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Abstract

In this paper we examine the Bag of Little Bootstraps, a method which yields
an approximation for the sampling distribution of a statistic computation-
ally. BLB is similar to bootstrapping but is optimized to better handle large
datasets, and thus shows greater promise in a modern context. In this paper,
we discuss the trade-off between interval accuracy and computational time,
and we show that BLB with the proper hyperparameter values can return
reliable intervals quickly.
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Chapter 1

Introduction

Statistical inference aims to inform us about the value of a parameter for
an unknown population, and to help us make sense of data that we may
encounter in all areas of life. To make sense of data, we typically consider
some quantity that is a function of the data of interest, a statistic. We then
use the statistic as an estimator for the value of the parameter of interest.

We can think of a sample that we observe as a set of draws from an un-
known population distribution. Given a sample, we seek to glean information
about the larger population that includes the sample. Often we seek informa-
tion about our population distribution in terms of the value of a parameter,
a number which could describe the center or spread of the distribution, for
example. But if the distribution is unknown, then the parameter value is
unknown as well.

Fortunately, we can accurately guess at the true parameter values by us-
ing statistics, specifically the sampling distributions of statistics. For a given
statistic, its sampling distribution describes all possible values and relative
frequencies of the values that the statistic can take on, as the statistic is
realized on all possible samples of a fixed size drawn from the population
distribution. The sampling distribution is also unknown, but can be approx-
imated.

If the parameter of interest is the population mean, then we can estimate
the true value using the sample mean. The Central Limit Theorem tells us the
sampling distribution is approximately normal, regardless of the underlying
population distribution, provided that the sample size is sufficiently large.
Thus, we can obtain an approximation for the sampling distribution without
access to or knowledge of our population distribution.
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But what if we are interested in the values of other parameters? We
must choose a different statistic as an estimator for the parameter, but many
statistics of practical importance lack the theory to describe the nature of
their sampling distibutions independent of the underlying population distri-
bution. This leaves us without an asymptotic approximation akin to the
CLT.

Bootstrapping provides an alternative, computationally intensive route to
approximate the sampling distribution of any statistic, for any population.
Bootstrapping estimates the population distribution by using the single ob-
served sample as an empirical distribution. To bootstrap, draw n observa-
tions from the original sample with replacement to obtain a single resample,
then compute the value of the statistic for the resample. After a sufficient
number of resamples have been generated, we aggregate the several computed
values of the statistic to form a bootstrap distribution, an approximation for
the sampling distribution.

Though the center of the bootstrap distribution will likely be biased in
one direction relative to the true sampling distribution due to the random-
ness present in the approximate empirical population distribution, or the
sample, the shape of the bootstrap distribution nicely matches the shape of
the sampling distribution. Since we can correct for the bias present in our
bootstrap distribution, we can use the bootstrap distribution to estimate the
value of a parameter.

Bootstrapping provides an extremely powerful tool for statistical infer-
ence. Even if the theoretical shape for a sampling distribution is too difficult
or impossible to derive theoretically, we can still approximate its shape com-
putationally. With the knowledge that we can bridge the theoretical gap of
sampling distributions, this thesis focuses on the computational challenges
that bootstrapping encounters, especially for larger samples.
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Chapter 2

Bootstrapping and the Bag of
Little Bootstraps

2.1 Setting

We now introduce the setting and notation that will be used throughout this
paper and adopt the notation in [4] to ease readability. We observe data
(X1, .., Xn) where all observations are drawn independently and identically
from an unknown population distribution P . Using our data, we can form
the corresponding empirical distribution P̂n for P as

P̂n(t) =
1

n

n∑
i=1

1(Xi ≤ t) (2.1)

As the sample size n increases, the steps of the empirical distribution P̂n
increase in number and decrease in size, yielding a better approximation of
the presumably smooth population distribution P . We now introduce our
primary problem. We want to know the true value of a parameter θ for our
population P , but we do not know P . Instead, we estimate θ with a statistic
θ̂n, the subscripted n denoting its reliance upon P̂n. Since our estimator is a
function of random variables, our estimator is itself a random variable and
thus has a distribution. We denote the theoretical sampling distribution of
our estimator θ̂n as Qn. Using our data and our estimator, we would like to
obtain a subset of all possible values that the parameter could take where the
true value of the parameter is likely to lie. This inference could come in the
form of a quantile, bias, standard error, or confidence interval [4]. Let the
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function ξ(·) denote the computation of the subset necessary for inference.
For the duration of this paper, ξ(·) will compute the bounds of a confidence
interval.

Our function ξ depends on the distribution of our estimator, and by ex-
tension, the distribution of our data. We denote this dependence by writing
ξ(Qn, P ). Our end goal is to compute ξ(Qn, P ), but this quantity cannot be
computed directly as P is unknown. Additionally, for most estimators θ̂, we
do not know the sampling distribution Qn. Thus we have two approximations
to perform before we obtain a final estimate, one for our population P and
one for our sampling distribution Qn. The first approximation is straightfor-
ward, as we substitute the empirical distribution P̂n given by 2.1 in for P .
The Glivenko-Cantelli theorem justifies this substitution, as it proves that
the empirical distribution P̂n converges uniformly to P [5]. The second ap-
proximation requires more work to be obtained, but with bootstrapping, we
obtain a data-driven approximation for the sampling distribution [2].

The data-driven approximation is constructed by taking r resamples of
size n from our empirical distribution P̂n and evaluating our statistic on each
resample. We introduce the following notation to formalize this process: for
j ∈ {1, 2, .., r}, let X∗j = {X∗1j, .., X∗nj} denote the jth resample with Xij

drawn i.i.d. from P̂n. Let θ̂nj be the value of θ̂n realized on the jth resample

X∗j . The empirical sampling distribution for θ̂ is then

Q̂n(t) =
1

r

r∑
j=1

1(θ̂nj ≤ t) (2.2)

which estimates the unknown true sampling distribution Qn. Combining 2.1
and 2.2, the bootstrap approximation for the desired quantity is now

ξ(Qn, P ) ≈ ξ(Q̂n, P̂n) (2.3)

where, as above, ξ(·) is a function which computes the endpoints of a
confidence interval. Note ξ(Q̂n, P̂n) represents the estimate of the CI based
on the Q̂n, the estimate of the sampling distribution, and P̂n, the estimate
of the population distribution.
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2.2 Bag of Little Bootstraps (BLB)

2.2.1 Motivation

Bootstrapping provides us with a powerful tool for approximating quantities
which have sampling distributions that are either too difficult or impossible
to calculate analytically by creating an empirical sampling distribution for
the statistic of interest. While powerful, the method’s reliance on repeated
resampling makes it computationally intensive and ill-suited for extremely
large datasets. This section describes the Bag of Little Bootstraps (BLB),
an alternative approximation for ξ(Qn, P ) detailed in [4].

Traditional bootstrapping is ill-suited for large datasets. Bootstrapping
requires resamples to be the same size as the original sample. Observations in
resamples are drawn with replacement from the original sample, and though
the number of repeated observations in each resample surely grows, the num-
ber of unique observations present in each resample increases as well. For
samples of size n, if n is large, the number of unique observations present
in each resample converges to .632n [4]. In short, the amount of memory
required to store each resample increases linearly with sample size.

A large number of unique observations in each resample increases the
time needed to compute the value of a statistic on each resample. For
quantile-based statistics, like the median, a time increase occurs because
of the larger number of points necessary to sort. For statistics which make
use of a weighted summation, like the mean, a time increase occurs because
of the number of unique observations to be summed.

To alleviate the effects of longer statistic calculations, we could make use
of a distributed computing hierarchy and implement parallelism to calculate
the desired statistic of multiple resamples concurrently. Unfortunately, the
large amount of memory required to store each resample introduces a new
slowdown in a parallel framework. For a separate processor to calculate
and evaluate a statistic for a single resample, the processor must send and
successfully receive a request to access the necessary information in global
memory, where the original sample is stored, or already have the resample
completely stored in the processor’s local memory.

A global memory made by the first processor will not accepted if a second
processor is currently accessing any part of the memory which overlaps with
the first processor’s request. And as the amount of memory needed to store
each resample is certainly larger than half the memory required to store the
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original sample, as the resamples of a large sample of size n will contain
around .632n observations, a shared supply of global memory will like result
in sequential, not concurrent, calculations.

To parallelize computation, the solution becomes to store each resample
in the local memory of the processor computing the value of its statistic -
instead of sharing one supply of memory, copy and distribute all necessary
observations as needed. But sending memory between processors introduces
a time cost that is significantly larger than increasing the number of com-
putations. In short, navely parallelizing traditional bootstrapping may slow
the algorithm for a huge sample.

Population Subsample

Subsample

Resample Bootstrap
Approximation

Dataset BLB
Approximation

Bootstrap
Approximation

Resample

Resample

Resample

Resample

Resample

Resample

Resample

Resample

Bootstrap
Approximation

Subsample

Figure 2.1: A flowchart showing the steps required in a BLB approximation

2.2.2 Description

BLB provides a powerful alternative to bootstrapping to approximate the
sampling distribution of a statistic for a large sample. Unlike bootstrapping,
BLB is designed for parallel computing, and enjoys a computational advan-
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tage in handling large samples. BLB does this in two ways. First, it reduces
the amount of information required to be sent between processors. Second,
it increases the speed of computation of the statistic for each resample.

BLB approximates the sampling distribution of a statistic more efficiently
than bootstrapping by calculating a number of inferior approximations for
the sampling distribution, which are more readily obtained, and combining
them. This process is depicted in Figure 2.1. Where bootstrapping draws
its resamples from the original dataset, BLB instead draws its resamples
from a number of subsamples, or subsets of the original dataset. Similarly,
bootstrapping returns a single bootstrap approximation for the sampling dis-
tribution while BLB returns a bootstrap approximation for each subsample.

It should be noted that each bootstrap distribution computed for a sub-
sample is an inferior estimation for the sampling distribution of our desired
statistic than the standard bootstrap distribution. This is due to the fact
that the subsample approximations contain fewer unique observations and
thus less information than the bootstrap approximation whose resamples are
drawn from the entire original sample. BLB overcomes this by averaging,
and the results of these subsample approximations are then combined to cre-
ate a more robust approximation. We will explore how different measures of
central tendency affect the quality of the final BLB approximation.

Algorithm 1 Bag of Little Bootstraps (BLB)

Input: X, r, s, γ : n = |X|
Initialize: b = nγ

for k = 1, .., s do
Subsample: Sk ⊂ X, |Sk| = b

Population Distribution: P̂
(k)
n,b (t) = 1

b

∑
i∈Ik 1(Xi ≤ t)

for j = 1, .., r do
Resample: Sk,j ∼ Sk, |Sk,j| = n

Statistic: θ̂
(k)∗
n,j

end for
Sampling Distribution: Q̂

(k)
n (t) = 1

r

∑r
j=1 1(θ̂

(k)∗
n,j ≤ t)

Confidence Interval: ξ(Q̂
(k)
n , P̂

(k)
n,b )

end for
Output: ξ(Q̂n, P̂ ) = 1

s

∑s
j=1 ξ(Q̂

(k)
n , P̂

(k)
n,b )
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2.2.3 Notation

We now formalize the BLB algorithm and will again adopt the notation
in [4]. Let b be the subsample size, where b = nγ. We consider values for
γ ∈ [0.5, 1). Let s denote the number of subsamples, or subsets of the original
dataset. Finally, let r be the number of bootstrap resamples drawn from each
subsample.

For k = 1, .., s, let Sk ⊂ {X1, .., Xn} be the kth subsample of size b of our
data. Note that we sample from our data without replacement to create Sk.
For each subset Sk, let Ik ⊂ {1, .., n} denote the corresponding set of indices
for Sk, where i ∈ Ik if and only if Xi ∈ Sk. Thus |Ik| = b. We define the
empirical distribution for the subset Sk as follows

P̂
(k)
n,b (t) =

1

b

∑
i∈Ik

1(Xi ≤ t) (2.4)

We can now bootstrap from each of empirical distribution P̂
(k)
n,b (t). Let Q̂

(k)
n

denote the bootstrap sampling distribution whose resamples are drawn from
the empirical distribution P̂

(k)
n,b . Though the s subsamples each only contain

b < n points, our r bootstrap resamples for each subsample will all be of size
n. Having samples of size n allows the variance of the bootstrap distribution
of the kth subsample, the variance of Q̂

(k)
n , to be of the same order of magni-

tude as the variance of the sampling distribution for our statistic of interest,
the variance of Qn. There are alternative bootstrapping variants whose re-
samples are smaller than size n, but the approximate sampling distribution
Q̂n yielded by these methods must undergo analytical rescaling to match the
variance of the variance of the true sampling distribution Qn [1].

We now show how to construct Q̂
(k)
n . We let k index over the subsamples

and j index over the resamples. Let the multiset X
(k)∗
j = {X(k)∗

1,j , .., X
(k)∗
n,j }

denote the jth resample of the kth subsample. Note that |X(k)∗
j | = n for

all j, k. Let θ̂
(k)∗
n,j be the value of θ̂n realized for the jth resample of the kth

subsample. We compile the realized values for the kth subsample into an
empirical sampling distribution, defined as

Q̂(k)
n (t) =

1

r

r∑
j=1

1(θ̂
(k)∗
n,j ≤ t) (2.5)

The end goal of BLB is to provide an approximation for ξ(Qn, P ), a subset
of the parameter space where the true value of our parameter is likely to
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lie. Recall the bootstrap approximation for ξ(Qn, P ) given by equation (2.3)
substitutes the bootstrap approximation Q̂n for Qn. Similarly, the empirical
sampling distribution for the kth subsample substitutes Q̂(k) forQn. Since the
resamples of the kth subsample were drawn from the empirical distribution
of Sk given in (2.4), the approximation returned by the kth subsample is

ξ(Qn, P ) ≈ ξ(Q̂(k), P̂
(k)
n,b ) (2.6)

as the variance of subsample’s bootstrap distribution matches the variance of
the true sampling distribution. BLB now has s approximations for ξ(Qn, P )
and must combine them to yield a final approximation. The authors of [4]
propose taking the mean of the k approximations. We also consider taking
two other measures of central tendency, the median and interquartile mean,
to average the approximations, but conclude from our experiments later in
this paper that the mean yields the final approximation of the highest quality.
This final approximation is given by

ξ(Qn, P ) ≈ 1

s

s∑
k=1

ξ(Q̂(k)
n , P̂

(k)
n,b ). (2.7)

The final BLB approximation in (2.7) is better suited than the bootstrap
approximation in (2.3) for parallelization. The subsamples of BLB attempt
to minimize the amount of information that must be sent between processors,
a significant computational cost. Once the information is distributed between
multiple processors, the large number of resample statistics can be calculated
simultaneously, not sequentially. By being better suited for parallelization,
BLB is a better candidate to approximate the sampling distribution of a
statistic for huge samples, as the increased number of computations can
effectively be spread between multiple processors. Though the value of the
statistic must be calculated for s · r resamples instead of r resamples, as a
sampling distribution is generated for each subsample, the fewer number of
unique observations present in each BLB resample decreases the amount of
time needed for each calculation. Furthermore, the fewer number of unique
observations present in each subsample decreases the amount of information
sent between processors, significantly decreasing the runtime of BLB when
the algorithm is implemented in parallel.
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Chapter 3

Experiments

BLB provides an alternative data-driven method to bootstrapping for esti-
mating the sampling distribution of a statistic. This alternative is especially
useful as the sample size increases, as BLB is intelligently designed for its
computational costs to scale nicely with massive datasets. However, this
computational efficiency comes at the expense of a less accurate approxima-
tion of the sampling distribution.

The original paper on BLB [4] was published quite recently, in 2014. In
the seminal work, the authors offer some advice on hyperparameter selec-
tion to obtain an accurate approximation. Setting all hyperparameters to
sufficiently large values will yield an approximation that will surely be accu-
rate, it will also involve extraneous calculations that will slow the algorithm’s
performance unnecessarily. We sought to understand the tradeoff between
computational efficiency and estimation accuracy present in the algorithm’s
structure. The three hyperparameters of interest are

• γ : determines the size of the subsamples b, as b = nγ

• s : determines the number of subsamples used

• r : determines the number of resamples drawn from each subsample
via Monte Carlo simulation

We suspect that all three hyperparameters introduce a similar tradeoff to
BLB’s performance. If we increase the value of any of these three param-
eters, we increase the amount of information being used by the algorithm,
and we should obtain a better approximation of our confidence interval. But
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if the value of any hyperparameter is increased, we require either more mem-
ory or more processing power to accommodate the additional information,
extending the running time of the algorithm. We wish to strike a balance
between performance and efficiency and obtain an accurate approximation
with minimal computation and memory use.

3.1 Bag of Little Bootstraps - Initial Tests

Our initial experiment sought to benchmark the approximation quality of
BLB against a method with known theoretical guarantees. For this exper-
iment, our sample was 10,000 i.i.d. observations from a standard normal
distribution. Our end goal was to obtain a 95% confidence interval for the
population mean. Our statistic for inference is the maximum likelihood esti-
mator, the sample mean.

3.1.1 Experimental Setup

For i = 1, .., 10000, we observe Xi ∼ N(0, 1). Our sample is then X =
{X1, X2, .., X10000}. We are interested in the value of the population mean µ,
but from our setup we know µ = 0. We want to construct a 95% confidence
interval for µ. We will empirically determine the confidence of our approxi-
mation by conducting 100 trials and calculating the proportion of times µ is
included within the bounds of the interval.

To talk about this empirical confidence, we introduce a random variable
Z. Let Zi = 1 if the ith trial contains µ and let Zi = 0 otherwise. We can
then consider the proportion of times that Z will equal 1. Let π = P(Z = 1).
We will estimate π with p̂, where

p̂ =
1

100

100∑
i=1

Zi (3.1)

because we conduct 100 trials. From the central limit theorem, we know that
p̂ ∼ N(π,

√
π(1− π)/n). Thus if we want a 95% confidence interval, SE(p̂) =√

π(1− π)/n = 0.022. Knowing this standard error, we deduce that for a
confidence interval with a true level of 95%, or π = 0.95, we should expect to
observe an empirical confidence level in the interval [90.6,99.4] around 95%
of the time, given n = 100 trials. Thus for our BLB approximations, we

12



interpret empirical confidence levels of .91 to .99 as plausible measures for a
true 95% confidence interval.

Since the parameter of interest is the population mean, we can rely on the
central limit theorem to construct a 95% confidence interval with theoretical
asymptotic guarantees. The benchmark that we use is a symmetric student-t
confidence interval, or

[L,U ] = [X̄ − t.975;n−1 ·
s√
n
, X̄ + t.975;n−1 ·

s√
n

] (3.2)

where s is the sample standard deviation, X̄ is the sample mean, and t is the
.975 quantile of the t distribution with n− 1 degrees of freedom. In addition
to this benchmark, we also wish to compare the approximation quality of
BLB and bootstrapping. We form an empirical distribution P̂n as in (2.1) to
estimate P . Next, we repeatedly take resamples of size n with replacement
from P̂n, compute the value of our desired statistic on each resample, then
form a bootstrap distribution of our desired statistic Q̂n as in (2.2). From
this, we can construct a 95% confidence interval, or evaluate ξ(Q̂n, P̂n), in two
different ways. The first method centers the interval about the mean of the
empirical distribution and extends a specified number of standard deviations
in each direction, forming a symmetric interval. The second method takes
quantiles directly from the empirical distribution Q̂n. We consider both.

We can form different BLB confidence interval variants by altering two
key steps in how BLB’s approximation is formed. First, we can choose which
type of bootstrap confidence interval is returned by each of the subsample
empirical sampling distributions like we did with bootstrapping, obtaining
ξ(Q̂

(k)
n , P̂

(k)
n,b ), the bounds of a confidence interval returned by a single subsam-

ple’s approximation, through either a symmetric bootstrap-t computation or
through bootstrap quantiles. Second, we can choose how we aggregate the
values ξ(Q̂

(k)
n , P̂

(k)
n,b ) returned by each of the s subsamples. In (2.7), we took

the mean of the upper and lower bounds to obtain a final pair of bounds. In
this experiment, we also consider taking the median and the trimmed mean
to obtain these final bounds.

In total, we empirically obtained an approximate confidence level for 9
different types of confidence intervals. They are

1. (std) Traditional inference on the entire sample: (X̄ ± t.95 · s/
√
n)

2. (bst) Traditional bootstrapping: bootstrap-t CI
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3. (bqt) Traditional bootstrapping: quantiles

4. (Btmn) BLB with bootstrap-t: mean of bounds

5. (Btmd) BLB with bootstrap-t: median of bounds

6. (Bttm) BLB with bootstrap-t: trimmed mean of bounds

7. (Bqmn) BLB with quantile bounds: mean of bounds

8. (Bqmd) BLB with quantile bounds: median of bounds

9. (Bqtm) BLB with quantile bounds: trimmed mean of bounds

For the BLB variants, we are specifically interested in the relationship be-
tween the hyperparameters and the true confidence level, as a correct confi-
dence level near 95% indicates that BLB has likely returned a quality approx-
imation. We first fix our subsample size by setting γ = .5. To determine how
the number of resamples and the number of subsamples affects the quality
of the approximation returned by BLB, we isolate these two effects by fixing
b = sqrtn and either r or s while the other varies. For the first experiment,
we fix the number of subsamples and set s = 100 while incrementing the re-
sample number r from 10 to 200 by steps of 10. For the second experiment,
we fix r = 100 while incrementing s from 10 to 200 by steps of 10.

We expect these changes to have no effect on the student-t intervals, std,
as these intervals not rely on r or s in any way. For the two types of intervals
reliant upon traditional bootstrapping, bst & bqt, we expect a change in r to
have an effect on their empirical confidence level while a change in s should
have no effect at all. Because BLB relies upon the values of r and s for its
final approximation, we expect to observe a change for the 6 BLB variants.

3.1.2 Results

The first experiment fixed the subsample size and number of subsamples
and iterated over 20 different values of r for the number of resamples. As
expected, the empirical confidence of the theoretically guaranteed student-
t confidence interval fluctuates slightly around the true confidence level of
0.95, seen in the std column of Table 3.1. The two bootstrap intervals, bst
and bqt, appear to generate high quality approximations, as their empirical
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confidence also fluctuates around 0.95 for r ≥ 40. As expected, the quantile-
based approximation fails for the lowest values of r, as the .025 and .975
quantiles are much more prone to fluctuate in a distribution with only 10 or
20 observations (10,bqt), (20,bqt).

The six BLB variants fail to show the same quality as the bootstrap vari-
ants in their interval approximations in Table 3.1. Only two observations,
(70,Btmn) & (60,Bqmn) exhibit an empirical confidence level of at least 0.9,
and many observations are well below this threshold. We also see a general
increase in confidence level for the three quantile-based BLB variants, though
this increase never yields sufficiently close confidence measures ot 0.95. The
improvement in BLB quantile performance happens for the same reason that
the bootstrap approximation with quantiles improves as the number of resam-
ples increases: with more observations in each BLB subsample’s estimated
sampling distribution Q̂

(k)
n , we receive a more accurate approximation of the

.025 and .975 quantiles of the true sampling distribution, Qn.
The second experiment fixes the number of resamples and the subsample

size and varies the number of subsamples, s. As expected, we again see the
empirical confidence level of the theoretically guaranteed symmetric student-
t confidence interval fluctuate about the true 0.95 confidence level. This is
seen in the std column of Table 3.2.

We do not observe any trends in the confidence level given by the two
bootstrap intervals, as expected. The only hyperparameter relevant to boot-
strapping is the number of resamples r, which is fixed at r = 100. Since r
appears to be sufficiently large to yield an approximation of decent quality,
in Table 3.2, we see the confidence levels for bst and bqt fluctuate about .95
as well.

For the six BLB variants, subsample number appears to have a greater
effect on the true confidence level of their approximations. For s = 10, the
six BLB variants in Table 3.2 exhibit confidence levels of less than 50%. By
contrast, when s = 200, the observed levels sit just below the true confi-
dence level of 0.95, ranging from 0.87 to 0.94. From the trend of increasing
confidence observed in Table 3.2, we conclude that number of subsamples, s,
affects the quality of a BLB approximation more than the number of resam-
ples, r.

One phenomenon present in Table 3.1 and Table 3.2 is the consistent
underperformace relative to the targeted 95% confidence level, especially
for lower values of the hyperparameters. This underperformance is due to
the greater amount of variance present in a BLB approximation for smaller
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r std bst bqt Btmn Btmd Bttm Bqmn Bqmd Bqtm
10 0.98 0.93 0.83 0.81 0.81 0.84 0.72 0.64 0.72
20 0.94 0.9 0.84 0.84 0.72 0.8 0.76 0.77 0.7
30 0.94 0.93 0.88 0.83 0.75 0.75 0.77 0.73 0.75
40 0.96 0.98 0.91 0.81 0.71 0.76 0.76 0.78 0.75
50 0.97 0.94 0.93 0.79 0.78 0.77 0.78 0.74 0.74
60 0.98 0.96 0.97 0.81 0.77 0.83 0.9 0.77 0.71
70 0.96 0.95 0.94 0.91 0.77 0.78 0.75 0.79 0.72
80 0.97 0.97 0.95 0.84 0.8 0.84 0.78 0.76 0.82
90 0.95 0.94 0.94 0.78 0.75 0.88 0.86 0.79 0.85
100 0.94 0.93 0.93 0.82 0.79 0.78 0.83 0.77 0.76
110 0.93 0.89 0.89 0.73 0.74 0.76 0.8 0.72 0.73
120 0.94 0.95 0.91 0.78 0.83 0.82 0.85 0.76 0.82
130 0.94 0.93 0.89 0.8 0.71 0.75 0.82 0.72 0.78
140 0.95 0.93 0.91 0.77 0.76 0.76 0.8 0.73 0.79
150 0.96 0.95 0.94 0.76 0.75 0.84 0.69 0.74 0.81
160 0.94 0.95 0.97 0.86 0.77 0.74 0.83 0.82 0.78
170 0.97 0.94 0.95 0.8 0.7 0.84 0.74 0.7 0.78
180 0.97 0.98 0.95 0.83 0.76 0.84 0.77 0.77 0.78
190 0.98 0.98 0.97 0.86 0.81 0.82 0.83 0.74 0.85
200 0.94 0.94 0.94 0.83 0.78 0.79 0.81 0.75 0.84

Table 3.1: Approximately true Confidence Interval performance for bootstrap
and BLB methods, benchmarked against student-t CI. n = 10000, iters =
100, γ = .5, s = 100, r = [10 : 10 : 200]
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s std bst bqt Btmn Btmd Bttm Bqmn Bqmd Bqtm
10 0.98 0.98 0.93 0.45 0.41 0.37 0.49 0.34 0.44
20 0.94 0.93 0.91 0.59 0.57 0.54 0.47 0.45 0.47
30 0.96 0.96 0.96 0.71 0.54 0.64 0.65 0.5 0.55
40 0.96 0.96 0.93 0.69 0.64 0.66 0.7 0.61 0.67
50 0.93 0.91 0.91 0.63 0.67 0.76 0.72 0.66 0.71
60 0.93 0.91 0.94 0.73 0.64 0.79 0.7 0.65 0.7
70 0.93 0.94 0.91 0.78 0.7 0.74 0.72 0.63 0.76
80 0.95 0.95 0.92 0.8 0.69 0.8 0.75 0.69 0.75
90 0.95 0.94 0.93 0.84 0.7 0.83 0.81 0.8 0.83
100 0.95 0.93 0.93 0.89 0.84 0.77 0.79 0.78 0.74
110 0.97 0.96 0.92 0.84 0.84 0.84 0.9 0.72 0.78
120 0.97 0.96 0.96 0.9 0.75 0.88 0.82 0.75 0.79
130 0.95 0.95 0.93 0.87 0.83 0.89 0.83 0.73 0.78
140 0.94 0.93 0.93 0.89 0.81 0.86 0.82 0.81 0.83
150 0.92 0.93 0.9 0.83 0.81 0.85 0.77 0.75 0.78
160 0.96 0.95 0.94 0.9 0.85 0.86 0.81 0.86 0.84
170 0.91 0.9 0.91 0.85 0.87 0.9 0.85 0.85 0.78
180 0.97 0.97 0.96 0.92 0.86 0.87 0.89 0.89 0.88
190 0.92 0.92 0.93 0.9 0.81 0.89 0.85 0.81 0.85
200 0.98 0.97 0.97 0.91 0.92 0.94 0.87 0.87 0.91

Table 3.2: Approximately true Confidence Interval performance for bootstrap
and BLB methods, benchmarked against student-t CI. n = 10000, iters =
100, γ = .5, r = 100, s = [10 : 10 : 200]

hyperparameters. With fewer resamples, the bounds of the approximate
confidence interval returned by each subsample exhibit greater variance. If
these bounds move away from the mean and the interval is too large, this
effect is not seen immediately. By contrast, if one bound strays too far in the
other direction, a more likely scenario with increased variance, the intervals
fails to capture the population mean more than it should. The phenomenon
of these failures, called a miss percentage, are discussed at length in [3].
This effect is mitigated by increasing the number of subsamples, and thus
increasing the number of confidence interval approximations to average over.
In short, too small values for the hyperparameters of BLB will yield an α-level
confidence interval whose true confidence is less than α.
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3.2 Approximation Quality

The primary benefit of the BLB algorithm is its comparatively fast runtime
when handling massive datasets. Unfortunately, increasing the number of
subsamples or resamples increases the amount of memory and number of
computations required to perform a BLB approximation, and we wish to
optimize performance by minimizing extraneous calculations and memory
usage. We are left with a tradeoff between approximation quality and com-
putational performance.

Our initial tests enlightened us to the fact the hyperparameter values do
affect the approximation quality provided by BLB. We saw that the number
of resamples affected the quality of the approximation somewhat in Table
3.1, but this effect was less than the number of subsamples observed in Table
3.2. After observing this effect on approximation quality, we conducted a
more thorough grid search of the hyperparameters of BLB, calculating the
empirical confidence level of BLB for different values of r, s, and γ. From this
grid search, we hope to paint a clearer picture of the relationship between
hyperparameter value and approximation quality.

We conducted two additional experiments for this grid search, creating
95% confidence intervals for the population mean. The first experiment gen-
erated data from a standard normal distribution; the second experiment took
draws from an exponential distribution. For both experiments, each sample
consisted of 10,000 observations, and 100 samples were observed.

After observing the performance of the six BLB variants in Tables 3.1
and 3.2, we concluded that taking the mean of the subsample approxima-
tions, given in 2.4, did not produce an inferior quality approximation than
taking the mean of the subsample approximations. Thus our BLB approxi-
mation for these experiments take the form the authors of [4] suggest, given
by equation (2.7). For each experiment, we still produce two type of BLB ap-
proximations. The first has the subsamples produce symmetric bootstrap-t
confidence intervals; the second has the subsamples construct quantile-based
intervals. In Tables 3.1 and 3.2, these two variants are Btmn and Bqmn,
respectively.

For our first experiment with normal data, we chose the following values
to grid search over:

• γ ∈ {.5, .6, .7, .8, .9}

• r ∈ {10, 50, 100, 200}

18



gamma

r

s

BLB(boot−t,mean), X~Norm(0,1)

0.2

0.4

0.6

0.8

1.0

(a)

gamma

r

s
BLB(quant,mean), X~Norm(0,1)

0.2

0.4

0.6

0.8

1.0

(b)

Figure 3.1: Standard Normal Data, BLB true recovery percentage of 95%
confidence intervals constructed by taking the mean of the bounds of the
subsamples’ intervals which were formed by symmetric bootstrap-t distribu-
tion (a) or by bootstrap quantiles (b)
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Figure 3.2: Exponential Data, BLB true recovery percentage of 95% confi-
dence intervals constructed by taking the mean of the bounds of the subsam-
ples’ intervals which were formed by symmetric bootstrap-t distribution (a)
or by bootstrap quantiles (b)
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• s ∈ {10, 50, 100, 200}

In Figure 3.1, we see that increased values of γ and s improve empirical
confidence more than an increase to r. This is seen by beginning at the
origin in (a) and (b) in the lower left-hand corner, then looking at the color
of the dots along the three axes emanating from the origin.

For our second experiment with exponential data, we chose the following
values to search over:

• γ ∈ {.5, .6, .7, .8, .9}

• r ∈ {10, 20, 50, 100, 200}

• s ∈ {10, 20, 50, 100, 200}

In Figure 3.2, we see the hyperparameters have the same effect on BLB ap-
proximation quality as they did in the first experiment with normal data.
The lowest values for the three hyperparameters yields the worst approx-
imation, and the quality of the BLB approximation improves more when
the number and size of subsamples are increased than when the number of
resamples is increased.

Taken together, Figures 3.1 and 3.2 show that the subsample size and sub-
sample number, hyperparameters γ and s, exhibit a larger marginal improve-
ment in the quality of the final BLB approximation than resample number,
r.

3.2.1 Increased Detail

Figures 3.1(a) and 3.2(a) provide a enlightening visualization for how the
three hyperparameters affect the approximation quality of a BLB confidence
interval approximation using symmetric bootstrap-t intervals. We reran the
two experiments - computing the empirical confidence level of a BLB approx-
imation - that produced figures 3.1 and 3.2 and iterated over more values of
r, s and γ.

For the first rerun, we generated data from a standard normal distribution
and iterated over the following hyperparameter values:

• γ ∈ {.5, .55, .., .9}

• r ∈ {10, 20, .., 200}
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• s ∈ {10, 20, .., 200}

The empirical confidence levels from this first experiment are plotted in figure
3.3. For the second rerun, we generated data from a standard exponential
distribution and iterated over the following hyperparameter values:

• γ ∈ {.5, .55, .., .7}

• r ∈ {10, 20, .., 100}

• s ∈ {10, 20, .., 100}

and plotted the empirical confidence levels in figure 3.4.
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Figure 3.3: Three views of empirical confidence levels for approximate 95%
confidence intervals for the population mean constructed using BLB on stan-
dard normal data. Empirical confidence levels for different values of r, s, and
γ are shown. The bounds of each BLB subsample’s interval were computed
using the symmetric bootstrap-t method.

3.3 Approximation Efficiency

Our next step was to examine the effects that these three hyperparameters
had on the overall runtime of the BLB algorithm. We’ve seen that s and
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Figure 3.4: Three views of empirical confidence levels for approximate 95%
confidence intervals for the population mean constructed using BLB on stan-
dard exponential data. Empirical confidence levels for different values of r,
s, and γ are shown. The bounds of each BLB subsample’s interval were
computed using the symmetric bootstrap-t method.

γ have a larger effect on the quality of BLB’s approximation, so we turn to
examine whether these larger benefits to quality come at at a larger cost to
runtime.

To better understand the quality/time tradeoff present in each hyper-
parameter, we conducted an experiment. For each trial of each set of pa-
rameters, we drew 10,000 observations from a standard normal distribution,
computed a BLB approximation for a 95% confidence interval for the pop-
ulation mean, and logged the time that elapsed during the approximation.
We chose the following values to search over:

• γ ∈ {.5, .55, .6, .., .9}

• r ∈ {10, 20, 30, .., 200}

• s ∈ {10, 20, 30, .., 200}

For each triplet of hyper parameters, we conducted 100 trials, and computed
the mean of the 100 runtimes. The analysis was performed on a computer
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with two eightcore AMD Opteron 6276 processors running at 1.4 GHz. The
maximum number of allotted clusters was capped at 10.

We plotted the mean runtimes and show the plot viewed from three dif-
ferent angles in Figure 3.5. We immediately see that for most triplets of
the hyperparameters, the runtime of BLB was quite fast. We see a jump in
runtime in the upper-right hand corner of the three plots, especially for the
largest subsample size where γ = .9. Figure 3.5(c) shows that increases in the
number of resamples and subsamples also increase runtime, though less so
than an increase in subsample size. We should recall that the subsample size
is defined as b = nγ, an important feature which ensures that the subsample
size does not increase linearly with the sample size. This relationship also
makes subsample size not increase linearly in Figure 3.5 as it does with γ as
resample and subsample number do with r and s.
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Figure 3.5: Three views of runtime for different values of r, s, and γ. Each
trial saw BLB construct an approximate 95% confidence interval for the pop-
ulation mean given 10,000 observations from a standard normal distribution.
Each point shows the average runtime of 100 trials for each triplet of r, s,
and γ.
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Chapter 4

Conclusion

Given a massive dataset, the Bag of Little Bootstraps (BLB) algorithm pro-
posed by the authors of [4] provides an alternative to bootstrapping for ap-
proximating the sampling distribution of a statistic computationally. Crucial
to the algorithm, BLB requires the inputs of three hyperparameters - γ, s,
and r - to determine the size of subsamples, number of subsamples, and
number of resamples, respectively. Inherently present in each of the three
hyperparameters is a tradeoff between approximation quality and compu-
tational efficiency. If the triplet of parameters are too small, an unreliable
approximation is returned. If the triplet of parameters is too large, extrane-
ous calculations are made and BLB’s primary advantage over bootstrapping
for large samples, speed, is nullified.

In examining the quality of the BLB’s approximation, empirically measur-
ing the confidence level of a proposed 95% confidence interval, we discovered
that subsample size and number affected BLB’s approximation quality more
than resample number. This effect is best seen in Figures 3.3 & 3.4. In
both plots, we see the observed confidence is well below 95% percent for the
minimum triplet of hyperparameters, each in the lower left-hand corner of
the plot. If we fix r and s and move along γ’s axis, we eventually obtain
an interval whose empirical confidence level is close to 95%. A similar phe-
nomenon is seen for s. But if we fix γ and s and move along r’s axis, we do
not obtain an approximate 95% confidence interval of any sort of quality.

In examining the runtime of BLB, we refer to Figure 3.5. The largest
swath of red, indicating slower performance, mostly exists for the largest
value of γ. From our runtime experiment, we concluded that a larger sub-
sample size slows performance more than a larger number of subsamples or
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resamples.
Synthesizing the results of our experiments to test BLB’s quality and

efficiency, we propose that the hyperparameter of immediate interest for those
who wish to use BLB is s, the number of subsamples. If one is worried
about the quality of an approximation for ξ(Qn, P ) returned by BLB, one
should first increase s, as s affects approximation quality of BLB more than
increasing r while slowing the computation of the approximation less than
increasing γ. We believe this point is of utmost interest, as anyone using
BLB in practice would not build confidence intervals for the population mean
or any other parameter of the population with theoretical guarantees. We
would not have an interval with theoretical guarantees to compare our width
of our approximate interval to. Furthermore, we cannot perform the same
procedure that we did in out experiments to empirically estimate the level of
our confidence interval, as we do not know the value of the parameter or have
access to additional draws from our population. Thus to ensure quality, we
should err on the side of extraneous calculations that may slow performance
but deliver a sufficient approximation. An increased number of subsamples
optimizes the tradeoff between quality and efficiency.

In our experiments, one factor that we did not take into account was
sample size. It is not yet clear whether the affects the hyperparameters have
on the quality and efficiency of the approximation scale in a similar manner
as the sample size increases. Further research on the Bag of Little Bootstraps
could address this topic as a starting point.
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