
Senior Thesis in Mathematics

Artistic Style Transfer using
Deep Learning

Author:
Chris Barnes

Advisor:
Dr. Jo Hardin

Submitted to Pomona College in Partial Fulfillment
of the Degree of Bachelor of Arts

April 7, 2018

Abstract

This paper details the process of creating pastiches using deep neural net-
works. Pastiches are works of art that imitate the style of another artist of
work of art. This process, known as style transfer, requires the mathematical
separation of content and style. I will begin by giving an overview of neural
networks and convolution, two of the building blocks used in artistic style
transfer. Next, I will give an overview of current methods, such as those used
in the Johnson et al. (2016) and Gatys et al. (2015a) papers. Finally, I will
describe several modifications that can be made to create subjectively higher
quality pastiches.

Contents

1 Background 1
1.1 Neural Network Basics . 1
1.2 Training Neural Networks . 2

1.2.1 Initialization . 3
1.2.2 Forward Pass . 4
1.2.3 Backwards Pass . 5
1.2.4 Vectorized Backpropagation 9

1.3 Convolutional Neural Networks 11
1.4 Transfer Learning . 15

2 Content and Style Loss Functions 17

3 Training Neural Networks with Perceptual Loss Functions 26
3.1 Network Architecture . 27
3.2 Loss Function . 29

4 Improving on neural style transfer 32
4.1 Deconvolution . 32
4.2 Instance Normalization . 34
4.3 L1 Loss . 36

5 Results 38

i

Chapter 1

Background

Deep neural networks are the basis of style transfer algorithms. In this
chapter, we will explore the theoretical background of deep learning as well
as the training process of simple neural networks. Next, we will discuss
convolutional neural networks, an adaptation used for image classification
and processing. Finally, we will introduce the idea of transfer learning, or
how knowledge from one problem can be applied to a different problem.

1.1 Neural Network Basics

Deep learning can be characterized as a function approximation process.
Given a function y = f ∗(x), our goal is to find an approximation f(x; θ)
parameterized by θ such that f ∗(x) ≈ f(x; θ) for all values of x in the domain.

Approximations are used in cases where the original function f ∗(x) is
either computationally expensive to compute or impossible to write down.
For example, consider the mapping between online images and a binary vari-
able identifying if the image contains a cat. This function cannot be written
down. Instead, we must create a function approximator in order to use the
function.

Function approximators can be created by composing several functions.
For example, given f (1), f (2), and f (3), we can create a 3-layer neural network
f(x) = f (3)(f (2)(f (1)(x))) where f (1) is the input layer, f (2) is the hidden
layer, and f (3) is the output layer. This is known as a multilayer feedforward
network.

The functions f (i) take the form f (i) = φ(xTwi+bi), where φ is a non-linear

1

activation function, wi is a weight matrix, and bi is a bias term. The choice
of f (i)(x) was loosely guided by neuroscience to represent the activation of a
neuron (Goodfellow et al., 2016).

This architecture has a range of benefits. Firstly, multilayer feedforward
networks are universal function approximators. That is, given a continuous,
bounded, and nonconstant activation function φ and an arbitrary compact set
X ∈ Rk, a multilayer feedforward network can approximate any continuous
function on X arbitrarily well with respect to some metric ρ (Hornik, 1991).

Secondly, this architecture allows for iterative, gradient-based optimiza-
tion. The property of universal function approximation is only useful if ac-
curate approximations can be found in a timely and reasonable manner.
Gradient based learning allows us to find a function approximator given an
optimization procedure and a cost function.

Unfortunately, the nonlinearity of the activation function φ means that
most cost functions are nonconvex (Goodfellow et al., 2016). Thus, there is
no guarantee of convergence to a global optimum. While this makes training
deep neural networks more difficult than training linear models, it is not an
intractable problem. Kawaguchi (2016) showed that every local minimum of
the squared loss function of a deep neural network is a global minimum. This
means there are no “bad” local minima on the loss surface. However, there
are “bad” saddle points where the Hessian has no negative eigenvalues. This
can result in slow training times, where the model gets stuck on a high error
plateau. While recent papers have addressed these training plateaus using
more advanced optimization techniques, gradient descent remains the most
common method to train neural networks.

1.2 Training Neural Networks

Before we begin training a neural network, we must create a metric that
determines how well (or poorly) the network is performing at the approxi-
mation task. One simple example is the mean squared error function which
compares the output of the neural network to the desired value.

Once we select the error function, also known as the loss or cost function,
we will change the weights of the neural network in order to minimize the
cost function. This is known as backpropagation. For each example or set
of examples, we will first input them into the neural network. Next, we
will calculate the total loss across all samples. Thirdly, we will calculate

2

the derivative of the total loss with respect to each weight in the network.
Finally, we will update the weights using the derivatives.

The architecture of the network requires using the chain rule to calculate
derivatives with respect to the weights and biases. To gain intuition into how
the backpropagation algorithm works and how the chain rule is employed, I
will begin with a simple numerical example given by Mazur (2015).

Consider the simple neural network with two input features, a hidden
layer with two neurons, and an output layer of two outputs depicted in
Figure 1.1. Each layer computes a linear combination of inputs followed
by a non-linear activation function applied elementwise. We use bi to refer
to the bias term in layer i and wn to refer to the nth weight term. In this
case, wn is a scalar.

Figure 1.1: Neural Network

1.2.1 Initialization

First, we must initialize the network. For this simple example, we will ini-
tialize the weights and biases simply by incrementing by 0.05. In practice,
the weights are usually randomly initialized.

w1 = 0.15 w2 = 0.20 w3 = 0.25 w4 = 0.30
w5 = 0.40 w6 = 0.45 w7 = 0.50 w8 = 0.55

b1 = 0.35 b2 = 0.60

Suppose we are given the following data. We want to train a neural
network to approximate some function f ∗(x1, x2) that returns two numbers
y1 and y2.

3

x1 = 0.05 x2 = 0.10
y1 = 0.01 y2 = 0.99

1.2.2 Forward Pass

Now that our network is initialized, we will examine its accuracy. By com-
puting a forward pass, we can determine how much error the model has given
the current weights. First, let’s calculate the value of each hidden neuron.
We define zh1 to be the linear combination of the inputs of h1:

zh1 = w1x1 + w2x2 + b1

= 0.15 ∗ 0.05 + 0.2 ∗ 0.1 + 0.35 ∗ 1

= 0.3775

Next, we apply an activation function in order to generate non-linearities.
In this case, we will use the sigmoid function. Thus, we define

ah1 = σ(zh1) =
1

1 + e−zh1

= 0.593269992

Similarly, we get ah2 = 0.596884378 using the same process. Now that we
have computed the activations in the hidden layer, we continue (propagate)
this process forward to the output layer.

zy1 = w5ah1 + w6ah2 + b2

= 0.4 ∗ 0.593269992 + 0.45 ∗ 0.596884378 + 0.6 ∗ 1

= 1.105905967

Next, we apply the activation function.

ŷ1 = ah1 = σ(zy1) = 0.75136507

We apply the same process to get ŷ2 = 0.772928465.

4

Now we will calculate the total error. For this example, we will use the
sum of the squared error (multiplied by a constant of 1

2
in order to simplify

derivatives later on).

Etotal =
∑
i

1

2
(yi − ŷi)2

=
1

2
(y1 − ŷ1)2 +

1

2
(y2 − ŷ2)2

=
1

2
(0.01− 0.75136507)2 +

1

2
(0.99− 0.772928465)2

= 0.298371109

1.2.3 Backwards Pass

We have now computed the total error of the model based on our initialized
weights. To improve this error, we will calculate the derivative of the loss
function with respect to each weight. We can use this derivative to improve
the error later on.

Consider w5. Using the chain rule, we find

∂Etotal

∂w5

=
∂Etotal

∂ŷ1
∗ ∂ŷ1
∂zy1

∗ ∂zy1
∂w5

Now we have an equation for the derivative in much more manageable
terms. We know that

Etotal =
1

2
(y1 − ŷ1)2 +

1

2
(y2 − ŷ2)2

Taking the derivative, we find

∂Etotal

∂ŷ1
= −(y1 − ŷ1) (1.1)

= −(0.01− 0.75136507) (1.2)

= 0.74136507 (1.3)

Next, we calculate the derivative of ŷ1 with respect to zy1 , the linear
combination. In other words, we calculate the derivative of the activation
function. In this case, d

dx
σ(x) = σ(x)(1− σ(x)). Using this, we get

5

∂ŷ1
∂zy1

= ŷ1(1− ŷ1) = 0.186815602 (1.4)

Lastly, we calculate the final derivative. Since zy1 = w5ah1 + w6ah2 + b2,

∂zh1

w5

= ah1 = 0.593269992

Combining these three derivatives, we get

∂Etotal

∂w5

=
∂Etotal

∂ŷ1
∗ ∂ŷ1
∂zy1

∗ ∂zy1
∂w5

= 0.74136507 ∗ 0.186815602 ∗ 0.593269992

= 0.082167041

We can then apply the same method to w6, w7, and w8. Next, we continue
to propagate the errors back through the hidden layer using the chain rule.
Using the same approach, we will calculate

∂Etotal

∂w1

=
∂Etotal

∂ah1

∂ah1

∂zh1

∂zh1

∂w1

(1.5)

We will break equation 1.5 into three parts. First, we will focus on the
derivative of the total error with respect to the activation at the hidden layer.
We can expand this term as follows:

∂Etotal

∂ah1

=
∂Ey1

∂ah1

+
∂Ey2

∂ah1

=
∂Ey1

∂ŷ1

∂ŷ1
∂zy1

∂zy1
∂ah1

+
∂Ey2

∂ŷ2

∂ŷ2
∂zy2

∂zy2
∂ah1

Since zy1 = w5ah1 + w6ah2 + b2 and zy2 = w7ah1 + w8ah2 + b2,

∂zy1
∂ah1

= w5 = 0.40

∂zy2
∂ah1

= w7 = 0.50

6

Recall that we calculated the derivative of the error term with respect to
ŷ in equation 1.1 and the derivative of ŷ with respect to zy1 in equation 1.4.

So for
∂Ey1

∂ah1
,

∂Ey1

∂ah1

=
∂Ey1

∂ŷ1

∂ŷ1
∂zy1

∂zy1
∂ah1

= 0.74136507 ∗ 0.186815602 ∗ 0.40

= 0.055399425

We follow the same steps for
∂Ey2

∂ah1
to get −0.019049119. Thus,

∂Etotal

∂ah1

=
∂Ey1

∂ah1

+
∂Ey2

∂ah1

= 0.055399425 + (−0.019049119)

= 0.036350306

Next, we focus on the second portion of derivative,
∂ah1
∂zh1

. Since ah1 =

σ(zh1),

∂ah1

∂zh1

= ah1(1− ah1)

= 0.59326999(1− 0.59326999)

= 0.241300709

Finally we will focus on the last portion of the derivative,
∂zh1
∂w1

. Since
zh1 = w1x1 + w2x2 + b1,

∂zh1

∂w1

= x1 = 0.05

Finally, combining the three derivatives we just calculated, we get

∂Etotal

∂w1

=
∂Etotal

∂ah1

∂ah1

∂zh1

∂zh1

∂w1

= 0.036350306 + 0.241300709 + 0.05

= 0.000438568

7

Figure 1.2: Visualization of gradient descent optimization. Following the
negative of the gradient multiplied by some learning rate γ results in mini-
mizing the objective function. Figure from Raschka (2018)

Now that we have calculated the gradients, we can update the weights
of the model. We will do this through a process known as gradient descent.
We will select a learning rate, γ, that determines how much each weight
is updated by the gradient. Figure 1.2 provides intuition for this process.
The curve J(w) can be thought of as the total error or loss function. Since
changing the weights changes the total loss, we can think of the loss function
as a function of the weights. As we change the weights of the neural network,
we can move to a lower point on the loss function. By subtracting the gradient
from the weights, we arrive at weights with a lower total error. The parameter
γ is represented by the relative proportion of the arrows. As γ grows larger,
all of the tangent lines grow longer. If γ is too large, the weights could move
away from the cost minimizing values. This can lead to “bouncing” where
weights shift from side to side of the error valley rather than converging to
the minimum. This can be seen from the tangent line. If γ is too small,
convergence could take too long to be practical. This value can be selected
through cross validation. For simplicity’s sake, we select γ = 0.5 Thus,

w∗1 = w1 − γ
∂Etotal

∂w1

= 0.15− 0.5 ∗ 0.000438568

= 0.149780716

We can repeat this process for w2 . . . w8. Once gradients for the entire
network are found, the weights are updated simultaneously. This yields a
total error of 0.291027924, down from 0.298371109. Running a forward pass

8

followed by backpropagation 10, 000 more times yields weights which produce
a total error of 0.000035102 on our training set.

1.2.4 Vectorized Backpropagation

The prior example demonstrates backpropagation on a single sample with 2
input values. In the real world, our dataset may have hundreds of millions
of examples. Furthermore, each example may have hundreds or thousands
of input values (e.g., an image). Dealing with this set up efficiently requires
vectorization. We can think of each sample x(i) as a vector of x1, x2, . . . , xm
input values, and the set of all inputs X as an m× n matrix of samples.

Additionally, we can use other functions to calculate the total error. In the
prior example, we utilized the mean squared error function. Mean squared
error corresponds to the L2-norm of the difference between the observed
response and the output of the neural network. Generalizing the idea of
error functions allows us to use other functions to optimize a neural network,
such L1 loss.

According to Nielsen (2015), a valid cost function must meet the following
criteria :

1. Total cost C(X) over all training examples X must equal the average
of the cost function evaluated at each training example x(i):

C(X) =
1

n

n∑
i=1

C(x(i))

2. Cost must be a nonconstant differentiable function of A(L), the activa-
tion (output) of the final layer L in the neural network:

C = f(A(L))

The first criterion allows us to recover the derivative of the cost function
with respect to our weights by averaging over training examples such that

dC(X)

dwl
ij

=
1

n

n∑
i=1

dC(x(i))

dwl
ij

(1.6)

where wl is the matrix of weights in layer l. This is required since each

step of backpropagation only gives us dC(x(i))

dwl
ij

.

9

The second assumption ensures that changing the weights of the network
(which affect the output) will change the value of the cost function, allowing
the network to learn.

Table 1.1: Backpropagation Notation

x(i) , Single training example of shape (m, 1). Sometimes re-
ferred to as a(0)

nl , Number of neurons in layer l

wl , Weight matrix in layer l of shape (nl, nl−1)

bl , Bias term in layer l of shape (nl, 1)

zl , wla(l−1) + bl

g(·) , Activation function in a given layer

al , g(zl)

Next, we will consider vectorized backpropagation. In addition to the
variables defined in Table 1.1, we will use an intermediate quantity δlj such
that

δlj =
∂C

∂zlj

where zlj is the linear combination of neuron j in layer l. Following Hall-
strom (2016), we begin at the output layer L. Using the chain rule, we find
that

δL = ∇aLC � g′(zL) (1.7)

where � denotes the elementwise product. We use g′(zL) to denote the
derivative of the activation function applied elementwise to the vector zL.
For example, if g(x) = σ(x), then g′(x) = d

dx
σ(x).

Next, we find an equation for δ at any given layer l based on the following
layer l + 1. This follow from basic matrix calculus and is left as an exercise
for the reader:

δl = ((wl+1)T δl+1)� g′(zl) (1.8)

Since we know δl+1, we can propagate the error backwards through the
network using the transposed weight matrix (wl+1)T . We then apply the

10

chain rule to move through the activation function g(z) in order to calculate
δl.

Using the recursive definition to calculate δl for each layer l in the network,
we can now calculate the derivative of the cost function C with respect to
the weights and biases at each layer of the network.

∂C

∂blj
=
∂C

∂zlj

∂zlj
∂blj

= δlj (1.9)

since zlj = wl
kja

l−1
j + blj =⇒ ∂zlj

∂blj
= 1.

Additionally, we find that

∂C

∂wl
jk

=
∂C

∂zlj

∂zlj
∂wl

jk

(1.10)

= alkδ
l
j (1.11)

With these derivatives, we can now update our weights:

wl∗ = wl − γ∇wlC(X)

bl∗ = bl − γ∇blC(X)

where γ is the learning rate and∇wC(X) is an (nl, nl−1) matrix containing
the gradients of the cost function C with respect to the current weights w
evaluated on the training set X for a single layer of the neural network.

1.3 Convolutional Neural Networks

Convolutional neural networks (“CNNs”) are neural networks that use the
convolution operation in place of general matrix multiplication (Goodfellow
et al., 2016). CNNs take advantage of the grid-like structure of images and
provide four main advantages: sparsity, parameter sharing, equivariant rep-
resentations, and variable input size.

First, I will detail the convolution operation. Convolution is an opera-
tion applied to two functions. We use (I ∗F)(i, j) to denote the convolution
of image I and filter F at position (i, j) in the image. The filter is gener-
ally much smaller than the image. In practice, a neural network might use

11

256x256 images and 3x3 or 5x5 filters. We can write the convolved feature
map S(i, j):

S(i, j) = (I ∗ F)(i, j) =
∑
m

∑
n

I(m,n) F (i−m, j − n)

=
∑
m

∑
n

I(i−m, j − n) F (m,n)

Since convolution is commutative, we can flip the arguments and preserve
equality (Goodfellow et al., 2016).

Many machine learning libraries implement cross-correlation rather than
convolution. In cross-correlation, the filter F is simply “flipped”, meaning
that we change subtraction to addition. This means that as the index m
increases, we move down both the image and the kernel. Since the parameters
inside the filters are randomly initialized and tuned using backpropagation,
it does not matter whether convolution or cross correlation is used. We write
the cross-correlation of I and F :

S(i, j) = (I ∗ F)(i, j) =
∑
m

∑
n

I(i+m, j + n) F (m,n) (1.12)

The smaller size of the filter F relative to the image I creates sparse inter-
actions, meaning fewer connections between neurons. Let nin be the number
of inputs and nout be the number of outputs in one layer of a fully connected
neural network. Thus, the matrix multiplication step will have O(nin×nout)
runtime. If each output only looks at k input values (corresponding to look-
ing at a small patch of the image), the step has complexity O(k×nout) where
k << nin.

Convolutional networks reuse the same weight parameters across different
positions of an image. In a fully connected network, each parameter is used
once (multiplied by the input at a certain position) to generate part of an
output. In a convolutional network, each element of the filter is used at
every element of the input. This means we only need to learn k parameters,
or perhaps k × nfilters where k is the number of elements in each filter.

Another important characteristic of CNNs is equivariance. Mathemati-
cally, f(x) is equivariant to function g(x) if f(g(x)) = g(f(x)). Convolution
is equivariant to changes in object location in an image. Consider an image

12

Figure 1.3: Visualization of convolutional neural network (top) compared
to a fully connected neural network (bottom). Each input only affects 3
outputs in the convolutional network, while each input affects every output
in the fully connected network. (Goodfellow et al., 2016)

13

Figure 1.4: Visualization of convolutional neural network (top) compared to
a fully connected neural network (bottom). Each parameter is used across
each input in the convolutional case, compared to only being used once in
the fully connected case. (Goodfellow et al., 2016)

I and filter F . If we apply some function g(I) that shifts each pixel down
and apply the same convolution (g(I) ∗ F), we get the same result as apply-
ing the function after the convolution g(I ∗ F). In practice, this means that
convolutional neural networks do not care about the location of an object in
an image. If a CNN recognizes a bird in the center of an image, it will also
be able to recognize the same bird in the corner of an image. Note that this
only applies to direct movements of an image. Convolution is not equivariant
to changes in scale or rotation (Goodfellow et al., 2016).

Lastly, convolution allows for variable input sizing. Since the number of
parameters does not depend on the number of inputs but rather on the filter
size and number of filters, a neural network that works on 256x256 images
will work on 512x512 images. Note however, this may require adaption to
deal with changes in scale since objects in a 256x256 image appear relatively
smaller in 512x512 images.

It can be useful to think of convolution in terms of sliding windows. In
the case of a 4×4 image convolved with a 3×3 filter, the filter “scans” along
the image, moving with a stride of 1 across the image until it hits the end
before moving down one pixel and repeating the process again. This results

14

Figure 1.5: Convolution as a sliding window problem. Figure from deeplearn-
ing.net

in a 2× 2 output image.
This demonstrates one important consideration in convolutional networks:

convolution results in a smaller output. We can adjust the size of the output
image by changing 3 hyperparameters: filter size, padding, and stride. Filter
size refers to the number of parameters used in each filter. Larger filters
will “see” more of the image, but also result in a smaller output. Padding
refers to the amount of zeros we add around the sides of an image or matrix.
Finally, stride refers to the amount the sliding window moves after each step.
In the example above, the stride length was 1. We will normally use f ×f to
refer to the filter size, s to refer to the stride, and p to refer to the amount
of padding added around the image.

Consider an image of size n×n. The convolution operation will result in
an m×m output where

m =
⌊n+ 2p− f

s

⌋
+ 1 (1.13)

Based on this equation, we can see that a 3× 3 filter with stride 1 result
in an image 2 pixels smaller in each dimension. This is known as a valid
convolution. If we want to preserve the input size, we can simply add 1
row of zeros around all sides of the input image. This is known as a same
convolution.

If we want to downsample, or reduce the image size, we can use a stride
length of 2 or more.

1.4 Transfer Learning

Taking an image and convolving it with a filter creates an output known
as a feature map. Feature maps created by deep neural networks are sur-

15

prisingly useful and transferable. Sharif Razavian et al. (2014) used feature
maps from a pretrained network to train a linear SVM classifier on various
new recognition tasks such as image classification, scene recognition, and
attribute detection, achieving near state-of-the-art results. Yosinski et al.
(2014) quantified the generality versus specificity of feature representations
in each layer of a deep neural network, finding that using low level feature
maps significantly increases performance even for distant tasks. They further
noted that many deep neural networks learn low level feature maps similar to
Gabor filters, a type of image filter that resembles those found in the human
eye. In a way, training a CNN on a large image dataset teaches it to “see”
the world. We can describe this learning process as follows:

Definition 1.1. (Transfer Learning) Given a source domain DS and learning
task TS, a target domain DT and learning task TT , transfer learning aims to
help improve the learning of the target predictive function fT (·) in DT using
the knowledge in DS and TS, where DS 6= DT or TS 6= TT (Pan and Yang,
2010)

The approach to transfer learning used in neural style transfer is known
as feature representation transfer. This approach attempts to learn “good”
feature representations (also known as feature maps) from the source task TS
and source domain DS which can be useful for our target task TT and target
domain DT .

Concretely, we can train a large neural network on a supervised learning
task such as image classification and then use the feature representations
created internally for a new task. In this case, the source learning task is
image classification and the source domain is a set of 10 million images. The
target task is neural style transfer, and the target domain is a set of 120k
images. We will utilize feature maps created from the filters of the image
classification network to stylize new images.

16

Chapter 2

Content and Style Loss
Functions

Style transfer can be thought of as the creation of pastiches, or works of
art that imitate the style of another artist or piece (Dumoulin et al., 2016).
For example, one could apply the style of Starry Night by Van Gogh to a
photograph of the Golden Gate bridge, creating an image of the golden gate
bridge that looks like it was painted by Van Gogh.

This task requires the separation of style from content. The pastiche
preserves the colors and textures of a certain artist or work while displaying
different objects or scenery.

This approach requires a mathematical definition of content and style.
One naive approach might be to average the pixel values of the content
and style images. However, averaging pixels does not result in images of
high perceptual quality. Changing the color of an image could result in a
large deviation in pixel values while not changing the content. Likewise, fine
details that define the image could be lost in favor of large blocks of color.
True content and style representations require the algorithm to recognize the
objects that the image contains.

Gatys et al. (2015a) introduced the idea of using deep convolutional neural
networks to create style and content representations of an image. Specifically,
the authors used feature representations from a convolutional neural network
known as VGG-16 to create a definition of content and style. VGG-16 is an
image classification network trained on 10 million images to classify objects
into 1,000 categories. Along its architecture, it develops feature represen-
tations for images that make semantic information more and more explicit

17

across layers (Gatys et al., 2015b). In earlier layers, representations capture
information corresponding to colors and textures. In deeper layers, rep-
resentations capture information about the objects in the image and their
arrangement (Gatys et al., 2015a). Eventually, VGG-16 returns a 1x1000
vector that indicates which object is most likely contained in the image.

Figure 2.1: VGG network architecture (Cord, 2016).

We can use feature responses in deeper layers as the content representa-
tion. Concretely, the content representation is a matrix F l of shape (nfilters, npixels)
where F l

ij is the activation of the ith filter at position j in layer l of the convo-
lutional neural network. Filters are analogous to color channels in an image.
Neural networks may develop feature representation that have 128, 256, or
512 filters, compared to the 3-filter RGB color representation used in most
image formats.

Gatys et al. (2015a) obtained the style representation by calculating the
correlations between filter responses across multiple layers of the neural net-
work. This feature space was originally created to capture texture informa-
tion while discarding (x, y) positional information. The style representation
is calculated by taking the Gram matrix of the vectorized feature maps:

Gl
ij =

∑
k

F l
ikF

l
jk (2.1)

Gl represents an (nfilters, nfilters) sized feature space where each entry is

18

a measure of correlation between filter response i and filter response j across
the image.

Content representations F l and style representations Gl can be used to
create a loss function.

We define content loss as the Frobenius norm of the difference between
two feature representations

Lcontent(p,x) = ‖F l
ij − P l

ij‖2F (2.2)

where F l
ij is the content representation of x, the input image, and P l

ij is the
content representation of p, the content photograph, in layer l. Gatys et al.
(2015b) used only one layer of VGG16, ‘conv4 2’, to calculate the content
representation.

Figure 2.2: Visualization of the content loss function

Figure 2.2 gives an illustration of how the content loss function is cal-
culated. Two images are plugged into the VGG-16 neural network. The
activations of each image inside the neural network are compared, giving a
metric of the similarity of the two images in terms of content.

Figure 2.3 demonstrates what happens if we start with white noise and
minimize only the content loss function. The resulting image maintains the
same content as the original image despite minor aberrations.

19

Figure 2.3: Reconstructing an image from the content representation of the
image in layer ‘conv3 1’ of the VGG16 network (Mahendran and Vedaldi,
2015). (Photo: sftravel.com)

Similarly, for style loss, we calculate the norm of the difference between
the style representations. Since we use multiple layers (usually ‘conv1 1’
through ‘conv5 1’ in VGG16) to create the style representation, we average
across those layers to get the total style loss. Let Gl

ij be the style represen-
tation of x and Al

ij be the style representation of a, the style artwork:

Lstyle(a,x) =
L∑
l=1

wl · ‖Gl
ij − Al

ij‖2F (2.3)

where wl is the weight of each layer such that w sums to 1.

20

Figure 2.4: Visualization of the style loss function

Figure 2.4 gives an illustration of the style loss function. Two images
are plugged into the VGG-16 network. Next, we calculate the correlation
between different features at each layer. Finally, we compare the difference
between the correlation matrix of the input image to the correlation matrix
of the style image to arrive at the style loss.

21

Figure 2.5: Reconstructing an image from the average style representation
of the image across layers ‘conv1 1’ to ‘conv5 1’ of the VGG16 network (Ma-
hendran and Vedaldi, 2015). (Photo: Starry Night by Van Gogh)

Figure 2.5 demonstrates what happens if we start with white noise and
minimize only the style loss function. The resulting image discards positional
information due to the usage of correlation matrices and seems to do a good
job of maintaining color and texture information.

If we select an x that minimizes the weighted sum of the loss functions
such that

x = arg min
x

αLcontent(p,x) + βLstyle(a,x) (2.4)

we achieve a new image with the content of p in the style of a. The minimiza-
tion problem is intractable analytically since the loss function is a function
of a neural network, which is not invertible. However, optimization methods
such as gradient descent can be used. We will simply calculate the derivative
of the loss function with respect to each pixel in x and update each pixel to
minimize the loss function.

22

Algorithm 1 Gatys et al. (2015a) Neural Style Transfer

x ← white noise of shape (height, width, channels)
p ← content photograph of size x.shape
P ← content representation of p in layer ‘conv4 2’
a ← style artwork of size x.shape
A ← style representation of style artwork
γ ← learning rate
for i← 1 to n iterations do

F ← content representation of x
G ← style representation of x
Ltotal ← Lstyle(G,A) + Lcontent(F, P)
xij ← xij − γ ∂Ltotal

∂xij

return x

Figure 2.6: Neural style transfer using the algorithm proposed by Gatys et al.
(2015a). (Photo: sftravel.com; Artwork: Starry Night by Van Gogh)

23

Figure 2.6 demonstrates the result of Algorithm 1 using a picture of the
golden gate bridge as the content image and Starry Night as the style image.
The resulting image seems to maintain the colors and textures of Starry Night
while remaining recognizable as the golden gate bridge.

While this process results in an image of high perceptual quality, the
reason why the Gram matrices represent artistic style is not entirely clear.
Li et al. (2017) offers an interpretation of Gram matrix matching in terms of
a special domain adaptation problem known as Maximum Mean Discrepancy
minimization.

Maximum Mean Discrepancy is a test statistic introduced by Gretton
(2012) to determine if two samples are drawn from the same distribution.
Consider two sets of samples X = {xi}ni=1 and Y = {yj}mj=1 defined in a
topological space X , where xi ∼ p and yj ∼ q, i.i.d.. Then squared MMD is
defined as the difference in expected value between X and Y when mapped
into the reproducing kernel Hilbert space H by the function φ : X → H:

MMD2[X, Y] = ‖Ex∼p[φ(X)]− Ey∼q[φ(Y)]‖2

=
1

n2

n∑
i=1

n∑
j=1

φ(xi)
Tφ(xj) +

1

m2

m∑
k=1

m∑
l=1

φ(yk)Tφ(yl)−
2

nm

n∑
i=1

m∑
k=1

φ(xi)
Tφ(yk)

Letting kernel function k(x, y) = 〈φ(x), φ(y)〉,

MMD2[X, Y] =
1

n2

n∑
i=1

n∑
j=1

k(xi, xj)+
1

m2

m∑
k=1

m∑
l=1

k(yk, yl)−
2

nm

n∑
i=1

m∑
k=1

k(xi, yk)

(2.5)
Following the steps of Li et al. (2017), we can show that our style loss

function Ll
style on a single layer l is equivalent to the squared MMD metric

on F l and Sl with the kernel function k(x, y) = (xTy)2, where F l and Sl are
the feature representations of x and a in the neural network, respectively.

24

Ll
style =

N∑
i=1

N∑
j=1

(Gl
ij − Al

ij)
2 (2.6)

=
N∑
i=1

N∑
j=1

(
M∑
k

F l
ikF

l
jk −

M∑
k

Sl
ikS

l
jk)2 (2.7)

=
N∑
i=1

N∑
j=1

((
M∑
k

F l
ikF

l
jk)2 + (

M∑
k

Sl
ikS

l
jk)2 − 2(

M∑
k

F l
ikF

l
jk)(

M∑
k

Sl
ikS

l
jk))

(2.8)

=
N∑
i=1

N∑
j=1

M∑
k1=1

M∑
k2=1

(F l
ik1
F l
jk1
F l
ik2
F l
jk2

+ Sl
ik1
Sl
jk1
Sl
ik2
Sl
jk2
− 2F l

ik1
F l
jk1
Sl
ik2
Sl
jk2

)

(2.9)

=
M∑
k1

M∑
k2

N∑
i=1

N∑
j=1

(F l
ik1
F l
jk1
F l
ik2
F l
jk2

+ Sl
ik1
Sl
jk1
Sl
ik2
Sl
jk2
− 2F l

ik1
F l
jk1
Sl
ik2
Sl
jk2

)

(2.10)

=
M∑

k1=1

M∑
k2=1

((
N∑
i=1

F l
ik1
F l
ik2

)2 + (
N∑
i=1

Sl
ik1
Sl
ik2

)2 − 2(
N∑
i=1

F l
ik1
Sl
ik2

)2) (2.11)

=
M∑

k1=1

M∑
k2=1

(k(f l
k1
, f l

k2
) + k(slk1 , f

l
s2

)− 2k(f l
k1
, slk2)) (2.12)

= M2 MMD2[F l, Sl] (2.13)

with f l
k and slk as the kth column of F l and Sl respectively. Therefore,

style transfer can be seen as aligning the distribution of the input image x
with the style image a in the reproducing kernel Hilbert space associated with
the second order polynomial kernel (Li et al., 2017). Since the activations
at each position of the filter responses is taken as an individual sample, the
style loss function ignores positional information within the image.

25

Chapter 3

Training Neural Networks with
Perceptual Loss Functions

It may be infeasible to run Algorithm 1 for each content image. It takes a
graphics card thousands of iterations to arrive at an acceptable image. Given
that neural networks are universal function approximators, we could instead
train a neural network to transfer the style of a particular image onto any
image that is inputted. We can write

y = f ∗(a,p) = arg min
x

αLcontent(x,p) + βLstyle(x,a) (3.1)

as the function to approximate, where a is the artwork, p is the photograph
or content image, and y is the stylized image that the network outputs. A
single forward pass through a neural network requires far less computation
than the optimization scheme employed by Gatys et al. (2015b). This allows
new images to be stylized nearly instantaneously or on lower power machines
such as smartphones. This speed in stylizing new images comes at the cost
of training the image transformation network in the first place. Training
the image transformation network requires hundreds of thousands of content
images. The training process takes around 1.5 hours on an Nvidia 1080TI.

In this chapter, we will detail the type of neural network that can be
used to transform one image into another. Finally, we will describe the loss
function used to train this specialized type of neural network.

26

3.1 Network Architecture

Image transformation requires a new type of neural network architecture.
Unlike other CNNs, image classification networks do not output a classifica-
tion. Instead, they output a new or transformed image. As a result, image
transformation networks are entirely convolutional, meaning they do not use
any fully connected layers. This significantly reduces the number of param-
eters needed to train our network and allows us to stylize any sized image
once the network is trained.

Image transformation network architectures tend to have several similar
characteristics in common. In the first few layers, image size is reduced while
the number of filters increases. Next, a series of residual blocks are applied
to the image. Residual blocks are a specific type of convolution which will
be explored later in this section. Finally, the image is enlarged back to its
original size as the number of filters decreases back to the r-g-b color range.

This architecture has two main benefits. Firstly, downsampling, or re-
ducing the image size, allows us to use a much larger network with the same
computational cost as a smaller network on a non-downsampled image. Sec-
ondly, downsampling by a factor of D increases the receptive field by size 2D,
allowing for a larger field with the same number of layers (Johnson et al.,
2016). Figure 3.1 demonstrates the idea of receptive field. If the image
was one pixel smaller on each side, every neuron could see the entire image
starting in the second layer instead of the third layer.

Residual blocks are another significant component of the image trans-
formation network architecture. Residual blocks perform a series of convo-
lutions, then add the input x back before returning the output. This is
commonly referred to as a shortcut mapping. He et al. (2015) argues that
shortcut mappings allow deep neural networks to more easily learn the iden-
tity function. Non-residual networks can experience performance degradation
while training if the network becomes too deep. One hypothesis for this is
that identity mappings can be difficult for multiple non-linear functions to
learn. However, in residual networks, the identity function can be learned by
pushing the weights towards zero. Hypothetically, this is a useful feature for
image transformation networks since our desired output looks similar to the
input image. In practice, equivalent non-residual convolutional blocks result
in similar looking images, but take longer to train (Johnson et al., 2016).

Figure 3.2 shows the design of the convolutional blocks used in Johnson-
Net. First, a 3x3 same convolution is performed, maintaining image size.

27

Figure 3.1: Visualization of the receptive field in a convolutional neural net-
work. Neurons in deeper layers are able to “see” a larger portion of the image.
If the input is downsampled, each neuron can see a much larger portion of
the image in earlier layers. (Goodfellow et al., 2016)

Next, a batch normalization layer normalizes the distribution of the images
across each filter. Since only a handful of images are put through the net-
work at once due to memory limitations, this normalization only takes place
across the batch of images currently in the network. Batch normalization
helps avoid a problem known as internal covariate shift. As the weights in
one layer change, so does the distribution of inputs in the next layer. Ioffe
and Szegedy (2015) noted that adding layers which normalize images across
each batch allows for faster training time and increased accuracy. After the
batch normalization layer, a ReLU or rectified linear activation function is
applied elementwise. The ReLU function is simply defined as 0 for x < 0 and
x otherwise. This serves the same function as the sigmoid function in Chap-
ter 1, but is computationally simpler. Next, a 3x3 convolution is applied
again followed by more batch normalization. Again, since same convolution
is used, the input size remains the same. Finally, the original input is added
back to the output before it is returned.

Table 3.1 shows the architecture of the image transformation network
used by Johnson et al. (2016). The network takes the content image as an
input and returns a stylized image. The content and style loss functions from
Chapter 2 are used to train JohnsonNet.

28

Figure 3.2: Residual block used in Johnson et al. (2016)

Layer Activation Size
Input 3× 256× 256

32× 9× 9 conv, stride 1 32× 256× 256
64× 3× 3 conv, stride 2 64× 128× 128
128× 3× 3 conv, stride 2 128× 64× 64
Residual block, 128 filters 128× 64× 64
Residual block, 128 filters 128× 64× 64
Residual block, 128 filters 128× 64× 64
Residual block, 128 filters 128× 64× 64
Residual block, 128 filters 128× 64× 64
64× 3× 3 conv, stride 1/2 64× 128× 128
32× 3× 3 conv, stride 1/2 32× 256× 256

3× 3× 3 conv, stride 1 3× 256× 256

Table 3.1: Network architecture for style transfer used by Johnson et al.
(2016)

3.2 Loss Function

There are two potential ways to train a neural network to approximate the
content and style loss function. One way would be to use Algorithm 1 to

29

Figure 3.3: Training using perceptual loss functions

generate millions of pair images which could be used to train a neural network
using a simple MSE loss function. This approach has a large downside – it
is infeasible to generate that many stylized images. Instead, a more direct
approach can be used. We can simply use the loss function from Gatys et al.
(2015b) as a loss function for our image transformation network. This means
we will not have to generate any stylized images before training.

Figure 3.3 illustrates the process of training a transformation network
using the style and content loss functions. First, a new photograph is in-
putted into the image transformation network. Next, the transformed image
is compared to the style image using the loss function Lstyle and compared
to the content image using the loss function Lcontent. Next, the image trans-
formation network is updated using backpropagation in order to minimize
the weighted average of these functions. This process repeats again with a
new photograph over and over. Due to the large number of parameters in
the image transformation network, it can take a large number of training
images to achieve a suitable result. In practice, a dataset of 120,000 images
is usually sufficient.

Although the loss function itself remains largely the same, Johnson et al.
(2016) makes one modification to the loss function from Chapter 2. In order

30

Figure 3.4: Results from applying the Johnson et al. (2016) Starry Night
model to the Golden Gate Bridge content image used previously. (Johnson
et al., 2016)

to encourage spatial smoothness, total variation regularization is added. This
simply adds a loss LTV (x) multiplied by weight parameter λ to the content
and style loss function from Chapter 2, where

LTV (x) =
∑
i,j

|xi+1,j − xi,j|+ |xi,j+1 − xi,j| (3.2)

This effectively sets a limit on the total difference in the horizontal and
vertical dimensions of an image which helps reduce noise.

Figure 3.4 applies the Starry Night model from Johnson et al. (2016) to
our content image of the Golden Gate Bridge. This was created by down-
loading the weights made available from Johnson et al. (2016) and loading
them into the JohnsonNet architecture.

31

Chapter 4

Improving on neural style
transfer

While the result from Chapter 3 is much faster to generate than the result
from Chapter 2, it does not subjectively resemble the original Starry Night
painting. We can make several alterations to the image transformation net-
work and training procedure in order to boost the perceptual quality.

4.1 Deconvolution

As stated in Chapter 3, image transformation networks generally shrink the
output image to a smaller size before applying the residual blocks and then
increase the image size for output. A same convolution with stride 2 will re-
sult in an image half as large as the original. As a result, Johnson et al. (2016)
uses strided convolutions to accomplish downsampling. Another technique,
known as fractionally strided convolution or deconvolution, can be used to
upsample an image at the end of the network.

Fractionally strided convolution can be thought of as adding rows and
columns of zeros between each pixel in the input image. Figure 4.1 demon-
strates this idea with a stride of 1

2
. This undoes the effect of a stride 2

convolution earlier in the network, so a stride 1
2

same convolution will double
the size of an input image.

Deconvolution unfortunately results in strange checkerboard artifacts. In
the JohnsonNet architecture, a filter size of 3 and partial stride of 1

2
are

used. Figure 4.2 demonstrates how this can be problematic. The uneven

32

Figure 4.1: Fractionally strided convolution. The bottom matrix represents
the input, which has been expanded by placing rows and columns of zeros
in between each pixel. The top matrix represents the output. Figure from
deeplearning.net

Figure 4.2: Visualization of checkerboard effect resulting from deconvolution
with stride length 1

2
and filter size 3. Figure from Odena et al. (2016)

33

Figure 4.3: Figure from Odena et al. (2016)

division of the reciprocal stride (2) and the filter size (3) results in uneven
overlap. When the smaller image is upsampled, some spots in the output
image get “seen” twice, resulting in those spots getting more “paint” than
other spots. While neural networks could theoretically choose weights that
avoid this problem, in practice it is difficult for them to do so (Odena et al.,
2016).

Instead of using deconvolution, we can use nearest neighbor or bilinear
upsampling followed by a same convolution. This allows us to use the same
filter size as the previous network while eliminating the existence of checker-
board artifacts.

Nearest neighbor upsampling simply repeats each row and column in the
smaller image over again to get a larger image. For example, to get an image
twice as large, simply repeat each row twice and each column twice. This,
however, results in blocky, pixelated looking images.

Bilinear upsampling uses bilinear interpolation to add additional pixels.
Bilinear interpolation takes an average of the pixels to either side of it, then
takes an average of the pixels on top and below. Because the interpolation is
done sequentially, the new pixel is a quadratic function of the pixels around
it.

In our updated network, we will use bilinear upsampling.

4.2 Instance Normalization

In the JohnsonNet architecture, increasing or decreasing the contrast of the
content image can result in a radically different stylized image. Intuitively,

34

this should not be true. As contrast is a substantial marker of style, the
contrast of the output image should ideally align closely to the contrast of
the style image. One approach introduced by Ulyanov et al. (2016) to solve
problems relating to contrast is to replace batch normalization layers with
instance normalization layers. Batch normalization, as stated earlier, limits
the internal covariate shift inside a neural network. Let xtijk be the (j, k)th
pixel in the ith filter of the tth image in the batch. Then batch normalization
is given by

ytijk =
xtijk − µi√
σ2
i + ε

, µi =
1

HWT

T∑
t=1

W∑
l=1

H∑
m=1

xtilm, σ
2
i =

1

HWT

T∑
t=1

W∑
l=1

H∑
m=1

(xtilm−µi)
2

(4.1)
This normalizes the contrast across the batch of images. In order to

normalize the contrast of each instance (in this case, each image), we can
modify the definition slightly:

ytijk =
xtijk − µti√
σ2
ti + ε

, µti =
1

HW

W∑
l=1

H∑
m=1

xtilm, σ
2
ti =

1

HW

W∑
l=1

H∑
m=1

(xtilm − µti)
2

(4.2)
This modification significantly increases the performance of style transfer

networks. Figure 4.4 demonstrates the effect of instance normalization. This
change results in images that seem to better preserve style and content.

35

Figure 4.4: Images generated from JohnsonNet architecture using batch nor-
malization (right) compared to instance normalization (left). Images from
Ulyanov et al. (2016)

4.3 L1 Loss

While L2 loss functions are commonly used in image processing, they do not
correlate well with human perception of image quality. The human visual
system is sensitive to luminance and color variations in texture-less regions.
However, L2 loss functions penalize larger errors and are more tolerant to
splotchy regions (Zhao et al., 2017).

Figure 4.5: Figure from Zhao et al. (2017)

Replacing the L2 norm with the L1 norm in the style and content loss
function of our neural network results in fewer splotchy regions. Although
more advanced loss functions such as Structural Similarity Index (SSIM)
can be used, L1 loss functions are available in most neural network software
packages and provide similar performance.

36

Neural networks trained with L2 loss functions are less resilient to outliers.
A network trained with an L2 loss function will avoid larger deviations at
the cost of smaller ones. On the other hand, L1 loss will adjust to deviations
more smoothly. This results in fewer splotchy regions and lines up closer
with human perception of image quality.

Figure 4.5 demonstrates this idea applied to an image transformation
network trained to denoise images. L2 loss results in splotchy regions, while
L1 loss results in smoother images. Although the task of image denoising
is different than reconstructing an image from feature representations, the
same principles apply.

37

Chapter 5

Results

I implemented neural style transfer in PyTorch using open source code from
PyTorch’s github repository. The code was modified to incorporate the
changes detailed in Chapter 4. Each model was trained for one epoch, or
one pass, through the Microsoft Common Objects in Context (”COCO”)
dataset which contains 118,000 images. Training took place on an Nvidia
1080TI, taking around 1.5 hours per epoch.

Four main hyperparameters were tuned: ratio of style to content, use of
instance normalization, loss function, and total variation loss. Each model
was trained using Starry Night as the style image. The image of the Golden
Gate Bridge was used for comparison purposes, although each model can
stylize any photograph.

Figure 5.1: Starry Night by Van Gogh (style image, left), and the Golden
Gate Bridge (content image for comparison, right)

38

Figure 5.2: Batch normalization (left) compared to instance normalization
(right)

Figure 5.2 shows the effect of batch normalization compared to instance
normalization. Both models are trained with the same hyperparameters, but
the batch normalization layers in each residual block are swapped for instance
normalization layers. Instance normalization results in a subjectively better
image. This may be due to the large difference in contrast between the
content and style images.

Figure 5.3: L2 loss (left) compared to L1 loss (right)

39

Figure 5.4: Starry Night (left), L2 Loss (middle), L1 Loss (right)

Figures 5.3 and 5.4 demonstrate the effect of training the model using
an L1 loss function compared to an L2 loss function. The L2 norm in the
content and style loss function is replaced with an L1 loss function. Next,
each model is trained using the same dataset and hyperparameters. The
effect of using L1 loss is especially prominent in smaller areas of the image.
L1 loss seems to preserve the moon shapes within the spirals better than
L2 loss. This can be explained by the fact that L1 loss penalizes smaller
‘deviations’ more uniformly while L2 loss tends to penalize larger deviations
much more (quadratic).

Figure 5.5: Weight of total variation loss from left to right: 1, 1/10, 1/100,
1/1000

Figure 5.5 demonstrates the effect of the total variation loss. Total vari-
ation increases the smoothness of the stylized image. When total variation
loss is high, the image is roughly the average color of the style image. As
total variation loss decreases, more variation is allowed in the image. A value
of 1/1000 was selected.

40

Figure 5.6: Ratio of style to content from left to right: 100, 500, 1000, 10000

Figure 5.6 shows the effect of increasing the ratio of content to style.
With a ratio of 100, the image looks largely similar to the original content
image but with shifted colors and an artifact in the upper right corner of
the image. This could be due to the algorithm attempting to fit all of the
“style” in one part of the image. As the ratio increases, these artifacts go
away. As the ratio further increases, the image starts to resemble the style
image. A ratio of 500 was selected. This number will vary depending on the
style image chosen. Certain style images will need higher or lower ratios to
create subjectively high quality pastiches.

41

Figure 5.7: Method from Gatys et al. (2015b) (top), Johnson et al. (2016)
(middle), my implementation (bottom)

Figure 5.7 shows a comparison of three different methods for neural style
transfer: Algorithm 1 from Gatys et al. (2015a), the image transformation
network from Johnson et al. (2016), and my modified image transformation
network.

42

Bibliography

Cord, M. (2016). Deep cnn and weak supervision learning for visual recog-
nition.

Dumoulin, V., Shlens, J., and Kudlur, M. (2016). Supercharging style trans-
fer.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2015a). A neural algorithm of
artistic style. CoRR, abs/1508.06576.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2015b). Texture Synthesis Using
Convolutional Neural Networks. pages 1–10.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT
Press. http://www.deeplearningbook.org.

Gretton, A. (2012). A Kernel Two-Sample Test. Journal of Machine Learning
Research, 13:723–773.

Hallstrom, E. (2016). Backpropagation from the beginning.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for
Image Recognition. ArXiv e-prints.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward net-
works. Neural Networks, 4(2):251 – 257.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. ArXiv e-prints.

Johnson, J., Alahi, A., and Li, F. (2016). Perceptual losses for real-time style
transfer and super-resolution. CoRR, abs/1603.08155.

43

http://www.deeplearningbook.org

Kawaguchi, K. (2016). Deep Learning without Poor Local Minima. ArXiv
e-prints.

Li, Y., Wang, N., Liu, J., and Hou, X. (2017). Demystifying neural style
transfer. IJCAI International Joint Conference on Artificial Intelligence,
pages 2230–2236.

Mahendran, A. and Vedaldi, A. (2015). Understanding deep image repre-
sentations by inverting them. Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition, 07-12-June-
2015:5188–5196.

Mazur, M. (2015). A step by step backpropagation example.

Nielsen, M. A. (2015). Neural networks and deep learning.

Odena, A., Dumoulin, V., and Olah, C. (2016). Deconvolution and checker-
board artifacts. Distill.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Trans-
actions on knowledge and data engineering, 22(10):1345–1359.

Raschka, S. (2018). Gradient descent and stochastic gradient descent.

Sharif Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). CNN
Features off-the-shelf: an Astounding Baseline for Recognition. ArXiv e-
prints.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016). Instance Normalization:
The Missing Ingredient for Fast Stylization. ArXiv e-prints.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable
are features in deep neural networks? ArXiv e-prints.

Zhao, H., Gallo, O., Frosio, I., and Kautz, J. (2017). Loss functions for image
restoration with neural networks. IEEE Transactions on Computational
Imaging, 3(1):47–57.

44

	Background
	Neural Network Basics
	Training Neural Networks
	Initialization
	Forward Pass
	Backwards Pass
	Vectorized Backpropagation

	Convolutional Neural Networks
	Transfer Learning

	Content and Style Loss Functions
	Training Neural Networks with Perceptual Loss Functions
	Network Architecture
	Loss Function

	Improving on neural style transfer
	Deconvolution
	Instance Normalization
	L1 Loss

	Results

