
Senior Thesis in Mathematics

Constructing Prediction
Intervals for Random Forests

Author:
Benjamin Lu

Advisor:
Dr. Jo Hardin

Submitted to Pomona College in Partial Fulfillment
of the Degree of Bachelor of Arts

May 5, 2017

i

Acknowledgements

I would like to thank Professor Jo Hardin for sharing her time and expertise as
my research advisor. I would also like to thank the Mathematics Department
at Pomona College for the knowledge, support, and guidance it has offered
me over the four years leading up to this thesis.

ii

Contents

1 Introduction 1

2 Prediction Intervals 3

3 Resampling Methods 6
3.1 Bootstrapping . 6

3.1.1 Application: Variance Estimation 7
3.2 The Jackknife . 10

4 Random Forests 12
4.1 Classification and Regression Trees 12

4.1.1 Tree Growth . 13
4.1.2 Tree Pruning . 14
4.1.3 Tree Prediction . 16

4.2 Random Forests . 18

5 Variability Estimation 20
5.1 Related Work . 20

5.1.1 Random Forest Standard Error Estimation 20
5.1.2 Quantile Regression Forests 25
5.1.3 Leave-One-Out Prediction Intervals 28

5.2 Direct Estimation of Global and Local Prediction Error 29
5.2.1 Introduction and Intuition 32
5.2.2 Estimator Properties 33
5.2.3 Proof of Principle: Linear Regression 38

6 Random Forest Prediction Interval Construction 47

7 Conclusion 57

iii

Chapter 1

Introduction

Random forests are an ensemble, supervised machine learning algorithm
widely used to build regression models, which predict the unknown value of
a continuous variable of interest, called the response variable, given known
values of related variables, called predictor variables. The model is built us-
ing labeled training data—observations that consist of both known predictor
variable values and known response variable values. Despite their widespread
use, random forests are currently limited to point estimation, whereby the
value of the response variable of an observation is predicted but no estimate
of the variability associated with the prediction is given. As a result, the
value of random forest predictions is limited: A prediction of a single point
can be difficult to interpret or use without an understanding of its variability.

Prediction intervals compensate for this shortcoming of point estimation.
Rather than giving a single point estimate of an unknown response value,
a prediction interval gives a range of values that one can be confident, to
a certain level, contains the true value. Although prediction intervals are
superior to point estimation in this respect, the development of a prediction
interval construction method for random forests has been limited, in part be-
cause of an inadequate understanding of the underlying statistical properties
of random forests. Random forests are a complex algorithm, consisting of
multiple base learners that use an unusual step-like regression function and
introduce random variation throughout.

We propose a method of constructing prediction intervals for random
forests by direct estimation of prediction error. In Chapter 2, we define
prediction intervals and offer an example of a regression model for which a
closed-form expression for prediction intervals has been already derived. In

1

Chapter 3, we introduce two relevant resampling methods: bootstrapping,
which is inherent in the random forest algorithm, and jackknifing, which
is used in relevant literature (Wager et al. (2014)). Chapter 4 presents an
overview of the random forest algorithm and identifies terms and features that
are important to our direct prediction error estimation method. In Chapter 5,
we first review related work in the literature before presenting our prediction
error estimation method, examining its properties, and providing empirical
results that suggest its validity. In Chapter 6, we present our prediction
interval construction method using the procedures discussed in Chapter 5
and show how it performs on a variety of benchmark datasets.

2

Chapter 2

Prediction Intervals

Point estimation of a continuous random variable—commonly a variable that
can take on any value in a non-empty range of the real numbers—provides
a single estimated value of the true value. Because point estimation alone
provides limited information, an estimate of the variability associated with
the point estimate is often desired. This estimated variability can be used to
provide a range of values within which the variable is estimated to be. One
such range is a prediction interval.

Definition 2.0.1. Let α ∈ [0, 1]. A (1 − α)100 % prediction interval for
the value of an observation is an interval constructed by a procedure such
that (1−α)100% of the (1−α)100% prediction intervals constructed by the
procedure contain the true individual value of interest.

A prediction interval gives a range of estimated values for a variable of
an observation drawn from a population. In contrast, a confidence interval
gives a range of estimated values for a parameter of the population.

Definition 2.0.2. Let α ∈ [0, 1]. A (1 − α)100 % confidence interval for
the parameter of a population is an interval constructed by a procedure such
that (1−α)100% of the (1−α)100% confidence intervals constructed by the
procedure contain the true parameter of interest.

We offer the following example to clarify the distinction between predic-
tion intervals and confidence intervals.

Example 2.0.1. Suppose that we are interested in the distribution of height
among 40-year-old people in the United States. A prediction interval would

3

give a range of plausible values for the height of a randomly selected 40-year-
old person in the United States. On the other hand, a confidence interval
would give a range of plausible values for some parameter of the population,
such as the mean height of all 40-year-old people in the United States.

Many statistical and machine learning methods for point estimation have
been created, including generalized linear models, loess, regression splines,
LASSO, and support vector regression (James et al. (2013)). The extent to
which procedures for constructing confidence intervals and prediction inter-
vals have been developed varies by method. Example 2.0.2 presents a regres-
sion method for which interval construction procedures are well-established.

Example 2.0.2. Assume the normal error regression model:

yi = β0 + β1xi + εi for i = 1, . . . , n (2.1)

where:

yi is the observed value of the response variable of the ith observation,
xi is the observed value of the explanatory variable of the ith observation,
β0 and β1 are parameters, and
εi are independent and identically distributed N(0, σ2).

Let β̂0, β̂1 be least squares estimators of their corresponding parameters, so
that the estimate of the regression function is

ŷ = β̂0 + β̂1x (2.2)

where ŷ is the estimated response value. Then a (1−α)100% prediction inter-
val for the unknown response yh of a new observation with known predictor
value xh is given by

ŷh ± t(α
2
,n−2)

√
MSE

(
1 +

1

n
+

(xh − x)2∑n
i=1(xi − x)2

)
, (2.3)

where t(α
2
,n−2) is the α

2
percentile of the t-distribution with n − 2 degrees of

freedom, x denotes the average of the n observed predictor variable values,
and

MSE =
1

n

n∑
i=1

(yi − ŷi)2. (2.4)

4

A (1 − α)100% confidence interval for the mean response E(Yh) of observa-
tions with predictor value xh is given by

ŷh ± t(α
2
,n−2)

√
MSE

(
1

n
+

(xh − x)2∑n
i=1(xi − x)2

)
. (2.5)

Notice that the center of the prediction interval for the response of an ob-
servation with predictor value xh is the same as the center of the confidence
interval for the mean response of observations with predictor value xh. In
particular, both are ŷh. However, the upper and lower bounds of the pre-
diction interval are each farther from ŷh than the corresponding confidence
interval bounds because of the additional MSE term. In the least squares
setting, the expression for a prediction interval contains the additional MSE
term to estimate the variability of the response values of the individual obser-
vations within the population. Since a confidence interval estimates the mean
response rather than an individual response, the expression for a confidence
interval does not include the additional MSE term.

While the procedures for prediction interval and confidence interval con-
struction are well-established in the example above, they have not been de-
veloped fully developed for random forests.

5

Chapter 3

Resampling Methods

Resampling methods are useful techniques for data analysis because they
offer an alternative to traditional statistical inference that is often simpler,
more accurate, and more generalizable. In some cases, when the statisti-
cal theory has not been sufficiently developed or the assumptions required
by existing theory are not met, resampling methods are the only feasible
approach to inference. While the implementation of resampling methods is
generally computationally expensive, the increasing amount of computational
power available in modern computers is making these methods more readily
accessible in practice. In this chapter, we review two resampling methods
in particular: bootstrapping and jackknifing. The former is a fundamental
component of the random forest algorithm, and the latter has been used in
literature related to this thesis (Wager et al. (2014)).

3.1 Bootstrapping

The bootstrap is a resampling method developed by Efron (1979). It has
many uses, but the most relevant for our purposes are stabilizing predictions
and estimating variance. In this section, we will define the bootstrap sample,
which is the basis of bootstrapping, and present an example of its application.
First, we define related concepts.

Definition 3.1.1. Let X be a real-valued random variable. The cumulative
distribution function F of X is defined by

FX(x) = P (X ≤ x). (3.1)

6

Any real-valued random variable can be described by its cumulative distri-
bution function, which encodes many important statistical and probabilistic
properties of the random variable. As such, an estimate of the cumulative
distribution function can be very valuable. Indeed, estimating some aspect
of a random variable’s cumulative distribution function is often the goal or
an intermediate step of statistical inference.

Definition 3.1.2. Let x = (x1, . . . , xn) be a sample from a population with
cumulative distribution function F , usually unknown. The empirical distri-
bution function F̂ is defined by

F̂ (t) =
1

n

n∑
i=1

1(xi ≤ t), (3.2)

where 1 is the indicator function defined by

1(x ≤ t) =

{
1 x ≤ t

0 x > t.
(3.3)

With these foundational elements, we can now define a bootstrap sample.

Definition 3.1.3. Let F̂ be an empirical distribution function obtained from
a sample x = (x1, . . . , xn). A bootstrap sample x∗ = (x∗1, . . . , x

∗
n) is a random

sample of observations independently drawn from F̂ .

In practice, a bootstrap sample x∗ is obtained by resampling with re-
placement from the original sample x, so that some observations from x may
appear in x∗ more than once and others may not appear at all.

We began our discussion of bootstrapping by mentioning that it can be
used for variance estimation. In the following subsection, we examine the
use of bootstrapping for estimating the variance of a statistic as a general
example. Its use in prediction stabilization will be covered in Chapter 4.

3.1.1 Application: Variance Estimation

Let θ be a parameter of interest of F , and let θ̂ = s(x) be the statistic used
to estimate the parameter. We are often interested in the standard error
of θ̂, denoted SE(θ̂) and defined as the standard deviation of the sampling
distribution of θ̂. Bootstrapping offers a non-analytic way to estimate SE(θ̂),

7

outlined in Algorithm 1, which is convenient when the sampling distribution
is complicated or unknown. This approach, which is discussed further in the
example below, is valid in many cases because, under certain conditions, the
distribution of θ̂∗ − θ̂ approximates the distribution of θ̂− θ, where θ̂∗ is the
bootstrap statistic, described in Definition 3.1.4.

Definition 3.1.4. Let x be a sample from a population and θ̂ = s(x) be a
statistic used to estimate a parameter θ. A corresponding bootstrap statistic
θ̂∗ is obtained by applying s to a bootstrap sample x∗. That is, θ̂∗ = s(x∗).

Algorithm 1 Bootstrap Algorithm to Estimate SE(θ̂)

1: procedure
2: obtain a sample x = (x1, x2, . . . , xn) from the population
3: define a statistic of interest, θ̂ = s(x)
4: for b in 1, . . . , B do
5: obtain the bth bootstrap sample x∗,b = (x∗,b1 , x∗,b2 , . . . , x∗,bn)
6: calculate θ̂∗(b) = s(x∗,b)
7: end for
8: estimate SE(θ̂) by the sample standard deviation of the B replicates,

ŜEB(θ̂) =

√√√√ 1

B − 1

B∑
b=1

(θ̂∗(b)− ¯̂
θ∗)2, (3.4)

where

¯̂
θ∗ =

1

B

B∑
b=1

θ̂∗(b). (3.5)

9: return ŜEB(θ̂)
10: end procedure

Example 3.1.1. Let F be an exponential distribution with rate parameter
λ = 0.5, n = 100 be the size of samples drawn from F , and B = 5000
be the number of bootstrap samples generated. Suppose that the value of
λ is unknown. Let the parameter of interest be the mean µ = 1

λ
of the

distribution, and let the statistic used to estimate the parameter be the
sample mean,

8

0

100

200

300

400

500

1.6 2.0 2.4 2.8
Sample Mean

C
ou

nt

0

100

200

300

400

500

1.6 2.0 2.4 2.8
Bootstrap Sample Mean

C
ou

nt
Figure 3.1: A histogram of the estimates of µ obtained by drawing 100
observations from the exponential distribution (λ = 0.5) 5000 times (LEFT).
A histogram of the estimates of µ obtained by resampling with replacement
from a 100-observation sample of the exponential distribution 5000 times
(RIGHT).

µ̂ =
1

n

n∑
i=1

xi. (3.6)

We are interested in estimating SE(µ̂), the standard deviation of the
sampling distribution of µ̂. The left panel of Figure 3.1 displays a histogram
of the sampling distribution of µ̂, with the blue line drawn at µ = 2. It was
generated by obtaining B samples of size n from F , calculating µ̂i for the ith

sample, and plotting the frequencies of µ̂1, µ̂2, . . . , µ̂B. Using these B sample
statistics, we can estimate SE(µ̂) with the usual estimate of the standard
deviation of a distribution:

ŜE(µ̂) =

√√√√ 1

B − 1

B∑
i=1

(µ̂i − ¯̂µ), (3.7)

where

¯̂µ =
1

B

B∑
i=1

µ̂i. (3.8)

9

In practice, however, we do not obtain repeated samples of n observa-
tions from the population. Accordingly, Algorithm 1 can be used to estimate
SE(µ̂) using only one sample of size n. The right panel of Figure 3.1 displays
a histogram of the B bootstrap statistics µ̂∗1, . . . , µ̂

∗
B obtained by following

Algorithm 1, with the blue line drawn at the mean of our original sample. We
note two points of comparison between the left and right panels of Figure 3.1.
First, observe that the left distribution is centered at 1.9959, close to the true
population mean of 2, whereas the right distribution is centered at 2.1388,
which is close to the original sample mean of 2.1341. This is to be expected:
In general, assuming an unbiased statistic is used, the sampling distribution
will be centered at the true population parameter, while the bootstrap sam-
pling distribution will be centered at the sample statistic. The second point
to note is that the estimated standard deviations of the two distributions—
that is, the two estimates of SE(µ̂)—are approximately equal. The estimated
standard deviation of the sampling distribution is 0.2014, while the estimated
standard deviation of the bootstrap sampling distribution is 0.1908. While a
discussion of the conditions under which the bootstrap estimate of the stan-
dard error approximates the true standard error well is beyond the scope of
this thesis, it suffices to say that the conditions hold in many practical ap-
plications, making Algorithm 1 a useful method for estimating the standard
error of a statistic.

3.2 The Jackknife

The jackknife is another resampling method, usually used to estimate the bias
and variance of an estimator. Because of its resemblance to the bootstrap, we
will only briefly define the jackknife sample and some associated estimates.

Definition 3.2.1. Let x be a sample of size n. The ith jackknife sample
x(i) = (x1, . . . , xi−1, xi+1, . . . , xn) is obtained by removing the ith observation
from x.

Definition 3.2.2. Let x be a sample from a population and θ̂ = s(x) be
a statistic used to estimate a parameter θ. The ith jackknife statistic θ̂(i) is

obtained by applying s to the ith jackknife sample x(i). That is, θ̂(i) = s(x(i)).

Definition 3.2.3. Let x be a sample from a population and θ̂ = s(x) be a
statistic used to estimate a parameter θ. The jackknife estimate of the bias

10

of θ̂ is given by

B̂IASJ = (n− 1)(
¯̂
θ(·) − θ̂), (3.9)

where
¯̂
θ(·) =

1

n

n∑
i=1

θ̂(i). (3.10)

Definition 3.2.4. Let x be a sample from a population and θ̂ = s(x) be
a statistic used to estimate a parameter θ. The jackknife estimate of the
standard error of θ̂ is given by

ŜEJ =

√√√√n− 1

n

n∑
i=1

(θ̂(i) −
¯̂
θ(·))2. (3.11)

While we do not use the jackknife in our proposed method of prediction
interval construction, related work in the literature employs the jackknife, as
discussed in Subsection 5.1.1 (Wager et al. (2014)).

11

Chapter 4

Random Forests

Random forests are a widely used machine learning algorithm developed by
Breiman (2001). They can be categorized into random forests for regression
and random forests for classification. The former has a continuous response
variable, while the latter has a categorical response variable. This thesis fo-
cuses on random forests for regression. Random forests have a number of
properties that make them favorable choices for modeling. They are usually
fairly accurate, they can automatically identify and use the explanatory vari-
ables most relevant to predicting the response and therefore have a built-in
measure of variable importance, they can use both categorical and contin-
uous explanatory variables, they do not assume any particular relationship
between any variables, their predictions are asymptotically normal under
certain conditions, and they are consistent under certain conditions (Wager
(2016), Scornet et al. (2015)). This chapter is devoted to examining the ran-
dom forest algorithm and identifying key features and terms that will be used
in later chapters. Because a random forest is a collection of classification or
regression trees (CART), we first examine the CART algorithm.

4.1 Classification and Regression Trees

Breiman’s classification and regression tree (CART) algorithm is one of many
decision tree models, but for convenience, we will use the term “decision tree”
to refer to Breiman’s CART (Gordon et al. (1984)). Whether used for regres-
sion or classification, the CART algorithm greedily partitions the predictor
space to minimize the homogeneity of the observed response values within

12

each subspace. Algorithmically, the relevant difference between classification
trees and regression trees is the way homogeneity is measured.

In what follows, let Z = {z1, . . . , zn} denote a set of n observations,
where zi = (xi,1, . . . , xi,p, yi) is the ith observation, consisting of p explanatory
variable values xi,1, . . . , xi,p and a response variable yi. Let xi = (xi,1, . . . , xi,p)
denote the vector of explanatory variable values for zi. Let |S| denote the
cardinality of a set S unless otherwise specified.

The decision tree algorithm can be divided into three stages: tree growth,
tree pruning, and prediction. We examine each in turn.

4.1.1 Tree Growth

Tree growth refers to the process of constructing the decision tree. It is
done by using a sample Z to recursively partition first the predictor space
and then the resulting subspaces. The decision tree consists of the resulting
partition of the predictor space, along with the mean observed response value
or majority observed response level within each subspace, depending on the
type of response variable. Algorithm 2 outlines the specific procedure to grow
a decision tree. The algorithm makes use of some terms that are defined
below.

Definition 4.1.1. Let Z be a sample of n observations with p explanatory
variables and a continuous response variable. Let D be a subspace of the
predictor space. Then the within-node sum of squares (WSS) is given by

WSS(D) =
∑

i∈{1,...,n}:xi∈D

(yi − ŷD)2 (4.1)

where ŷD is the mean response of the observations in D.

Definition 4.1.2. Let Z be a sample of n observations with p explanatory
variables and a categorical response variable with K levels. Let D be a
subspace of the predictor space. Then the Gini index is given by

G(D) =
K∑
k=1

ŷDk(1− ŷDk) (4.2)

where ŷDk is the proportion of observations contained in D that have response
level k.

13

Algorithm 2 indicates that a decision tree is obtained by recursively split-
ting the predictor space and resulting subspaces to minimize WSS or the
Gini index at each step. It can be seen that Equation 4.1 is minimized when
the response values within a subspace are closest to their mean. Similarly,
Equation 4.2 is small when the proportion of observations within the sub-
space that have response level k is close to 0 or 1—in other words, when most
of the observations in the subspace have the same response level. Thus, as
stated earlier, a decision tree is constructed to minimize the homogeneity of
the observed response within each subspace resulting from the partition.

4.1.2 Tree Pruning

The next stage in the decision tree algorithm is the pruning process, outlined
in Algorithm 3. Decision trees are pruned because they tend to overfit the
data, worsening their predictive accuracy. We introduce the following terms
to broadly describe the pruning process. However, because, as discussed in
Section 4.2, random forests consist of unpruned decision trees, we do not
describe the pruning process and its associated terms in great detail here.
Further discussion of the pruning process can be found in James et al. (2013).

Definition 4.1.3. Let T be a decision tree. A node of T is a subspace of
the predictor space returned by Algorithm 2.

Definition 4.1.4. Let T be a decision tree. A terminal node of T is a node
of T that is not itself split into two nodes.

In the tree pruning stage, we seek to minimize the sum of the WSS
or Gini indices for the terminal nodes of the decision tree and a cost α
multiplied by the number of terminal nodes. This is done by “backtracking”
the recursive splitting process, rejoining nodes that were split, to obtain
the optimal subtree. In order to determine the optimal cost to impose on
the number of terminal nodes contained in the decision tree, K-fold cross-
validation is employed using the error rate defined below.

Definition 4.1.5. Let T be a decision tree and Z be a set of n test obser-
vations. Then the error rate of T on Z is

E(T, Z) =

|T |∑
j=1

∑
i:xi∈Dj

(yi − ŷDj)2 (4.3)

14

Algorithm 2 Recursive Decision Tree Construction Algorithm

1: procedure splitNode(set S of observations with p predictor variables,
subspace D of the predictor space, integer minSize)

2: if |S| < minSize then
3: return D
4: break
5: end if
6: for r in 1, . . . , p do
7: if the rth predictor variable is numeric then
8: define the functions D1, D2 by

D1(r, s) = {x ∈ D : xr < s}
D2(r, s) = {x ∈ D : xr ≥ s}

where xr is the value of the rth predictor variable of x
9: end if

10: if the rth predictor variable is categorical then
11: define the functions D1, D2 by

D1(r, s) = {x ∈ D : xr ∈ s}
D2(r, s) = {x ∈ D : xr /∈ s}

where xr is the value of the rth predictor variable of x
12: end if
13: end for
14: if the response variable is numeric then
15: identify (r, s) that minimizes WSS(D1(r, s)) +WSS(D2(r, s))
16: end if
17: if the response variable is categorical then
18: identify (r, s) that minimizes G(D1(r, s)) +G(D2(r, s))
19: end if
20: splitNode({z ∈ S : x ∈ D1(r, s)}, D1(r, s),minSize)
21: splitNode({z ∈ S : x ∈ D2(r, s)}, D2(r, s),minSize)
22: end procedure

15

if the response value is numeric, and

E(T, Z) =

|T |∑
j=1

∑
i:xi∈Dj

1(yi 6= ŷDj) (4.4)

if the response value is categorical, where |T | denotes the number of terminal
nodes of T , Dj denotes the jth terminal node of T , 1 denotes the indicator
function, and ŷDj denotes the mean observed response of Dj if the response is
numeric and the majority observed level of Dj if the response is categorical.

4.1.3 Tree Prediction

As described in Subsections 4.1.1 and 4.1.2, a decision tree T is built on
a sample Z consisting of n observations, each with p observed explanatory
variable values and an observed response variable value. To use T to predict
the response value yh of a new observation xh, we identify the terminal node
that contains xh. If the response variable is continuous, then we predict yh
to be the mean response of the observations from the sample Z that are in
that terminal node. If the response variable is categorical, then we predict yh
to be the response level most frequently observed among observations from
the sample Z that are in that terminal node. We denote the decision tree’s
predicted response of an observation zh by T (xh). So, if D 3 xh, then

T (xh) =
1

|{i : xi ∈ D}|
∑
i:xi∈D

yi (4.8)

if the response variable is continuous, and

T (xh) = argmax
k∈K

∑
i:xi∈D

1(yi = k) (4.9)

if the response variable is categorical, where K is the set of possible levels
for the categorical response variable.

Notice that, whether the response variable is continuous or categorical,
the test observation’s response is predicted using the observed response values
of observations in the same terminal node as the test observation. This notion
of being in the same terminal node will be important in Chapters 5 and 6,
so we define the following term.

Definition 4.1.6. Let T be a decision tree. Two observations z1 and z2 are
cohabitants if x1 and x2 are in the same terminal node of T .

16

Algorithm 3 Decision Tree Pruning Algorithm

1: procedure pruneTree(decision tree T ; sample Z used to build T ; se-
quence of numbers α1, . . . , αM ; integer K)

2: Divide Z into K partitions Z1, . . . , ZK of approximately equal size
3: for k in 1, . . . , K do
4: Build a decision tree Tk on Z\Zk using Algorithm 2
5: for m in 1, . . . ,M do
6: Let C(m, k) be defined by

C(m, k) = min
Tk,m⊂Tk

E(Tk,m, Zk) + αm |Tk,m| (4.5)

where the minimum is taken over all possible subtrees Tk,m of
Tk, and |Tk,m| denotes the number of terminal nodes of Tk,m

7: end for
8: end for
9: Let n ∈ {1, . . . ,M} be the value that minimizes

C(n, ·) =
1

K

K∑
k=1

C(n, k) (4.6)

10: Let Tαn be the subtree of T that minimizes

|Tαn |∑
j=1

WSS(Dj) + αn |Tαn| (4.7)

where |Tαn| denotes the number of terminal nodes of Tαn , and Dj

denotes the jth terminal node of Tαn
11: return Tαn
12: end procedure

17

4.2 Random Forests

A random forest, which we denote ϕ, built on a sample Z is a collection of B
decision trees, with each decision tree built on its own bootstrap sample Z∗b

of the original sample Z. The procedure for constructing each decision tree
on its bootstrap sample follows Algorithm 2, with one difference: Instead of
choosing from all of the predictor variables in order to identify the node split
that minimizes the resulting subspaces’ WSS or Gini indices, each decision
tree can only choose from a random subset of the predictor variables when
identifying the node split that minimizes the resulting subspaces’ WSS or
Gini indices. Each time a node is split during the construction of the decision
tree, the subset of predictor variables that can be used to split the node is
randomly chosen. The size of the subset is a parameter that is chosen by the
user and can be optimized using cross-validation. However, conventionally,
if p is the total number of predictor variables, then the number of randomly
chosen predictor variables that can be used to split a node is p/3 or

√
p. The

decision trees in a random forest are not pruned.
Because each of the B decision trees is built on its own bootstrap sample

of Z, it is likely that some observations in Z will not be used in the construc-
tion of a particular decision tree. This phenomenon figures prominently in
Chapter 5, so we offer the following definitions.

Definition 4.2.1. Let ϕ be a random forest consisting of B decision trees
T ∗1 , . . . , T

∗
B, with the bth decision tree built on the bth bootstrap sample Z∗,b

of the original sample Z. An observation z ∈ Z is out of bag for the bth

decision tree if z /∈ Z∗,b.

Definition 4.2.2. Let ϕ be a random forest consisting of B decision trees
T ∗1 , . . . , T

∗
B, with the bth decision tree built on the bth bootstrap sample Z∗,b

of the original sample Z. An observation z ∈ Z is in bag for the bth decision
tree if z ∈ Z∗,b.

The random forest’s prediction of the response value yh of an observation
zh with observed predictor values xh is the mean of the values predicted by
the decision trees of the random forest in the case of a continuous response
variable, and the level most frequently predicted by the decision trees of the
random forest in the case of a categorical response variable. This aggrega-
tion of the bootstrap decision trees’ predictions stabilizes the random forest
prediction by reducing its variability and the risk of overfitting. We denote

18

X1, X2 ,X3, X4, X5, X6, X7, X8, X9, X10

Training

Test
Xt

X1, X3 ,X3, X4, X4, X4, X4, X6, X9, X9

Bootstrap Training

Test
Xt

Prediction 1

X1, X1 ,X1, X2, X4, X4, X5, X5, X6, X10

Bootstrap Training

Test
Xt

Prediction 2

X3, X3 ,X3, X5, X6, X7, X7, X7, X9, X9

Bootstrap Training

Test
Xt

Prediction 3

Average Prediction

Figure 4.1: A diagram of the random forest construction and prediction
procedure.

the random forest’s prediction of the response value of zh by ϕ(xh). Using
this notation, the random forest prediction of the response of an observation
zh is given by

ϕ(xh) =
1

B

B∑
b=1

T ∗b (xh) (4.10)

if the response variable is continuous, and

ϕ(xh) = argmax
k∈K

B∑
b=1

1(T ∗b (xh) = k) (4.11)

if the response variable is categorical, where K is the set of possible levels
for the categorical response variable.

19

Chapter 5

Variability Estimation

One of the foremost challenges to constructing valid prediction intervals for
random forests is developing suitable estimates of variability. Since random
forests have a complex structure, it can be difficult to identify appropriate
estimators and to prove their validity. In this chapter, we review different
variability estimation methods that have been advanced in the literature
before turning to our own proposed methods.

5.1 Related Work

5.1.1 Random Forest Standard Error Estimation

Work has been done to develop estimators of the standard error (or variance)
of a random forest estimator,

se(θ̂RFB (xh)) ≡
√
V ar(θ̂RFB (xh)), (5.1)

where θ̂RFB (xh) is the predicted response value of observations with predictor
variable values xh using a random forest with B trees. This standard error
measures how random forest predictions of the response of observations with
predictor variable values xh vary across different samples. Notice that we
use the notation θ̂RFB (xh) rather than simply ŷh or ϕ(xh), even though these
values in practice are the same. We adopt such notation because, in this set-
ting, a random forest prediction is conceptualized as a statistic, the sampling
variability of which is the value of interest. Thus, se(θ̂RFB (xh)) measures how
far the statistic—in this case, the random forest prediction of the response of

20

observations with predictor variable values xh obtained by building B trees
on a sample—is from its expected value, which is the average random for-
est prediction of the response obtained by building B trees across different
samples. It does not measure how far the random forest prediction of the
response is from the true response value, as we shall see at the end of this
subsection, and it is therefore unsuitable for the construction of prediction
intervals.

Sexton and Laake (2009) and Wager et al. (2014) propose estimators of
se(θ̂RFB (xh)). We first review the work by Sexton and Laake (2009), who
propose three different methods, before examining the work by Wager et al.
(2014). Note that each of the three methods requires two levels of boot-
strapping. This is because, as in Algorithm 1, the sampling variability of the
statistic of interest is empirically estimated by calculating the statistic on
many bootstrap samples of the original sample; since the statistic of inter-
est in this case is the random forest prediction of an observation’s response,
each bootstrap sample itself must be bootstrapped in order to construct the
random forest used to predict the observation’s response.

Sexton and Laake (2009) call their first estimator of se(θ̂RFB (xh)) the
“Brute Force” estimator.

Definition 5.1.1. Let θ̂RFB (xh) be the predicted response value of an obser-
vation zh by a random forest fit on a sample Z of size n. For m in 1, . . . ,M ,
let Z∗,m denote the mth bootstrap sample from Z, and let the predicted re-
sponse of zh be the random forest fit on the mth bootstrap sample of Z be
denoted by

θ̂RF,∗,mB (xh) =
1

B

B∑
b=1

T ∗,mb (xh), (5.2)

where T ∗,mb is the decision tree built on the bth bootstrap sample of the mth

bootstrap sample of Z. Then the Brute Force estimator of the standard error
of the random forest at xh is

ŝeBF (θ̂RFB (xh)) =

[
1

M − 1

M∑
m=1

(θ̂RF,∗,mB (xh)− θ̂
RF,∗

B (xh))2
]1/2

(5.3)

where

θ̂
RF,∗

B (xh) =
1

M

M∑
m=1

θ̂RF,∗,mB (xh) (5.4)

21

is the average random forest prediction of the response of zh over the M
bootstrap samples.

Sexton and Laake (2009) call this the Brute Force estimator because of
the large number of decision trees that are constructed in the procedure.
Because a random forest is fit on each of the M bootstrap samples, which
entails bootstrapping each bootstrap sample B times, a total of MB decision
trees are constructed using this approach. The computational demand of the
Brute Force estimator leads the authors to recommend against its general
use, but they use it as a baseline against which the other two methods can
be compared.

The second method, which they call the “Biased Bootstrap” estimator, is
similar to the Brute Force estimator. Effectively, the only difference between
the two is that the Biased Bootstrap estimator fits a smaller random forest,
consisting of R trees with R < B, to each of the M bootstrap samples.

Definition 5.1.2. Let θ̂RFB (xh) be the predicted response value of an obser-
vation zh by a random forest fit on a sample Z of size n. For m in 1, . . . ,M ,
let Z∗,m denote the mth bootstrap sample from Z, and let the predicted re-
sponse of zh by the random forest fit on the mth bootstrap sample of Z be
denoted by

θ̂RF,∗,mR (xh) =
1

R

R∑
r=1

T ∗,mr (xh), (5.5)

where R < B and T ∗,mr is the decision tree built on the rth bootstrap sample
of the mth bootstrap sample of Z. Then the Biased Bootstrap estimator of
the standard error of the random forest at xh is

ŝeBB(θ̂RFB (xh)) =

[
1

M − 1

M∑
m=1

(θ̂RF,∗,mR (xh)− θ̂
RF,∗

R (xh))2
]1/2

(5.6)

where

θ̂
RF,∗

R (x) =
1

M

M∑
m=1

θ̂RF,∗,mR (x). (5.7)

Sexton and Laake (2009) show that the Biased Bootstrap estimator of
the standard error is biased upward if R < B because the Monte Carlo error
in θ̂RFR is greater than the Monte Carlo error in θ̂RFB . Moreover, the Monte
Carlo error of the Biased Bootstrap estimator of the standard error is larger

22

than the Monte Carlo error of the Brute Force estimator. However, Sexton
and Laake (2009) quantify this error and show how it can be approximately
controlled by varying R.

The third method, which the authors call the Noisy Bootstrap estimator,
corrects for the bias of the Biased Bootstrap estimator but still requires two
levels of bootstrapping.

Definition 5.1.3. Maintain the same notation as Definitions 5.1.1 and 5.1.2.
Then the Noisy Bootstrap estimator of the standard error of the random forest
at xh is

ŝeNB(θ̂RFB (xh)) =
[
V̂ ar

BB
(θ̂RFB (xh))− b̂ias[V̂ ar

BB
(θ̂RFB (xh))]

]1/2
(5.8)

where
V̂ ar

BB
(θ̂RFB (xh)) ≡ [ŝeBB(θ̂RFB (xh))]2 (5.9)

from Definition 5.1.2, and

b̂ias[V̂ ar
BB

(θ̂RFB (xh))] =
1/R− 1/B

MR(R− 1)

M∑
m=1

R∑
r=1

(T ∗,mr (xh)− θ̂RF,∗,mR (xh))2.

(5.10)

Wager et al. (2014) approach the task of estimating se(θ̂RFB (xh)) by focus-
ing on jackknife procedures. They examine two estimators: the Jackknife-
after-Bootstrap estimator, and the Infinitesimal Jackknife estimator. In both
cases, they identify bias-corrected versions of their estimators, which we also
describe. We begin with the Jackknife-after-Bootstrap estimator and its
bias-corrected version.

Definition 5.1.4. Let θ̂RFB (xh) be the predicted response value of an obser-
vation zh by a random forest fit on a sample Z of size n. The Monte Carlo
approximation to the Jackknife-after-Bootstrap estimate of the standard er-
ror of the random forest at xh is

ŝeJ(θ̂RFB (xh)) =

[
n− 1

n

n∑
i=1

(θ̂RF(−i)(xh)− θ̂RF (xh))2
]1/2

(5.11)

where

θ̂RF(−i)(xh) =
1

|{b : 〈zi〉b = 0}|
∑

b:〈zi〉b=0

T ∗b (xh). (5.12)

23

Here, and throughout this thesis, 〈z〉b denotes the number of times z ap-
pears in the bth bootstrap sample of the random forest. Thus, Equation 5.12
gives the mean predicted response of zh over only the trees for which the ith

observation of Z is out of bag.

The bias-corrected version of the Jackknife-after-Bootstrap estimator is
given in Definition 5.1.5.

Definition 5.1.5. Maintain the same notation as in Definition 5.1.4. The
bias-corrected Monte Carlo approximation to the Jackknife-after-Bootstrap
estimate of the standard error of the random forest at xh is

ŝeJ−U(θ̂RFB (xh)) =

[(
ŝeJ(θ̂RFB (xh))

)2 − (e− 1)
n

B2

B∑
b=1

(T ∗b (xh)− T ∗(xh))2
]1/2

(5.13)
where T

∗
(xh) is the mean of the T ∗b (xh).

Next, we present the Infinitesimal Jackknife estimator proposed by Wager
et al. (2014).

Definition 5.1.6. Let θ̂RFB (xh) be the predicted response value of an obser-
vation zh by a random forest fit on a sample Z of size n. The Monte Carlo
approximation to the Infinitesimal Jackknife estimate of the standard error
of the random forest at xh is

ŝeIJ(θ̂RFB (xh)) =

[
n∑
i=1

(
1

B

B∑
b=1

(〈zi〉b − 1)(T ∗b (xh)− T ∗(xh))

)2
]1/2

. (5.14)

Finally, we define the bias-corrected Infinitesimal Jackknife estimator.

Definition 5.1.7. Maintain the same notation as in Defintion 5.1.6. The
bias-corrected Monte Carlo approximation to the Infinitesimal Jackknife es-
timate of the variance of the random forest is

ŝeIJ−U(θ̂RFB (xh)) =

[(
ŝeIJ(θ̂RFB (xh))

)2 − n

B2

B∑
b=1

(T ∗b (xh)− T ∗(xh))2
]1/2

.

(5.15)

24

While the estimators proposed by Sexton and Laake (2009) and Wager
et al. (2014) are informative in understanding the structure of random forests,
the sources of variation in random forests, and possible ways of estimating
such variation, they do not resolve the issue that this thesis seeks to address.
Sexton and Laake (2009) and Wager et al. (2014) seek to estimate how ran-
dom forest predictions of the response of observations with a certain set of
predictor variable values vary from random forest to random forest. How-
ever, this variability does not enable the construction of prediction intervals
for random forests. To see why, consider the following two possibilities:

1. The response variable of observations with a certain set of predictor
variable values has high variance while the random forest predictions of
those observations have low variance. This might happen if the random
forest predictions estimate the mean response with high precision. The
left panel of Figure 5.1 offers a visualization of this phenomenon. In
that plot, the conditional response is distributed N(0, 16), while the
random forest predictions are distributed N(0, 4).

2. The response variable variance and the random forest prediction vari-
ance are equal, but their means are different. This might happen if
the random forest predictions are biased in finite samples. The right
panel of Figure 5.1 provides a visualization of this phenomenon. In
that plot, the conditional response is distributed N(0, 16), while the
random forest predictions are distributed N(10, 16).

In either of the above scenarios, the variance of the random forest predictions
estimated by Sexton and Laake (2009) and Wager et al. (2014)—in other
words, the variance of the red distributions in Figure 5.1—is not the value
needed to construct valid prediction intervals.

5.1.2 Quantile Regression Forests

Meinshausen (2006) proposes a method of estimating the cumulative distri-
bution function FY (y|X = xh) = P (Y ≤ y|X = xh) of the response variable
Y conditioned on particular values xh of the predictor variables X. Unlike
the work by Sexton and Laake (2009) and Wager et al. (2014), this method
can be used to directly obtain prediction intervals of the response, according
to Meinshausen (2006). Algorithm 4 details the method of estimating the
conditional cumulative distribution function of the response variable Y—we

25

0.0

0.1

0.2

0.3

0.4

−20 −10 0 10 20
Value

D
en

si
ty

0.000

0.025

0.050

0.075

0.100

−20 −10 0 10 20
Value

D
en

si
ty

Figure 5.1: Example plots of the response variable density given a set of
predictor variable values (blue) and the random forest predicted response
density for observations with that set of predictor variable values (red).

denote this estimate F̂ . Note that in Equation 5.16, the weight function is
indexed with respect to and calculated for each of the observations in the
original sample Z, not the bootstrap sample on which the decision tree is
built. Note also that the numerator of Equation 5.16 contains an indicator
function that returns only a 0 or a 1. In particular, it does not count the
number of times an observation appears in the terminal node.

The algorithm proposed by Meinshausen (2006) begins by identifying each
decision tree’s terminal node containing the test observation. For each obser-
vation used to build the random forest, it iterates through each terminal node
identified in the previous step and calculates the frequency with which the
observation appears at least once in the terminal node, where the frequency
is evaluated with respect to the total number of observations that appear at
least once in the terminal node (Equation 5.16). For each observation, the
algorithm averages the frequencies across all decision trees in the random
forest (Equation 5.17), and it uses the resulting “weight” to construct an
empirical conditional cumulative distribution function (Equation 5.18).

Meinshausen (2006) proves that, under a set of assumptions, the em-
pirical conditional cumulative distribution function F̂Y (y|X = xh) obtained
by this method converges in probability to the true conditional cumulative
distribution function FY (y|X = xh) as the sample size approaches infinity.
If the empirical conditional cumulative distribution function closely approx-
imates the true function, then a (1 − α)100% prediction interval can be

26

Algorithm 4 Quantile Regression Forest Algorithm

1: procedure estimateCDF(sample Z, random forest ϕ built on Z, test
observation zh)

2: let n denote the sample size of Z
3: let B denote the number of trees in ϕ
4: let vb(x) be the index of the bth tree’s terminal node that contains x
5: for i in 1, . . . , n do
6: for b in 1, . . . , B do
7: let wbi (xh) be defined by

wbi (xh) =
1(vb(xi) = vb(xh))

|{j : vb(xj) = vb(xh)}|
(5.16)

8: end for
9: let wi(xh) by defined by

wi(xh) =
1

B

B∑
b=1

wbi (xh) (5.17)

10: end for
11: Compute the estimated conditional cumulative distribution function

F̂Y (y|X = xh) by

F̂Y (y|X = xh) =
n∑
i=1

wi(xh)1(Yi ≤ y) (5.18)

12: return F̂Y (y|X = xh)
13: end procedure

27

obtained by subsetting the domain of the empirical conditional cumulative
distribution function at appropriate quantiles. That is, the interval given by
[Q̂α1(xh), Q̂α2(xh)] where

Q̂αi(xh) = inf{y : F̂Y (y|X = xh) ≥ αi} (5.19)

is a (1− α)100% prediction interval if α2 − α1 = α.
Meinshausen (2006) uses Algorithm 4 to generate a prediction interval

for each observation in five different benchmark datasets. The empirical
capture rates of the prediction intervals—that is, the empirically observed
frequency with which the prediction intervals contain the true values—range
from 90.2% to 98.6%, suggesting that more repetitions of the simulations are
needed in order to verify the intervals’ validity and robustness and to better
understand the asymptotic properties of the empirical conditional cumulative
distribution function.

5.1.3 Leave-One-Out Prediction Intervals

Steinberger and Leeb (2016) propose a prediction interval construction method
in the linear regression setting based on leave-one-out residuals. They con-
sider the scenario in which they have a sample Z of size n with p predictor
variables and a continuous response variable such that the sample obeys the
linear model

yi = β0 +

p∑
j=1

βjxi,j + εi (5.20)

for i = 1, . . . , n, where εi is an error term that is independent of xi.
According to their method, for i = 1, . . . , n we obtain the leave-one-out

residual
e(−i) = yi − ŷ(−i), (5.21)

where ŷ(−i) denotes the predicted response of the ith sample observation zi by
the regression model fit on Z\{zi}. The leave-one-out residuals e(−1), . . . , e(−n)
can be used as an empirical cumulative distribution function

F̂e(t) =
1

n

n∑
i=1

1(e(−i) ≤ t). (5.22)

28

Then, given a test observation zh, the (1−α)100% prediction interval of the
response is given by [

ŷh + Q̂α
2
, ŷh + Q̂1−α

2

]
(5.23)

where ŷh = β̂0+
∑p

j=1 β̂jxh,j is the value of the test response predicted by the

regression model fit on Z, and Q̂q = inf{t : F̂e(t) ≥ q} denotes the empirical

q quantile of F̂e(t). Steinberger and Leeb (2016) show that their prediction
interval construction method for linear regression models is asymptotically
valid as n approaches infinity—roughly speaking, as the sample size increases,
the probability that a prediction interval constructed via this method cap-
tures the true response value approaches 1 − α, as desired—under certain
conditions.

As we shall see, the method proposed by Steinberger and Leeb (2016)
and our proposed method are similar in form.

5.2 Direct Estimation of Global and Local

Prediction Error

In the previous section, we reviewed developments in three areas of the lit-
erature that are relevant to our aim of producing a valid prediction inter-
val construction method. Although informative, our review suggests that
there is still not yet a method of constructing prediction intervals for ran-
dom forests that has been shown to work in practice with finite samples. The
methods reviewed in Subsection 5.1.1 estimate the standard error of random
forest predictions, but they are computationally expensive, requiring two
levels of bootstrapping. More importantly, the standard error of random for-
est predictions is not the variability measure needed to construct prediction
intervals, as shown in Figure 5.1 and the accompanying text. Subsection
5.1.2 reviews quantile regression forests, which show promise as a method of
prediction interval construction. However, the method has not been thor-
oughly tested across different data-generating models and shown empirically
to yield (1−α)100% prediction intervals that actually contain the true value
of interest (1 − α)100% of the time given finite samples. Finally, Subsec-
tion 5.1.3 reviews a leave-one-out prediction interval construction procedure
in the context of linear regression rather than random forests. In this sec-
tion, we present our proposed methods of estimating a variability measure

29

that appears to be precisely the measure needed to construct valid predic-
tion intervals for random forests. In particular, we propose two methods of
estimating the mean squared prediction error of random forest predictions.
Algorithms 5 and 6 outline the proposed procedures, which we call MSPE1
and MSPE2, respectively.

Note that we abandon the convention from Subsection 5.1.1 of using
θ̂RFB (xh) to denote the random forest prediction of zh. This reflects our shift
from considering the random forest prediction as a statistic with a sampling
variability of interest to considering the random forest prediction simply as
a prediction of a particular observation’s response.

Algorithm 5 Variance Estimation Method 1

1: procedure getMSPE1(sample Z, random forest ϕ)
2: let n be the sample size of Z
3: let B be the number of trees in ϕ
4: let 〈z〉b be the number of times z appears in the bth bootstrap sample
5:

6: # for each observation
7: for i in 1, . . . , n do
8:

9: # identify the trees for which it is out of bag
10: let S = {b ∈ {1, . . . , B} : 〈zi〉b = 0}
11:

12: # get its mean predicted response over those trees
13: let ŷ(−i) be defined by

ŷ(−i) =
1

|S|
∑
b∈S

T ∗b (xi). (5.24)

14: end for
15: return

MSPE1 =
1

n

n∑
i=1

(ŷ(−i) − yi)2 (5.25)

16: end procedure

30

Algorithm 6 Variance Estimation Method 2

1: procedure getMSPE2(sample Z, random forest ϕ, test observation
zh)

2: let n be the sample size of Z
3: let B be the number of trees in ϕ
4: let 〈z〉b be the number of times z appears in the bth bootstrap sample
5: let vb(x) be the index of the bth tree’s terminal node that contains x
6:

7: # for each decision tree
8: for b in 1, . . . , B do
9:

10: # get the sample observations that are out-of-bag
cohabitants of the test observation

11: let Sb = {i ∈ {1, . . . , n} : 〈zi〉b = 0 ∧ vb(xi) = vb(xh)}
12:

13: # for each out-of-bag cohabitant
14: for i in Sb do
15:

16: # identify the trees for which it is out of bag
17: let Qi = {b ∈ {1, . . . , B} : 〈zi〉b = 0}
18:

19: # get its mean predicted response over those trees
20: let ŷ(−i) be defined by

ŷ(−i) =
1

|Qi|
∑
b∈Qi

T ∗b (xi) (5.26)

21: end for
22: end for
23:

24: # count how many times each observation is an out-of-
bag cohabitant of the test observation

25: let ci be the total number of times i appears in S1, . . . , SB
26: return

MSPE2 =
1∑n
i=1 ci

∑
i:ci>0

ci(ŷ(−i) − yi)2 (5.27)

27: end procedure

31

5.2.1 Introduction and Intuition

MSPE1 attempts to directly measure the mean squared prediction error
of the random forest. It iterates through every observation in the sample
used to construct the random forest. For each observation, it identifies the
decision trees for which the observation is out of bag and calculates the
mean prediction of the observation’s response using only those decision trees
(Equation 5.24) . Its estimate of the mean squared prediction error is then the
sum of the squared difference between each observation’s true response and
its mean prediction using only those decision trees for which the observation
is out of bag (Equation 5.25).

The intuition behind the claim that MSPE1 directly estimates the ran-
dom forest’s mean squared prediction error can be described as follows. If
we want to estimate the mean of a random forest’s squared prediction error,
then we might do so directly by obtaining many observations not used to con-
struct the random forest and calculating the sample mean squared prediction
error for those observations. However, in practice, we usually use all of the
observations that we have to construct the random forest, so an alternative
is to iteratively treat each of our observations as unused in a procedure much
like leave-one-out cross-validation; hypothetically, for each observation, we
could omit it from the sample, build the random forest using this modified
sample, and obtain the random forest prediction of the omitted observation’s
response. Calculating the prediction error of each observation in our sample
in this manner and obtaining the squared mean of those errors allows us to
estimate the desired value in approximately the same fashion, provided that
the number of observations in the sample is sufficiently large. However, the
random forest algorithm allows us to carry out the above procedure without
constructing new random forests, one for each observation. Since the deci-
sion trees in the original random forest are grown on bootstrap samples, each
tree is likely grown on a sample that has some observations out of bag. If
there are a large number of trees, then each observation will be out of bag
for many of them. We can treat the collection of trees for which a given
observation is out of bag as a random forest built on the sample that has
that single observation omitted. This modified procedure yields MSPE1.

Notice that some emphasis in the above description is given to estimating
the mean squared prediction error using out-of-bag observations. This is to
avoid overfitting: Recall from Algorithm 2 that the random forest algorithm
constructs each decision tree in part to minimize the difference between in-

32

bag observations’ actual responses and the decision tree’s prediction of those
responses. Therefore, the mean of the squared differences between in-bag ob-
servations’ predicted and actual response values is likely a negatively biased
estimate of the true mean squared prediction error. Using out-of-bag obser-
vations adjusts for this bias, since each decision tree is constructed without
regard for out-of-bag observations; it is not built to minimize the difference
between the out-of-bag observations’ actual responses and its prediction of
those responses.

MSPE2 is similar to MSPE1. The main difference is that MSPE1
calculates the squared prediction error once for each training observation,
whereas MSPE2 calculates the squared prediction error for a subset of the
training observations and may do so more than once for a given observation.
In particular, MSPE2 calculates the squared prediction error only for the
out-of-bag cohabitants of the test observation in each tree. It permits repeats,
so that if an observation is an out-of-bag cohabitant of the test observation
in m trees, its squared prediction error will be counted m times.

5.2.2 Estimator Properties

In this subsection, we investigate some of the properties of MSPE1 and
MSPE2. We do so not by formal mathematical derivation, but by intuition
and analysis of empirical simulations that use the two algorithms.

The restriction of MSPE2 to out-of-bag cohabitants of the test obser-
vation ensures that MSPE2 measures the squared prediction error of only
observations that are in some sense close to the test observation, since de-
cision trees’ nodes are constructed by taking into account observations’ dis-
tances from each other in the predictor space as well as the differences in
their response values. This formulation is premised on the idea that observa-
tions that are close to the test observation in the predictor space are drawn
from the population of interest; the prediction error of observations drawn
from this population should closely resemble the prediction error of the test
observation. This likely makes MSPE2 preferable when there is high but
systematic variation in the variance of observations’ response values with
respect to the predictor space. However, this advantage of MSPE2 comes
with a cost. In particular, MSPE2 may ignore some observations from the
sample because they are not out-of-bag cohabitants of the test observation in
any decision tree of the random forest. On the other hand, MSPE1 includes
every observation from the sample in its calculation, so we expect MSPE1

33

to be more stable than MSPE2. This likely makes MSPE1 preferable when
the response distribution has constant variance across the predictor space.
In such a setting, all of the observations are equally useful in estimating
the mean squared prediction error of a particular test observation. MSPE1
makes full use of this by including all of the observations in its calculation,
whereas MSPE2 includes only the out-of-bag cohabitants of the test obser-
vation, thereby ignoring useful data. Thus, each estimator has its benefits
and drawbacks.

We can observe these properties and others empirically through simula-
tions.

Example 5.2.1. We used the MixSim package in R to generate 800 obser-
vations with 10 continuous explanatory variables and a continuous response
variable. The observations are generated to consist of five clusters arranged
in different ways along each of the 10 explanatory variables. Within each
cluster, the observations’ predictor variables are distributed uniformly, and
their response variables are generated from the same normal distribution,
N(µi, σ

2
i) for i = 1, . . . , 5. Thus, while an observation’s location in the pre-

dictor space is dispositive of the cluster to which it belongs and hence of the
distribution from which its response value was sampled, the observation’s
response value is independent of its location in relation to other observations
in the same cluster. That is, the group means are generated as a function of
the predictor variables only insofar as each cluster has a different center in
the predictor space.

Two datasets of 800 clustered observations with 10 continuous explana-
tory variables were generated. The first, denoted SD1, was defined by the
parameters

µ = (µ1, . . . , µ5) = (1, 5, 9, 13, 17) (5.28)

σ = (σ1, . . . , σ5) = (1, 1, 1, 1, 1). (5.29)

The second, denoted SDMixed, was defined by the parameters

µ = (µ1, . . . , µ5) = (1, 7, 17, 31, 49) (5.30)

σ = (σ1, . . . , σ5) = (1, 2, 3, 4, 5). (5.31)

Notice that σi is the same across all clusters in SD1 but differs across clusters
in SDMixed. Less obviously, the mean response value of each cluster is set so
that there is at most approximately 2.5% overlap in response values between

34

0.0

0.4

0.8

1.2

0.0 0.4 0.8 1.2
X1

X
4

0

5

10

15

Y

Figure 5.2: Data distributed as in SD1. The axes represent two of the
explanatory variables, and the color of each point represents the point’s re-
sponse value.

clusters. Figures 5.2 and 5.3 show three dimensions of example datasets
generated with the above parameters.

For each dataset, the following was performed 50 times. The data were
randomly split into training and test sets, with 75% used for training. Using
the randomForest R package, a random forest with 400 trees, node size of
10, and the default number of variables to subset at each split was fit to the
training set. MSPE1 was calculated, and MSPE2 was calculated for each
test observation.

Figure 5.4 shows the values of MSPE1 and MSPE2 generated for the
simulation run on SD1. The figure suggests three properties of our proposed
estimators.

1. It appears that E(MSPE1) ≈ E(MSPE2), where the expectation is
taken with respect to the distribution of the population from which the
data were sampled. We can see that the values of MSPE2 are roughly
centered around the corresponding value of MSPE1. The distribu-
tion of MSPE2 and the corresponding value of MSPE1 even seem to
generally fluctuate slightly together across repetitions, as shown by the

35

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00 1.25
X6

X
8

0

20

40

60
Y

Figure 5.3: Data distributed as in SDMixed. The axes represent two of
the explanatory variables, and the color of each point represents the point’s
response value.

smooth lines, which represent the loess curves fit to the MSPE1 and
MSPE2 values.

2. It appears that V ar(MSPE2) > V ar(MSPE1), as suggested by a
comparison in Figure 5.4 of the variability of MSPE1 with the vari-
ability of MSPE2 for the same observation over the repetitions. This
is consistent with our intuition that MSPE1 should yield a more sta-
ble estimate because it includes the random forest prediction error of
all of the observations in the sample, rather than just a subset.

3. Both MSPE1 and MSPE2 appear to be fairly accurate, as shown by
the closeness of their square-root values to the standard deviation of
the clusters, σj = 1. It appears that both estimators are centered above
1. This is reasonable because they do not estimate just the standard
deviation of the individual responses, which is how widely distributed
the individual responses yi are from their true average µj; instead, they
estimate the deviation of the individual responses yi from the random
forest predictions of their values ŷ(−i). Since this prediction is usually
not µj, the latter estimate tends to be greater than the former.

36

1

2

0 10 20 30 40 50
Repetition

S
qu

ar
e

R
oo

t M
S

P
E

 V
al

ue

MSPE Type

MSPE1

MSPE2

Figure 5.4: MSPE1 (blue) and MSPE2 (red) values for the SD1 clustered
dataset. The yellow points representMSPE2 values for the same observation
over the repetitions for which the observation was in the test set. The smooth
lines are the loess curves fit to the MSPE1 and MSPE2 values.

Figure 5.5 shows the values of MSPE1 and MSPE2 generated for the
simulation run on SDMixed, and Figure 5.6 shows the values of MSPE2
by cluster. The trends shown in the figures are consistent with the three
properties of our estimators listed above. In addition to these properties, the
figures, particularly Figure 5.6, suggest a fourth property.

4. MSPE2 appears to accurately account for the local distribution of
the response. That is, in general, the estimate of the random forest
prediction error generated by MSPE2 for a given test observation cor-
rectly reflects the standard deviation of the cluster to which the test
observation belongs. This can be seen by the clear stratification of the

37

2

4

6

0 10 20 30 40 50
Repetition

S
qu

ar
e

R
oo

t M
S

P
E

 V
al

ue

MSPE Type

MSPE1

MSPE2

Figure 5.5: MSPE1 (blue) and MSPE2 (red) values for the SDMixed
clustered dataset. The smooth lines are the loess curves fit to the MSPE1
and MSPE2 values.

MSPE2 values by cluster in Figure 5.6. For i = 1, . . . , 5, the square-
root MSPE2 values generated for the observations belonging to cluster
i are close to σi = i.

5.2.3 Proof of Principle: Linear Regression

Although written for random forest regression, the ideas motivating Algo-
rithms 5 and 6 are broadly applicable. In this subsection, we apply these
methods to the case of simple linear regression as a proof of principle.

Assume the simple normal error regression model from Example 2.0.2, but
suppose that the data are heteroskedastic—the variance of the error term is
correlated with the predictor variable. Specifically, suppose that our sample
is generated from the following model:

yi = 5 + 10xi + εi. (5.32)

Here,

εi ∼ N

(
0,

(
17.5(xi − xmin

xmax − xmin

)2)
, (5.33)

38

2

4

6

0 10 20 30 40 50
Repetition

S
qu

ar
e

R
oo

t M
S

P
E

2
V

al
ue Cluster SD

1

2

3

4

5

Figure 5.6: MSPE2 values by cluster for the SDMixed clustered dataset.
The smooth lines are the loess curves fit to the MSPE2 values by cluster.

where
xmin = min

j∈{1,...,500}
xj (5.34)

and
xmax = max

k∈{1,...,500}
xk. (5.35)

By construction, the error variance increases with the value of x. Figure 5.7
shows 500 observations generated from the model.

Suppose that we want to construct a prediction interval for the response
of the test observation zh, whose predictor value xh is shown in orange in
Figure 5.7. Under these conditions, traditional statistical theory—the ex-
pression for a prediction interval set out in Equation 2.3—is not available
to us because the data do not satisfy the necessary model assumptions. An
alternative approach is to treat the observations that are close to xh in the
predictor space, colored green in Figure 5.7, as test observations: For each
green observation, fit a regression model on the sample with the observation
omitted. Then, predict the omitted observation’s response value using the

39

Xh

−50

0

50

100

−5.0 −2.5 0.0 2.5 5.0
X

Y

Figure 5.7: 500 observations generated from the model defined by Equations
5.32 and 5.33. The orange mark labeled xh denotes the predictor value of
the test observation. An algorithm analogous to MSPE2 would measure the
prediction error only of observations, colored green, that are close to the test
observation in the predictor space.

40

regression model, and measure the error of that prediction, which is the dif-
ference between the prediction and the true response value. Since the green
observations are close to xh in the predictor space, they have very similar
distributions; they are essentially drawn from the same population. Thus,
our estimate of the prediction error for the green observations should closely
approximate the prediction error of our test observation, so we can use the
observed prediction errors of the green observations to create a prediction
interval for the test observation.

Notice that we would not want to perform the procedure described in the
preceding paragraph for observations with, for example, x < −4.5 instead
of the green observations, since the error terms there are distributed differ-
ently from the error terms at xh; they are different populations. Measuring
the prediction error of observations with x < −4.5 using the procedure de-
scribed in the preceding paragraph would likely cause us to underestimate
the prediction error of the test observation.

The above line of reasoning is, more or less, the idea motivating the
formulation of MSPE2. Of course, the procedure described above does not
perfectly follow the MSPE2 algorithm—linear regression does not have the
notion of “cohabitants” that random forests do—but it is an adaptation of the
algorithm to the linear regression setting that maintains the locality feature
of the algorithm.

Proposition 5.2.1. The following is a loose adaptation of MSPE2 to the
simple linear regression setting: Identify the S sample observations closest
to the test observation xh in the predictor space. For s = 1, . . . , S, estimate
the regression function using least squares on the entire sample except the
sth closest observation, then predict the sth closest observation’s response
using that regression function. The mean squared difference between the
S closest observations’ true response values and the response values pre-
dicted by the corresponding regression functions is MSPE2. After obtaining
MSPE2, estimate the regression function using least squares on the entire
sample. Use the regression function to obtain the predicted response ŷh of
the test observation, and obtain (1− α)100% prediction interval bounds by
ŷ ± t(α

2
,S−1)
√
MSPE2.

We can empirically verify that Proposition 5.2.1 works. After obtaining
500 observations generated from the linear model, we split the dataset so that
75% of the observations are used to train the regression function, and the
remaining 25% are held as test observations. We then followed Proposition

41

5.2.1 with S = 10 to obtain a 95% prediction interval for each test obser-
vation. Then, we calculated the percentage of the prediction intervals that
actually contained the true response value. We repeated the process 1000
times and averaged the empirical capture rate over the 1000 repetitions. As
the first row of Table 5.1 indicates, the empirical capture rate for the loose
adaptation of MSPE2, denoted L MSPE2, was 0.949, almost exactly the
desired rate.

Thus, there is evidence to suggest that Proposition 5.2.1 is able to gen-
erate valid prediction intervals in the simple linear regression setting even in
the presence of heteroskedasticity. In comparison, the traditional method of
constructing prediction intervals for simple linear regression does not yield
valid intervals; as Table 5.1 indicates, the empirical capture rate of the tra-
ditional approach was 0.932.

Suppose next that the model generating the data is homoskedastic—the
error variance is constant. Figure 5.8 shows 500 observations generated from
such a model. If we wanted to construct a prediction interval for a test
observation with predictor value xh (labeled in orange in Figure 5.8) under
these conditions, there is no reason to limit ourselves only to the observations,
colored green in Figure 5.8, closest to xh. All of the observations are equally
useful in estimating prediction error because their error terms all come from
the same population. Therefore, to construct a prediction interval, we can
follow Proposition 5.2.1 but perform it for every observation in our sample
rather than just the few that are closest to xh. That is, set S = n, the
number of observations in the sample.

The above line of reasoning is essentially the idea motivating the formu-
lation of MSPE1. As in our discussion of the heteroskedastic dataset, the
procedure described above does not perfectly follow the MSPE1 algorithm,
but it is an adaptation of the algorithm to the linear setting.

Proposition 5.2.2. The following is a loose adaptation of MSPE1 to the
simple linear regression setting: For i = 1, . . . , n, where n is the number
of observations in the sample, estimate the regression function using least
squares on the entire sample except the ith sample observation, then predict
the ith sample observation’s response using that regression function. The
mean squared difference between the sample observations’ true response val-
ues and the response values predicted by the corresponding regression func-
tions is MSPE1. After obtaining MSPE1, estimate the regression function
using least squares on the entire sample. Use that regression function to ob-

42

Xh

−50

0

50

−5.0 −2.5 0.0 2.5 5.0
X

Y

Figure 5.8: 500 observations generated from the model defined by Equa-
tions 5.32 and with constant error variance. The orange mark labeled xh
denotes the predictor value of the test observation. An algorithm analogous
to MSPE1 would measure the prediction error of all observations, not just
the ones, colored green, that are close to the test observation.

43

tain the predicted response ŷh of the test observation, and obtain (1−α)100%
prediction interval bounds by ŷ ± t(α

2
,n−2)
√
MSPE1.

Notice that, in addition to resembling the MSPE1 algorithm, Proposi-
tion 5.2.2 is essentially the prediction interval construction method proposed
by Steinberger and Leeb (2016). The only difference is that Steinberger and
Leeb (2016) uses the quantiles of the leave-one-out residuals to directly create
the prediction intervals.

We can empirically verify that Proposition 5.2.2 works by performing
a simulation similar to the one used to verify Proposition 5.2.1. The only
differences are that the data in this simulation are homoskedastic, and the
number of repetitions was increased. Specifically, we performed 6000 repeti-
tions and obtained an empirical capture rate of 0.950 for our 95% prediction
intervals, as desired. (This result is not shown in Table 5.1.) The empir-
ical capture rate obtained for 95% prediction intervals generated using the
traditional Equation 2.3 under these simulation conditions was also 0.950,
as expected. In fact, we suspect that Proposition 5.2.2 and the traditional
Equation 2.3 fundamentally operate in the same way and should yield the
same results when applied under the same conditions, though this has not
been investigated in great detail.

As mentioned in both the discussion of the heteroskedastic data and the
discussion of the homoskedastic data, Propositions 5.2.1 and 5.2.2 are not
identical to the MSPE1 and MSPE2 algorithms. Unlike their loosely
adapted counterparts, the latter two algorithms both use bootstrapping.
Moreover, MSPE2 does not consider a pre-determined number of closest
out-of-bag sample observations, unlike Proposition 5.2.1. Therefore, to im-
prove the relevance of this proof of principle, we introduce the following
adaptations that more closely resemble the original MSPE1 and MSPE2
algorithms.

Proposition 5.2.3. The following is a close adaptation of MSPE1 to the
simple linear regression setting: Obtain B bootstrap samples of the original
sample. Estimate a regression function using least squares on each bootstrap
sample. For each observation in the original sample, identify the regression
functions for which the observation is out of bag, then predict the observa-
tion’s response as the mean prediction of those regression functions. The
mean squared difference between the n observations’ true response values
and the response values predicted by the regression functions for which the
observations are out of bag is MSPE1. After obtaining MSPE1, average

44

S L MSPE1 C MSPE1 L MSPE2 C MSPE2 Traditional

10 0.934 0.932 0.949 0.946 0.932
2 0.934 0.933 0.994 0.911 0.930

Table 5.1: Empirical capture rates of 95% prediction intervals constructed
using adapted versions of MSPE1 and MSPE2 over 1000 repetitions. The
data are heteroskedastic and described by Equations 5.32 and 5.33.

the predictions of the test observation’s response across all B regression func-
tions to obtain the predicted response ŷh of the test observation, and obtain
(1− α)100% prediction interval bounds by ŷ ± t(α

2
,n−2)
√
MSPE1.

Proposition 5.2.4. The following is a close adaptation of MSPE2 to the
simple linear regression setting: Obtain B bootstrap samples of the original
sample. Estimate a regression function using least squares on each bootstrap
sample. For b = 1, . . . , B, identify the S observations in the bth bootstrap
sample that are closest to the test observation in the predictor space. For
each of the SB observations, identify the regression functions for which the
observation is out of bag, then predict the observation’s response as the
mean prediction of those regression functions. The mean squared difference
between the SB observations’ true response values and the response values
predicted by the regression functions for which the observations are out of
bag is MSPE2. After obtaining MSPE2, average the predictions of the
test observation’s response across all B regression functions to obtain the
predicted response ŷh of the test observation, and obtain (1 − α)100% pre-
diction interval bounds by ŷ ± t(α

2
,SB−1)

√
MSPE2.

Table 5.1 shows the capture rates of the prediction intervals constructed
using the loose (L) and close (C) adaptations of MSPE1 and MSPE2,
as well as the prediction intervals constructed using the traditional interval
formulation from Equation 2.3, on data generated from the model defined by
Equations 5.32 and 5.33 over 1000 repetitions. Where relevant, B = 500 was
the number of bootstrap samples, and the number S of closest observations
to the test observation is listed in the table.

Observe that, when S = 10, the prediction intervals constructed using
both the loose and the close adaptations of MSPE2 returned capture rates
of 0.949 and 0.946, respectively, suggesting that the algorithms are cor-
rectly measuring the prediction error. Moreover, the prediction intervals

45

constructed using the adaptations of the MSPE1 algorithm had empirical
capture rates about equal to the capture rates of prediction intervals con-
structed using the traditional method, which supports our hypothesis that
the adaptations of MSPE1 and the traditional method are fundamentally
similar.

Finally, observe that the loose and close adaptations of MSPE2 respec-
tively returned higher than desired and lower than desired capture rates when
S = 2. We are uncertain why this occurs; it is a potential subject of further
investigation into the behavior of our estimators.

46

Chapter 6

Random Forest Prediction
Interval Construction

Because they directly estimate a random forest’s prediction error, MSPE1
and MSPE2 lend themselves naturally to prediction interval construction.

Proposition 6.0.1. Let ϕ be a random forest and zh be an observation with
response value yh unknown. A 95% prediction interval for yh is given by

ϕ(xh)± 2
√
MSPE1 (6.1)

and by
ϕ(xh)± 2

√
MSPE2. (6.2)

Empirical simulation results suggest that our proposed methods of esti-
mating variance work well. We ran simulations on the following datasets:

• Boston: Obtained from the MASS package in R, this dataset consists
of 506 observations of 14 variables. Each observation is a town, and
the variables include features such as the town’s per capita crime rate,
the average number of rooms per dwelling in the town, whether the
town bounds the Charles River, and nitrogen oxides concentration in
the town. The response variable is the median value of owner-occupied
homes in thousands of dollars.

• Forest Fires: Obtained from the University of California, Irvine Ma-
chine Learning Repository, this dataset consists of 517 observations of
13 variables. Each observation is a forest fire event in the northeast

47

region of Portugal. The variables include features such as the spatial
coordinates of the fire, the month of the year, the day of the week,
the relative humidity, and the wind speed. The response variable is
the burned area of the forest resulting from the fire, in hectares. The
response variable was transformed using the log transform: ln(y + 1).

• Ozone: Obtained from the mlbench package in R, this dataset consists
of 366 observations of 13 variables. Each observation is one day. The
variables include features such as the date; the humidity at Los An-
geles International Airport (LAX); the pressure gradient from LAX to
Daggett, California; the wind speed at LAX; and the temperature at
El Monte, California. The response variable is the visibility, in miles,
measured at LAX. Some of the 366 observations contain missing data;
those observations were removed before the simulation.

• MPG: Obtained from the University of California, Irvine Machine Learn-
ing Repository, this dataset consists of 398 observations of 8 variables.
Each observation is a vehicle model. The variables include features
such as the weight, the model year, the origin, the displacement, and
the number of cylinders. The response variable is the city-cycle fuel
consumption in miles per gallon.

• Clustered1: This dataset was generated in the same manner as the
datasets from Example 5.2.1. It consists of 500 observations with 10
predictor variables. The data were separated into four clusters. The
response variable means by cluster are

µ = (µ1, . . . , µ4) = (0, 6, 16, 30), (6.3)

and the standard deviations by cluster are

σ = (σ1, . . . , σ4) = (1, 2, 3, 4). (6.4)

• Clustered2: This dataset was generated in the same manner as the
datasets from Example 5.2.1. It consists of 500 observations with 10
predictor variables. The data were separated into four clusters. The
response variable means by cluster are

µ = (µ1, . . . , µ4) = (0, 100, 1000, 5000), (6.5)

48

and the standard deviations by cluster are

σ = (σ1, . . . , σ4) = (10, 10, 10, 10). (6.6)

• Clustered3: This dataset was generated in the same manner as the
datasets from Example 5.2.1. It consists of 500 observations with 10
predictor variables. The data were separated into four clusters. The
response variable means by cluster are

µ = (µ1, . . . , µ4) = (0, 100, 1000, 5000), (6.7)

and the standard deviations by cluster are

σ = (σ1, . . . , σ4) = (1, 40, 400, 2000). (6.8)

For each dataset, we randomly split the data so that 75% of the obser-
vations were used for training and 25% were used as test observations. We
built a random forest with 500 decision trees on the training set. The stop-
ping criterion—that is, the minimum number of observations needed for a
node to be split—was set to 15. One-third of the predictor variables were
available at each node split. After building the random forest, we followed
Algorithms 5 and 6 to obtain values of MSPE1 and MSPE2 for each test
observation. We then constructed a 95% prediction interval for each test
observation using Equations 6.1 and 6.2. After constructing a prediction in-
terval for each test observation, we calculated the percentage of prediction
intervals that actually contained the true response value. We repeated the
entire process—from the initial splitting of the data into training and test
sets to the end—1000 times and averaged the empirical capture rate over
the 1000 repetitions. Table 6.1 displays the empirical capture rates obtained
from the simulations.

From these results, we observe the following:

1. The empirical capture rates of the prediction intervals constructed from
both estimators are around 95% for each of the standard, benchmark
datasets: Boston, Forest Fires, Ozone, and MPG. This suggests that
both of our proposed estimators seem to have yielded valid 95% predic-
tion intervals for those datasets. MSPE1 yielded particularly accurate
prediction intervals, with capture rates of 0.951, 0.951, 0.950, and 0.950
for the benchmark datasets, respectively.

49

Data MSPE1 MSPE2

Boston 0.951 0.965
Forest Fires 0.951 0.948

Ozone 0.950 0.973
MPG 0.950 0.956

Clustered1 0.936 0.947
Clustered2 0.961 0.972
Clustered3 0.919 0.972

Table 6.1: Empirical capture rates of 95% prediction intervals constructed
using MSPE1 and MSPE2 over 1000 repetitions on various datasets.

2. The prediction intervals generated from MSPE1 captured at a lower
rate than desired for the Clustered1 dataset, while the prediction inter-
vals generated from MSPE2 captured more or less at the desired rate.
We suspect that this is because the localizing feature of the MSPE2
algorithm makes the prediction intervals generated from it narrowly
tailored to measure the variability of the random forest’s error in pre-
dicting the particular test observation in question, which differs across
clusters because each cluster has a different standard deviation. On the
other hand, we suspect that the MSPE1 algorithm captured at a lower
rate because of its “averaging effect.” By construction, MSPE1 tends
to center around the overall mean squared prediction error across all
clusters. Thus, the prediction intervals yielded by MSPE1 tend to be
too wide for the clusters with low standard deviations and too narrow
for the clusters with high standard deviations. In particular, they tend
to be wider than necessary to yield a capture rate of 95% for observa-
tions from the clusters with low standard deviations, and they tend to
be narrower than necessary to yield a capture rate of 95% for observa-
tions from the clusters with high standard deviations. But because the
distribution of prediction errors is tapered at the ends, narrowing a 95%
prediction interval by a set number of units will cause a greater decrease
in capture rate than the increase in capture rate caused by widening
a 95% prediction interval by the same number of units. Therefore,
the “averaging effect” of MSPE1 tends to yield prediction intervals
that capture below the desired rate if the response variable’s variance

50

systematically changes across the predictor space.

3. Both MSPE1 and MSPE2 did not capture at the desired rate for
the Clustered2 and Clustered3 datasets. We suspect that this is a gen-
eral trend for datasets that are characterized by extremely pronounced
shifts in the mean of the response variable’s distribution across the
predictor space. To see why, consider the fringes of each cluster in the
predictor space. Because an individual decision tree is built on a boot-
strap sample, it does not have the benefit of viewing all of the observa-
tions in the original sample. In particular, because some observations
at the fringes of the clusters are likely out of bag for the decision tree,
the decision tree may not have an accurate representation of where the
boundaries between clusters are in the predictor space. Therefore, it is
possible for the decision tree to create a terminal node in the predictor
space that includes two different clusters—if, for example, it happens
to be the case that all of the observations from one of the clusters
in the terminal node are out of bag, so that the WSS is relatively
small. When this occurs, the values of MSPE1 and MSPE2 will be
overinflated, since the difference in cluster means is so dramatic—at
the most extreme, the means are 5000 apart—relative to the cluster
standard deviations—which are as small as 40 and 10—that the pre-
dictions of out-of-bag observations in the terminal node will have large
errors. This phenomenon, we suspect, will tend to cause inflated cap-
ture rates, which we see in the results presented in Table 6.1 and in the
boxplots of prediction interval bounds shown in Figures 6.1 and 6.2.
There is one exception, however: The prediction intervals generated
from MSPE1 on the Clustered3 dataset had a deflated capture rate.
We suspect that this occurred because the the response variable in the
Clustered3 dataset, unlike in the Clustered2 dataset, has dramatically
different standard deviations by cluster. Thus, the “averaging effect”
of MSPE1 described in the previous item takes effect and, we suspect,
dominates the “fringe effect” described in this item.

The above discussion raises the question of whether the random forest
model is suitable for certain types of datasets. Specifically, it suggests the
somewhat counterintuitive idea that the random forest model may not be
appropriate for data with discrete, stepwise shifts in response variable dis-
tribution across the predictor space. This seems counterintuitive because
random forests are generally thought to require few assumptions about the

51

data; if anything, they themselves are commonly conceptualized as stepwise
models that should perform especially well on this type of data. However,
our results suggest that problems arise in the regions of the predictor space
where such discrete shifts in the response variable distribution occur. Because
the random forest cannot perfectly delineate the boundary between the two
different response variable distributions, its predictions at such boundary
regions tend to be much less accurate.

This idea, in turn, raises the methodological problem of determining how
to assess the empirical validity of a prediction interval construction algorithm.
Specifically, it is unclear whether or not we should require our algorithms,
as a condition for their validity, to construct prediction intervals that obtain
empirically the desired capture rates for datasets such as Clustered1, Clus-
tered2, and Clustered3, especially if we conclude that the random forest is
simply not an appropriate model for such data. Determining the extent to
which poor empirical results should be attributed to the proposed estimators
as opposed to the model and its fit is a difficult task, but it has important
implications for the way we discuss and evaluate statistical tools.

52

0

2000

4000

Observation

R
es

po
ns

e Interval Bound

Lower

Upper

Figure 6.1: Boxplots of bounds of prediction intervals generated using Al-
gorithm 5 (MSPE1) on the Clustered2 dataset. Observe that the distance
between the lower and upper bounds of the prediction intervals is generally
too wide, particularly given the scaling of the y-axis. We suspect that this is
due to the “fringe effect.” The capture rate for this simulation was 0.961.

53

0

2000

4000

Observation

R
es

po
ns

e Interval Bound

Lower

Upper

Figure 6.2: Boxplots of bounds of prediction intervals generated using Al-
gorithm 6 (MSPE2) on the Clustered2 dataset. Observe that the distance
between the lower and upper bounds of the prediction intervals is generally
too wide, though it is slightly narrower than in Figure 6.1. We suspect that
this is due to the “fringe effect.” The capture rate for this simulation was
0.972.

54

0

3000

6000

9000

Observation

R
es

po
ns

e Interval Bound

Lower

Upper

Figure 6.3: Boxplots of bounds of prediction intervals generated using Al-
gorithm 5 (MSPE1) on the Clustered3 dataset. Observe that the distance
between the lower and upper bounds of the prediction intervals is roughly
constant across clusters, as expected. The capture rate for this simulation
was 0.919. We suspect that this is because the “averaging effect” overshad-
owed the “fringe effect.”

55

0

4000

8000

Observation

R
es

po
ns

e Interval Bound

Lower

Upper

Figure 6.4: Boxplots of bounds of prediction intervals generated using Al-
gorithm 6 (MSPE2) on the Clustered3 dataset. Observe that the average
distance between the lower and upper bounds of the prediction intervals is
different for each cluster, as expected. The capture rate for this simulation
was 0.972. We suspect that this is due to the “fringe effect.”

56

Chapter 7

Conclusion

Despite recent advancements in the literature, random forest predictions of
the value of continuous response variables are still generally confined to point
estimation, which is limited in utility because it provides only a single value
as the prediction without an estimate of the variability associated with the
prediction. We propose two estimators of random forest prediction error,
MSPE1 and MSPE2, that can be used to construct prediction intervals,
which quantify the uncertainty associated with a random forest prediction.
Based on our intuition and analysis of empirical simulations, we identified
important properties of these estimators. Most notably, both MSPE1 and
MSPE2 generally appear to directly estimate the measure of variability
needed to construct valid prediction intervals. However, they do so in dif-
ferent ways: MSPE1 estimates the random forest prediction error over all
observations, whereasMSPE2 does so only for a particular subset of observa-
tions. We then used our proposed estimators to construct prediction intervals
for random forests on a variety of datasets, including standard, benchmark
datasets and artificial, clustered datasets designed to help us evaluate the es-
timators. We found that the prediction intervals generated by both MSPE1
and MSPE2 appear to be valid on the benchmark datasets, but we ob-
served that they did not perform well on the clustered datasets. The results
obtained from the clustered datasets raised important substantive questions
about the structure and suitability of random forests, as well methodological
questions about the way we empirically evaluate our estimators.

The results obtained so far, particularly on the standard, benchmark
datasets, are promising. However, additional research remains to be done.
Future work on the subject might include comparing our prediction inter-

57

val construction method with the method proposed by Meinshausen (2006),
gaining a better understanding of the robustness of the estimators to a va-
riety of conditions, determining the appropriate multiplier of MSPE1 and
MSPE2 to use to construct prediction intervals, and proving the theoretical
properties of the estimators.

58

Bibliography

Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001.
ISSN 0885-6125. doi: 10.1023/A:1010933404324. URL http://dx.doi.

org/10.1023/A:1010933404324.

John Bryan. Developing inference: Frameworks for random forests using bag
of little bootstraps & related methods. Senior Thesis, Pomona College,
April 2016.

B. Efron. Bootstrap methods: Another look at the jackknife. The Annals of
Statistics, 7(1):1–26, 1979. doi: 10.1214/aos/1176344552.

Bradley Efron. Nonparametric standard errors and confidence intervals. The
Canadian Journal of Statistics, 9(2):139–158, 1981.

Bradley Efron. Jackknife-after-bootstrap standard errors and influence func-
tions. Journal of the Royal Statistical Society, Series B (Methodological),
54(1):83–127, 1992.

Bradley Efron. Estimation and accuracy after model selection. Journal of
the American Statistical Association, 2013.

Bradley Efron and Robert Tibshirani. An Introduction to the Bootstrap.
Chapman & Hall, 1994.

A. D. Gordon, L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and regression trees. Biometrics, 40(3):874, 1984. doi: 10.
2307/2530946.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
Introduction to Statistical Learning: With Applications in R. Springer,
2013.

59

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324

Michael H. Kutner, Christopher J. Nachtsheim, John Neter, and William
Li. Applied Linear Statistical Models. McGraw-Hill/Irwin, 5th ed. edition,
2005.

Nicolai Meinshausen. Quantile regression forests. Journal of Machine Learn-
ing Research, 7:984–999, Jun 2006.

Erwan Scornet, Gerard Biau, and Jean-Philippe Vert. Consistency of random
forests. The Annals of Statistics, 43(4):1716?1741, 2015. doi: 10.1214/
15-AOS1321.

Joseph Sexton and Petter Laake. Standard errors for bagged and random
forest estimators. Computational Statistics and Data Analysis, 2009.

Lukas Steinberger and Hannes Leeb. Leave-one-out prediction intervals in
linear regression models with many variables. ArXiv: 1602.05801, Feb
2016.

Stefan Wager. Asymptotic theory for random forests. arXiv:1405.0352, May
2016.

Stefan Wager, Trevor Hastie, and Bradley Efron. Confidence intervals for
random forests: The jackknife and the infinitesimal jackknife. Journal of
Machine Learning Research, 15:1625–1651, May 2014.

60

	Introduction
	Prediction Intervals
	Resampling Methods
	Bootstrapping
	Application: Variance Estimation

	The Jackknife

	Random Forests
	Classification and Regression Trees
	Tree Growth
	Tree Pruning
	Tree Prediction

	Random Forests

	Variability Estimation
	Related Work
	Random Forest Standard Error Estimation
	Quantile Regression Forests
	Leave-One-Out Prediction Intervals

	Direct Estimation of Global and Local Prediction Error
	Introduction and Intuition
	Estimator Properties
	Proof of Principle: Linear Regression

	Random Forest Prediction Interval Construction
	Conclusion

