 2, . . . , 6009, d=1, 2 (corresponding to red and green groups, respectively)
and g = 1, 2, 3, 4 (corresponding to generations 1.5, 4, 8 and 12 respectively) and ndg is the
number or arrays which are from both the dth and gth groups. For instance, as shown in
table 2.1, for d = 2 and g = 2, ndg is 2 as there are 2 arrays from generation 4 (the second
group) that had a green base dye (the second dye color). For each gene there are 17 M

values used as one ratio measurement is taken from each of 17 arrays. Our ANOVA model
on Mdgj is as follows:

Mdgj = µ.. + Ddj + Ggj + (DG)dgj + εdgj (4.1)

The terms Ddj and Ggj represent the main effects and account for the overall differ-
ences in dyes and generations for one gene, respectively. The term DGdgj accounts for the
interaction effect between the dye colors and generations. This term can be understood
as measuring, for example, if the red dye amplifies higher at generation 12 then to any
other generation. εdgj represents the error measurement and is assumed independent and
normally distributed with mean 0 and variance σ2. µ represents the underlying mean of
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a given gene. To calculate the effects, and their significance, of the factors in the model
above we solve for the sources of variation between the factors and within the factors. To
solve for the variability of a specific factor we first calculate the sum of squares for the main
effects, SSD and SSG, the interaction effect SSDG and the error, SSR (where R stands
for residuals). For a two-factor ANOVA model with interaction terms, the sums of squares
are defined below:

SSGj =
4∑

g=1

2∑

d=1

ndg∑

h=1

(M̄.g.j − M̄...j)2 (4.2)

SSDj =
2∑

d=1

4∑

g=1

ndg∑

h=1

(M̄d..j − M̄...j)2 (4.3)

SSDGj =
2∑

d=1

4∑

g=1

ndg∑

h=1

(M̄dg.j − M̄d..j − M̂.g.j + M̂...j)2 (4.4)

SSRj =
2∑

d=1

4∑

g=1

ndg∑

h=1

(Mdghj − M̂dg.j)2 (4.5)

The mean squares (MS) for each factor is the sum of squares divided by the degrees of
freedom, ν, of that factor. For the main effects, the degrees of freedom are the number of
groups minus one. Therefore, for the dye color and generation factors, νD = 1 and νG = 3,
respectively. For the interaction effect, the degrees of freedom are νDG = νD × νG=3. The
degree of freedom for the error is the total number of samples, 17, minus the sum of the
other degrees of freedom minus 1, so νr = 9. The mean squares are calculated for all of the
factors. The calculation for MSRj for a given gene is shown below:

MSRj =
SSRj

9

To measure the effect of a given factor, we are interested in how the variability within
that factor compares to the variability across all factors, which is calculated by the ratio of
mean squares of a given effect to the mean squares of the residual. A higher ratio reflects
a greater variability across the factor, so that the effect of that factor will be greater. The
calculation of this ratio for generation for gene j is shown below:

MRGj

MSRj
=

SSGj/vG

SSRj/vR
(4.6)

If we assume that our data is approximately normally distributed, we know the sums of
squares each have an approximate χ2 distribution with parameter, ν, the degrees of freedom
of the variable. In addition, the ratio of 2 independent χ2 random variables divided by their
respective degrees of freedom has an F -distribution with the 2 degrees of freedom as its
two parameters. Therefore, as demonstrated in equation 4.6, the distribution of the mean

16



Source of Variation df Sum of Squares Mean Square F-statistic p-value

Generation 3 13.4248 4.4761 12.1069 0.001640

Dye Color 1 1.7261 1.7261 4.6688 0.05899758

Interaction 3 3.2077 1.0692 2.8920 0.094563

Residual 9 3.3274 0.3697

Table 4.1: ANOVA output for gene HSP26. All three effects are significant at an α = 0.1 level,
and generation has a significant effect on the model at an α = 0.01

p-value Gene Name

4.38E-06 GLY1

1.53E-05 ENT3

2.80E-05 YGL053W

5.17E-05 NMD4

7.97E-05 YDL173W

8.30E-05 ZDS2

8.32E-05 ADE5,7

9.44E-05 SMY1

Table 4.2: The p-values of the 8 genes on which generation had the most significant effect. All of
the effects are significant at an α = 0.0001 level.

squares ratio is approximated by the F -distribution. Therefore, we use the F -distribution to
calculate the probability, or p-value, of seeing a particular mean square ratio (which we will
can an F -statistic) or more extreme based on chance for each of the main and interaction
effects on each gene. We use R to compute all values for each of the genes.

4.2 Results

For each gene an ANOVA table was created as illustrated in table 4.1. The p-values asso-
ciated with generation were collected and ordered for all of the genes. P-values identify the
specific genes for which generation had a significant effect given that dye and generation-dye
interaction were accounted for. These p-values measure the probability of seeing our data
or more extreme if the generation effect measured were in fact due to chance rather than
an actual effect. This is referred to as a type I error, and α is the probability of a type I
arrising from chance. A threshold α value should be chosen beforehand to determine the
size of the p-values (p ≤ α) for which we will reject that an effect is due to chance. The
genes for which generation had the most significant effect in the model are given in table
4.2. These genes, as well as other genes for which the p-value ≤ α should be studied more
closely as they are more likely to provide insight into the effects generation (or aging) has
on gene activity.
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Chapter 5

PAM

Prediction analysis for microarrays(PAM) is a clustering technique used for class, such as
generation, prediction. PAM uses gene expression data to calculate the shrunken centroid
for each class and then predicts which class an unknown sample would fall into based on
the nearest shrunken centroid. Through this process, PAM also identifies the specific genes
that most determine the centroid. PAM also performs soft-thresholding, a technique that
eliminates excess noise from genes that do not vary across the classes.

5.1 Methodology

5.1.1 Centroid shrinkage

The PAM procedure is thoroughly explained in the PAM Users guide and manual, [4]. As
we are interested in studying the generation of yeast, our data will be broken into four
classes,g, as descibed in section 4.1. Let xij be the expression for the jth gene from the ith

array. In addition, let Cg be the indices of the samples in class g of which there are ng . The
jth component of the centroid for generation class a is the mean expression value in class g
for gene j and can be written as:

x̄jg =
∑

i∈Cg

xij/ng (5.1)

The jth component of the overall centroid across the generations can similarly be expressed
as the mean expression value of gene j across all generation. A t-test-like statistic for gene
j that compares its expression in generation g to the other generations is denoted by djg.

djg =
x̄jg − x̄i

mg · sj
(5.2)

where mg = (1/ng − 1/n)1/2, which scales the standard error of the denominator, and sj is
the pooled within-class standard deviation.
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To shrink the class centroids towards the overall centroids, PAM uses soft-thresholding.
For a given threshold value ∆, the absolute value of each djg is reduced by ∆ to create a
new d′jg such that:

d′jg =
{

sign(djg)(|djg| − ∆) if |djg| − ∆ > 1
0 if |djg| − ∆ ≤ 0 (5.3)

Combining equations 5.2 and 5.3 we can calculate a new x̄′
jg for each gene as shown:

x̄′
jg = x̄j + mgsjd

′
jg (5.4)

Therefore, if d′jg is shrunk to zero and the centroid component for gene j is x̄j , then
gene j will no longer have an effect on the centroid values for the gth generation. If for all
generations, d′jg is zero, then gene j is x̄j for all generations and no longer has an effect on
the centroid values for any generation and can be eliminated from the entire classification
model. Therefore, for a gene to remain in the model when there is a threshold value, the
statistic Tj = maxk djg must be greater than zero. This technique will shrink the number
of genes used in the class prediction as well as ignore the insubstantial deviations of a gene
from the centroid.

A threshold value should be chosen based on the effect it has on the prediction and
distribution of classes in the data.

5.1.2 Class prediction

Once a threshold value has been chosen, test samples are classified by their closest shrunken
centroid. Consider a sample array from the data, and label the vector of the gene expression
levels x∗ such that x∗ = (x∗

1, x
∗
2, . . . , x

8
6009).The discriminant score for generation class g is

δg(x∗) and it defined as follows:

δg(x∗) =
6009∑

j=1

x∗
j − x̄′

jg)
2

s2
j

− 2logπa (5.5)

The first term of equation 5.5 is the standardized squared distance of x∗ to the shrunken
centroid of the ath generation; the second term is a correction term which uses the prior
probability πg, where πg is the overall proportion of generation class g in the population.
Once δg(x∗) has been calculated for all 4 generations, the classification rule applies the
minimum of these four values, δg(min)(x∗) = mingδg(x∗) and sets the generation which
corresponds to the δa(min)(x∗) equal to C(x∗); the sample, x∗, is then assigned to class
C(x∗).

Furthermore the δa(x∗) can be used to help estimate the class probabilities.

p̂a(x∗) =
e−

1
2
δa(x∗)

∑4
l=1 e−

1
2
δa(min)(x

∗)
(5.6)
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Figure 5.1: Plots of the misclassification error over the various thresholds which correspond to
different numbers of genes used in grouping the yeast sample according to its generation. The label
across the top axis gives the number of genes used in the classification.

5.2 Results

We can illustrate the results we obtain from PAM using imputed data with a misclassifica-
tion graph, see figure 5.1. This graph shows four lines, one for each generation. The Y -axis
represents the misclassification error, or the proportion of times that the model classified a
sample known to be from the generation plotted as another generation. The X-axis shows
how the misclassification error of each generation changes as the threshold is raised and
the number of genes which remain in the model decreases. As seen from the plots, only
generation 1.5 and 12 are accurately calculated at low thresholds, generations 4 and 8 are
misclassified over 1/4 of the time no matter what threshold we use. We note similar results
when we observe misclassification error at a single threshold through the use of a confusion
table. For our example we use a threshold of 1.8, as it appears to be the largest threshold
at which the genes still accurately classify some of the generations, see table 5.1. After the
threshold increases past 1.8, especially once there are fewer than 369 genes, all four genera-
tions are misclassified with uncomfortably high error rates. This plot is rather disheartening
as it reflects that hundreds of genes are needed to even come close to accurately classifying
a generation. There are not a handful of identifiable genes that are strong indicators of
a sample’s true generation. This result supports that the centroids and the data should
be further studied to better understand, and possibly remedy such bad results. Also, in
general it is difficult to accurately describe the differences across 4 groups when our total
sample size is so small, only 17.
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generation predicted class
observed 1.5 4 8 12 error rate

1.5 5 0 0 0 0

4 0 3 0 1 0.25

8 0 0 2 2 .50

12 0 0 0 4 0

Overall error rate = 0.169

Table 5.1: The confusion matrix for the data at a threshold of 1.8. Fewer than 900 genes made this
threshold cut. The values represent the expected generation on the top, and the observed generation
on the left. The overall error rate is 0.169.
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Chapter 6

Comparison of ANOVA and PAM

6.1 Methodology

To determine if ANOVA and PAM identify similar genes as important with respect to
generation, we analyze the overlap between the significant ANOVA genes and the extreme
PAM genes. Based on our PAM results, an important gene in this context is a gene which
survives a high threshold, not necessarily one that helps accurately predict generation.
Both our PAM and ANOVA techniques compared the variability of a given gene within a
generation to the variability across generations. PAM performed this comparison to help
shrink generation centroids by removing genes that did not identify a generation well, while
ANOVA used it to measure the effect generation had on specific genes. The techniques were
therefore similar, though not equivalent, as the test-statistic that determines if a gene is
altogether eliminated from the PAM model is based on only one generation effect, whereas
the ANOVA test-statistic accounts for the effects of all the generations both together and
seperately. Still, due to the similarities, it would follow that PAM and ANOVA would
identify many of the same genes as having a high threshold and significance level.

To test our hypothesis that PAM and ANOVA should identify similar genes, we cal-
culated the amount of overlap in our PAM and ANOVA genes and compared it with the
amount of overlap expected by chance if there was no similarity across methods. To calcu-
late the amount we take the n most significant genes from the ANOVA results and the n
genes from the PAM results with the highest threshold values, where n = 1, 2, ..., 6009. We
then compare these two subsets and count the number of overlapping genes. To calculate
the expected number of overlapping genes had the n genes from each subset been allocated
at random, a hypergeometric distribution was used. This distribution is appropriate as
there are a set number of trials, n, and each trial will be either a “success” or “failure”
(overlap or not), and the trials are dependent in that once one element has been removed,
the proportion of overlapping genes in the remaining population changes. Let X is a hyper-
geometric random variable with parameters n and N such that, n is the number of genes
randomly chosen from a set of N genes twice and each time placed into first the PAM and
then the ANOVA subsets. Then, X represents the number of the n genes that are in both
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in both the PAM and ANOVA subsets. Furthermore, it can be shown that the expected
value of a this hypergeomtric, and hence the expected value of the overlap is

E[X ] =
n2

N
(6.1)

We can then compare this value to the observed value to determine how random our
results were. The expected and observed overlap for all values of n were calculated, see
figure 6.1.

6.2 Results

The result of the comparison between the expected and observed overlap in ANOVA and
PAM genes can be seen in figure 6.1. The plot of the expected overlap, depicts the overlap we
would expect to see had we randomly chosen n genes for both PAM and ANOVA. This plot
also shows a 95 percent upper confidence bound for the expected number of overlaps, E[X ].
Our observed data lies far outside of the 95 percent upper confidence interval. Therefore,
we are confident that the observed overlap in the data is significantly greater than the
overlap in a random sample. This result supports our hypothesis that there are similarities
between the math behind each technique such that the resulting “important” genes have
non-random overlap. However, in order for this overlap to be meaningful, it would be more
reassuring if the values in PAM with a larger threshold did a more accurate job in modeling
class prediction.
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Figure 6.1: A plot of the number, n, of the most significant genes chosen from ANOVA against
the number of those genes which were in the n most extreme genes from PAM. The lines shown
represent the observed overlap from the data, the expected over if the data were random (E[X]),
and the 95 percent upper confidence bound for E[X].

24



Chapter 7

Discussion

The ANOVA and PAM techniques provide useful tools for analyzing the yeast data. Through
ANOVA we were able to identify those genes on which generation had a significant effect.
PAM allowed us to create a model for predicting the generation of a sample array based on
centroid clustering. PAM also used a soft-thresholding technique to shrink centroids and
remove genes consisting of only noise. Both the thresholding from PAM and the p-values
from ANOVA used similar, though not identical techniques for measuring the variability of
the genes across the generations. As shown, the number of genes that had overlap at high
threshold values of PAM and low p-values of ANOVA was significant.

However, there are some unsettling results, such as those that PAM produced, as well
as results which suggest that the normalization procedure be modified. For instance, raw
data with low intensity values should possibly be removed as it is a source of variability
that is hard to remove and probably not an accurate reflection of those “true” gene ex-
pression levels. The removal of low expression points may help improve the PAM data.
The imputation method should also be better assessed to determine how “close” the closest
k neighbors really are, and when during the initial methodology this method should be
implemented (before or after normalization). To test how well the normalization procedure
works, a different ANOVA model that accounts for more factors of variability, such as array
and gene, should be run and the results analyzed to see how much normalization ANOVA
had to perform after the initial normalization. Furthermore, it might be interesting to go
into a more in depth analysis of different analytic tools by applying statistical analysis of
microarrays (SAM) to the data and comparing all three results.
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