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Abstract

Over the past 70 years, scientists have focused in on genetic mutations as
the cause of many human diseases. However, the human genome consists of
20,000-25,000 protein coding genes [I], making it very difficult to determine
the exact mutation that causes each disease. Within the past 30 years the
growing use of microarrays has lead to a decrease in the cost of measuring
gene expression, both in time and money. More recently, researchers have
developed next generation sequencing (NGS) technologies, such as RNA-
sequencing (RNA-seq) to obtain a more exact picture of an individual’s gene
expression levels. Studies which use sequencing data often have a low sam-
ple size, which, combined with the high-dimensional nature of genetic data,
makes it extremely difficult to make inferences on whether a gene is differ-
entially expressed. To combat this problem, Smyth [2] uses a linear model
(LIMMA) to estimate differences in gene expression for each gene amongst
different samples measured with microarrays. To improve the estimate of
the coefficient variation, Smyth employs an empirical Bayesian hierarchical
model to create the moderated t-statistic. More recently, Law et al. [3] de-
veloped the "variance modeling at the observation level” (VOOM) method
to analyze RNA-seq data in the LIMMA pipeline. In a comparison of mi-
croarray and RNA-seq data take from the same samples in a study designed
to compare kidney and liver cell gene expression, I find that RNA-seq with
VOOM is more powerful in its ability to detect differentially expressed genes
than microarray with LIMMA.
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Chapter 1

Introduction

The 20,000 protein coding genes that that make up the human genome [I]
contain the recipe for the complex network of neurons and tissues that is the
human body. Although genetic variation has given rise to life and the human
species through evolution, it is also the cause of many deadly diseases. For
example, mutations of the BRCA1 and BRCA2 genes are heavily associated
with breast and ovarian cancer [4]. Furthermore, Diggs-Andrews et al. [5]
have hypothesized that neurofibromatosis type 1 presents itself differently
based on genetic differences linked to the sex of the patient. In order to give
doctors the ability to utilize gene therapy to prevent complications resulting
from neurofibromatisis type 1, along with other diseases, it is necessary to
identify the exact genes that are over or under-expressed in patients with the
disease.

Two commonly used methods to measure genetic expression are mRNA
microarrays and RNA-sequencing. Microarrays quantify the expression of a
gene by measuring the fluorescence of mRNA labeled with dye that hybridize
to the complementary base pairs of known genes. If we are measuring the
difference in gene expression between male and female mice with neurofi-
bromatosis type 1, we can obtain microarray data for a male mouse and a
female mouse. We then obtain a vector of fluorescence levels for each gene,
yg = (Yg1,Yg2, Yg3, Yga), Where y,1 and y,o are the responses from male sam-
ples, and y,3 and yg4 female samples. Using this data, we create a linear
model, ygT = a1 X1 + as Xy + ¢;, where X; and X, are indicator variables for
whether sample y,; came from a male or female, respectively. o, and o
are then estimated to create the statistic Bg = Qg1 — Qg2. We then wish to
make an inference on Bg, the estimated difference between male and female



expression.

A common statistical test to determine whether or not 5, = 0 is a stan-
dard t-test. However, microarrays typically have a low number of replicates,
which leads to a noisy estimate of the variance of the estimate of 3, Bg, and
thus poor performance from the standard t-test [6].

To work around this problem, Smyth assumes a common distribution on
the variance of Bg, 03, and uses an empirical Bayesian hierarchical model to
borrow information across genes to create a moderated t-statistic, fg. Un-
der the null hypothesis, Hy : B, = 0, fg is shown to follow a standard
t-distribution with added degrees of freedom compared to the standard t-
statistic, leading to higher power and a lower false discovery rate.

Despite being commonly used, microarrays force researchers to decide
which genes to include on the microarray chip, which does not allow re-
searchers to discover novel potential genes of interest. RNA-sequencing
avoids this problem by sequencing small parts of every mRNA in the sam-
ple and mapping reads to a reference gene library to quantify expression.
However, the discrete nature of RNA-seq data makes it more difficult for
researchers to accurately detect differential gene expression. While several
statistical methods have been developed to detect differential expression in
RNA-seq data, several papers have identified the VOOM as the best method
for analyzing RNA-seq data [3] [7] [§] [9].

I plan to compare RNA-seq and microarray data taken from two previous
studies that have made their data publicly available. The first dataset is
taken from 21 inbred mice, with the dataset containing 10 C57BL/6J (B6)
mice and 11 DBA/2J (D2) mice [I0]. The second dataset is from human sub-
jects, and allows us to compare samples taken from liver and kidney cells [T1].
Neither of these studies used VOOM for the differential expression analysis of
the RNA-seq data. Because VOOM utilizes the LIMMA pipeline for the dif-
ferential expression analysis, I believe that using VOOM and LIMMA allows
for a more accurate comparison of the abilities of RNA-seq and microarray
data to detect differential expression.



Chapter 2

Microarray Data Normalization

The process of collecting microarray data leads to a high probability of vari-
ation in measured fluorescence intensities from different arrays that result
from steps such as sample preparation and the hybridization of the samples
on the array. This variation is called obscuring variation [I12]. When we con-
duct inference to assess whether genes are differentially expressed, we risk
reaching false conclusions unless as much of the obscuring variation is re-
moved as possible. To remove obscuring variation, the microarray data must
undergo preprocessing, or normalization. Because Affymetrix GeneChip mi-
croarrays are the most commonly used microarray chips [13], I will focus on
the standard normalization algorithm for Affymetrix microarray data, the
Robust Multi-array Average (RMA) algorithm [14].

2.1 Background removal

The first step in the RMA algorithm, called background removal, is to remove
noise in the fluorescence intensities which results from non-specific binding to
the probes. The background removal algorithm used in the RMA algorithm
only uses perfect match (PM) probes to remove noise, as opposed to PM
and mismatch (MM) probes, as background removal via PM-MM attenuates
signal and adds bias [14]. To remove background noise, we first assume that
the observed probe intensity, PM, is a combination of background noise (BG)
and signal (S).

PMig; = BGigj + Sig; (2.1)



for array i =1,...,N, gene g =1,...,G, and probe j =1,...,J. Note that
each array has multiple probes per gene, as signal intensity is dependent
upon the region of the gene that binds to each probe [I5]. The quantity
of interest is the signal, given the perfect match probe intensities. Because
the signals will eventually be log corrected, the assumption is that the signal
Sigi ~ exp(X). The assumption for the background noise is that BG,,; ~
N(p,0?). Having observed the perfect match probe intensities, we then
want to estimate the background noise and signal, which can do this through
calculating E[S|PM = pm| = E[PM—BG|PM = pm|. Letting a = PM,,;—
u — a2\, Bolstad [16] finds this to be

0 (5) -0 (Pe=)
®(5) - @ (Pet) -1

Where ¢(-) and ®(-) are the pdf and cdf, respectively, of the standard normal
distribution function.

Once we have estimates for p, o, and A, using the above equation to
estimate E[S|PM = pm] is equivalent to removing the background noise
from the perfect match probes.

E[S|PM =pm|]=a+b (2.2)

2.2 Across array normalization via quantile
normalization

After estimating E[S|PM = pm] to remove background noise from each
individual probe, we next consider batch effects for each microarray chip.
Because different microarrays may be run on different days or by a differ-
ent researcher, these events will lead to technical variation for each probe.
To normalize the data across arrays and remove batch effects,the RMA algo-
rithm uses quantile normalization, Bolstad et al. [I7] found RMA to have the
greatest effect on removing batch effects when compared to other normaliza-
tion methods. The goal is for an N-dimensional QQ-plot of probe intensities
for N arrays to follow the N-dimensional identity line. The algorithm to
perform this normalization is as follows:

1. Arrange the data in a table, where each row represents a probe, and
each column represents a different array



2. Identify the smallest measurement for each array and take the average.
Replace the original values for the smallest measurements with this
average

3. Repeat step 2 for the second smallest measurement on each probe

4. Continue this process until the largest probe measurement on each
array has been replaced with the average of the largest probe measure-
ments

Below is an example with a hypothetical experiment in which three arrays
measured three probes.

Array 1 Array 2 Array 3

Probe 1 1 4 2
Probe 2 3 3 6
Probe 3 5 7 )
Array 1 Array 2 Array 3
Probe 1 1 4 2
Probe 2 4 3 6
Probe 3 5 7 5
Array 1 Array 2 Array 3
Probe 1 2 4 2
Probe 2 3 2 6
Probe 3 5 7 5
Array 1 Array 2 Array 3
Probe 1 2 4 2
Probe 2 4 2 6
Probe 3 5 7 4
Array 1 Array 2 Array 3
Probe 1 2 4 2
Probe 2 4 2 6
Probe 3 6 6 4

The quantile normalization procedure creates arrays with identical mea-
surements throughout. However, each of those measurements is on a different
probe.



2.3 Summary and Calculation of Probe Level
Intensity via Median Polishing

The final step in the RMA algorithm is to remove experimental effects in-
duced by individual probes and summarize the fluorescence intensities for
each gene. After background correcting and normalizing the data, we ob-
tain fluorescence intensities Yj,4; for each gene on arrays i = 1,..., N, genes
g=1,...,G, and probes j = 1,...,J. To remove individual probe effects
and summarize the data, we consider the model

Yigi = Mg + Dgj + €igj (2.3)

where the parameter of interest is p;4, the average gene intensity for array ¢
and gene g. The probe effect, py;, can be thought of as the variation due to the
specific features of a certain probe, relative to other probes for the same gene.
Equation 2.3 is constrained such that Z}']=1 pg;i = 0. Note that the this step
is carried out on the gene level, while the quantile normalization is carried
out at the probe level. To estimate p;q, Irizarry et al. [I4] first estimate €;,;
through the median polish procedure [18] and let i;, = + Z;']:1 Yigj—€ig;- The
median polish procedure, along with the summarization step, is as follows:

1. Arrange the background-corrected, normalized, and log, transformed
fluorescence data in a table, where each row represents an array, and
each column represents a different probe

2. Calculate the median of the probe fluorescence intensities for each array
and subtract it from each probe in the given array

3. Calculate the median of the fluorescence intensities across the arrays
for each probe, and subtract it from the given probe value for each
array

4. Repeat the previous two steps until the array and probe-wise medians
are sufficiently small

5. Each entry in the new matrix represents the estimated error term, €;4;.
To obtain the corrected fluorescence matrix, subtract this matrix from
the original matrix of fluorescence intensities to obtain the expression
Yigi — €igj



6. Take the average of the probes in each array to obtain the final expres-
sion measurement for the gene on each array, fi;,

Below is example for a 5 x 5 fluorescence data matrix, provided by Dan
Nettleton [19].

1. Arrange the background-corrected, normalized, and log, transformed
fluorescence data in a table, where each row represents an array, and
each column represents a different probe

Probe 1 Probe 2 Probe3 Probe4 Probeb Row Medians

Array 1 4 3 6 4 7 4
Array 2 8 1 10 5 11 8
Array 3 6 2 7 8 8 7
Array 4 9 4 12 9 12 9
Array 5 7 5 9 6 10 7

2. Subtract row medians

Probe 1 Probe 2 Probe3 Probe4 Probeb

Array 1 0 -1 2 0 3
Array 3 0 -7 2 -3 3
Array 3 -1 -5 0 1 1
Array 4 0 -5 3 0 3
Array 5 0 -2 2 -1 3
Column Medians 0 -5 2 0 3

3. Subtract column medians

Probe 1 Probe 2 Probe3 Probe4 Probeb Row Medians

Array 1 0 4 0 0 0 0
Array 2 0 -2 0 -3 0 0
Array 3 -1 0 -2 1 -2 -1
Array 4 0 0 1 0 0 0
Array 5 0 3 -1 0 0




4. Subtract row medians

Probe 1 Probe 2 Probe 3 Probe4 Probeb
Array 1 0 4 0 0 0
Array 2 0 -2 0 -3 0
Array 3 0 1 -1 2 -1
Array 4 0 0 1 0 0
Array 5 0 3 0 -1 0
Column Medians 0 1 0 0 0
5. Subtract column medians
Probe 1 Probe 2 Probe 3 Probe4 Probeb Row Medians
Array 1 0 3 0 0 0 0
Array 2 0 -3 0 -3 0 0
Array 3 -1 0 -2 1 -2 0
Array 4 0 -1 1 0 0 0
Array 5 0 2 0 -1 0 0
Column Medians 0 0 0 0 0

6. Now that the row and column medians are both 0, the matrix in step
5 represents the estimated residuals, €;4; for each observed fluorescence
intensity, Yis;. We subtract the residual matrix from our original data,

and summarize each row by taking the mean

Probe 1 Probe 2 Probe3 Probe4 Probeb Row Means

Array 1 4 0 6 4 7 4.2
Array 2 8 4 10 8 11 8.2
Array 3 6 2 8 6 9 6.2
Array 4 9 5 11 9 12 9.2
Array 5 7 3 9 7 10 7.2

The row means in the example above represent the value p;,. Because
the probe affect, py;, remains constant across arrays for each probe, we can
igj — €igj — Iig- Note in the example above that the
probe affinity effects are -.2, -4.2, 1.8, -.2, and 2.8 for probes 1, 2, 3, 4, and

use the value py; =

5, respectively.



Chapter 3

Microarray Analysis with
LIMMA

3.1 Constructing a Linear Model for Microar-
ray Data Analysis

To make inferences on tens of thousands of genes, Smyth (2004) first creates
a linear model for each gene. This statistical technique is called “Linear
Modeling for Microarray Data” (LIMMA). Consider an experiment in which
2 microarray samples each are collected from female and male mice. For each
gene, the fluorescence data yields a response vector y, = (Ygrs Yga> Ygss yg4)T,
where y,, and y,, represent the two male microarray response and y,, and
Yg, Tepresent the two female microarray responses. Using the linear model

ygl 1 0
ng 1 0 Ckgl

E = 3.1
Yg3 0 1 [%J (3.1
yg4 0 1

we can define a contrast matrix
-1
C— [ } (3.2)
1
to test whether 8, = CT [og &QQ]T = g — ag, = 0.

This example can be generalized to create a suitable linear model for a
range of experimental designs. Information is collected on N microarrays,

9



yielding a response vector y, = (Ygys - - - ,ygN)T containing normalized fluores-
cence intensities for the gth gene. To represent the experimental design, one
can create a design matrix X of full column rank and a coefficient vector o,
such that the entries of o, capture the coefficients of interest for comparing
the contribution of each array to y, . If there are P treatments, one typically
creates a N X P design matrix, where the columns represent each different
treatment. The design matrix has a 1 in the nth row and pth column if the
pth treatment corresponds to the fluorescence intensities in the nth entry in
Y, and a 0 otherwise, as in equation 3.1. We assume

E(y,) = Xaoy (3.3)

We also assume
var (yg) = Wyo, (3.4)

where W, is a non-negative definite weight matrix related to array quality
and heteroskedasticity. W, can be specified by the user, and is especially
useful for RNA-seq data, which will be discussed in chapter 4.

In order to make inference on the contrasts between certain coefficients
of interest, we define a contrast matrix C' such that we can test whether
the entries in the vector 8, = CTa, are equal to 0. A general guideline in
creating a contrast matrix is to have each column represent the contrast of
interest and each row represent a treatment condition. The ijth entry of C
will be 0 if the ith treatment is not of interest in the jth contrast, or will
be either 1 or -1, depending on whether the coefficient corresponding to the
1th treatment is being added or subtracted in the jth contrast. In equation
3.2, the two rows of C corresponded to a; and «s, while the one column of
C corresponded to the contrast as — .

For the remainder of the derivations in this paper, I will assume a fitting
of the linear model by least squares, although the original LIMMA paper
does not make this assumption. After obtaining estimates for o, and 0'37 Qg
and 33 respectively, and the covariance matrices

Cov (&) = V0, (3.5)

where V, = (XTX)™! [20] is a positive definite matrix, we can derive the
covariance matrices for the contrast estimators, 3, = CTdy:

10



Cov <Bg> = Cov (C"ay) (3.6)

= E[(C"ay — E[CTa,])(CTay — B[C"ay])"] (3.7)

= B[C"(ag — Elag))(C (ay — Blay]))"] (3.8)

— CTE[(a, — Elag)AC (3.9)

=CTCov (a,) C (3.10)

=C"V,Co (3.11)

Because we want to test whether 3,; = 0 for genes g = 1,...,G, and
contrasts j = 1,...,J we need to derive the distributions for 3,; and 32

Note that Var(ng) = ugja where vy; is the jth diagonal element of the
matrix CTV,C. Given the response vector, Yy, the distributional assumption

for 8,; can be summarized by

5gj|ﬁgja03 ~ N (ngv ngUQ) (3.12)
which agrees with [20]. To derive the distribution for s7, we first let S? =
SN (Vi — Xin@gr — -+ - — Xyptigy)?, where p is the number of experimental

conditions. Also, note that the quantity 33 =
03 [20]. For the purposes of the following calculations, I will assume that the
responses y, are normal, although Smyth does not make this assumption.
Given this assumption it follows that S7/o? ~ X3 [20], and we use the

0.2
fact sg =05 02 to derive the conditional distribution of s given O’ and the
g
residual degrees of freedom, d, = N — p [20]:

0.2

2| 2
salog ~ d—ngg (3.13)
g
These assumptions allow us to make inference on whether §,; = 0 using the
ordinary t-statistic

B,

t. =19
Sgv/Vgj

97 —

(3.14)

which follows a standard ¢-distribution on d, degrees of freedom.

11



3.2 Using a Hierarchical Model to Improve

the Estimate for 03

In conducting ordinary t-tests, microarray data presents the problem of a
low sample size, which leads to a poor estimate of the true variation, 03. A
large estimate of the variation will lead failing to identify a truly differen-
tially expressed gene as differentially expressed, giving the test lower power,
while a small estimation of the variation leads to classifying non-differentially
expressed genes as significant, giving the test a higher false positive rate.
However, microarrays present the opportunity to gather information from all
genes together in order to create a pooled estimation of the variance. While
using a pooled variation estimate rather than sf] does not allow for the es-
timate of the variance for the t-statistic to take the behavior of individual
genes into account, it does suggest the idea of using Bayesian statistics to
add prior information to each of our gene variation estimates.

Smyth (2004) uses a hierarchical empirical Bayesian model, in which the
parameters for the prior on 03 are estimated from the data. Because

d, 202
s§|0§ ~ Gamma (597 d—g> (3.15)
9

we want a conjugate prior distribution for % Note that we put a prior on %,
g g

rather than 02, due to mathematical ease. The most convenient distribution
is the Gamma with estimated hyperparameters dy and s2:

1 dy 2 )
— ~ Gamma | —, — 3.16
o2 ( 2" dys? (3.16)

To estimate the prior degrees of freedom and sample variance, dy and sZ,
let zy = logs,. Smyth shows that the z, follow a Fisher’s z-distribution [2].
The theoretical mean and variance of the z-distribution are then matched
to the empirical mean and variance of the z,, which leads to the estimate
so=15 25:1 s2 [21]. The derivation of the estimate of dy is outside the scope
of this paper, but more details can be found in [2].

To make the estimate of 03 less susceptible to extreme values, we will

instead use the inverse of the expected value for the posterior for % given
g

sf]. To find the posterior distribution, we use the following calculations:

12



() s (e () 317)

g
do
d dg/2  dgsg 1 -2 g2
x <—g) e 2 (—2) ¢ 2t (3.18)
o o

d0+dg
7T71

1 _dosg+dgs£2]
x (= e 202 (3.19)
o
which shows that
1, ., do+d 2
— ~ G g 3.20
(els) ~ Gumma (B 2] )
and ) ) )
1 T dgss 4 dosg
E | =|s? =49 0 3.21
(#l=]) -2 (321

The moderated estimate of the variation, denoted 53, gives a weighted
average of our estimate for the prior variation, s2, which is found using all of
the data, and the individual gene wise variation, 35. Because we have added
information from the pooled gene wise variance, we now replace 33 with 53
in the t-statistic. This new statistic, fgj, is called the moderated t-statistic
and is defined as: .

;o 593'

tg] T =
Sg+/Vgj
3.3 The Distribution of the Moderated t-statistic

(3.22)

Now that we have precisely defined the moderated t-statistic, it is of interest
to find its distribution in order to make use of the statistic in inference.
Specifically, we want to find the distribution of fgj when our null hypothesis,
Bg; = 0, is true. To do this, we will derive the joint distribution of fgj, and sg,
and show that the two statistics are independent with the following marginal
distributions:

53 ~ soFu, o (3.23)

13



and )
tgjlBgj = 0 ~ tay+d, (3.24)

To begin this proof, let f; = o5 (t45, 521845 = 0) and Fy,, 2160, (14,5218 = 0)

93:~g ~
denote the p.d.f. and c.d.f., respectively, of the joint distribution of ¢,; and
s2 given fy; = 0. Recall that

ffga‘:5§|5ga‘ (ng’ S§|ﬁgj - O) - tzgj,sgng (ggjvSZng = O) (3.25)

Because of this relation, we can find 'Fifgjvsgmgj (t4;. 52845 = 0) to derive Ji,5.52185 (tg5. 521845 = 0).

We will use the definition of fgj — Pai_ t4 derive the c.d.f.

Severn
F t 2 _ _p ng <f{. §2<g? _
0s.52180; (aj SglBes = 0) = T(g — < g, Sy < 5y|Bg; = 0) (3.26)
g 97
= Pr(By < ggjggvygjv S; < 53’591' =0) (3.27)
- F/S’gj,sgmgj (tgjgg\/ Vgj Sing =0) (3.28)
Finally, noting that 3, Vg = B, we take the derivative of F’ By:15218; with
N 95:5g1Pg3j
respect to ty; and s? to find
f (t,s:18=0) = f; B,s:18=0) 5\/7g (3.29)
tgi»52|Bg5 \» 89 By :521Bg5 ’ 89 § 93 :

Under the assumption that that ng and 33 are independent we can find
fng,s‘g’lﬂgj <5gj753|5gj = 0). While the assumption that that 3y; and s2 are
independent is not necessarily true, the moderated t-statistic still outper-

14



forms other methods of inference using the independence assumption.

fng’Sglﬁgj (ﬁgjysaﬁgj - O) B / fégjﬁsg7052‘ﬁgj (ﬁgy v 89’0-92|6gj > (0-;2>
(3.30)
- /‘f/BgJ S |Ug Bai ng x’8527|0-9_2’/89j = O) faQQ(U;Q)d(O-g_Q)
(3.31)
- /f[%gj|092,ﬂg]~ (ng - x’0;2’59j = O)
0

X fsg‘ag2,,39j (S§|O-g_2’ ng = 0) fa;Q (0'9_2>d(0'g_2>

0o 52
1 Py 5
= —¢€ 2"9j"9
. 2 2
2 (27rygja

dg) §2(dg/2-1) o
20 (dg/2)

( ‘
(dOS >d0/2 72(dg/2 1) —2d08(2)

X

Y —0g d -2 )
<=3 I (do/2) - 7 dyo (3.33)

g
)do/Q d,/2)%/2s 2(dg/2-1)
(27%:] V2T (do/2) T (dy/2)

oo 2 2
—2(1/2+do/24+dy/2-1),, 77 <26"g] +dgsg+doso> —2
x [ o, 0/4Tdg e d(o. )

g
0

(3.34)

Where the functions in equation 3.33 come from the assumptions made in
equations 3.12, 3.13, and 3.16. Note that the integral in equation 3.34 can

be written as
r
(Oé) — /xa—le—,@xdx (335)




with = 02, o = 1/2 + do/2 + d, /2, and 3 = % B Ty,

00 _U_2<3§j +d953+d08(2)>
/0_9_2(1/2+d0/2+dg/2—1)€ 9\ 2 T2 d(o72) (3.36)

g9
0
2 —(1+do+dy)/2
—2 4 dys? + dosg

=D (1/2+do/2+d,/2) | 2 5 (3.37)
) (dO;O)d0/2(dg/2)ddg/282(dg/2—1)
Looking at the constant G AT a2 We note that
(2m1g5) 1% = (20g) 2 (m)V/? = (204)'/*T(1/2) (3.38)
To derive that:
1/2 doso)d0/2
f(ﬁ L s2|8 -:0> = <2Vlgj) (452)™" (dy/2)%/?s*%a/27D
e ['(1/2)T (do/2)T (g/2)
‘ —(1+do+d)/2
ﬁ + dgs; + dosg
I'(1/24+dy/2+4d,/2) | = 5
(3.39)
so\do/2 N 52 —(14do+dg)/2
<2ug3) (dOQO) "/ (dg/Q)dg/232(dg/2 2 % —i—dgsg + dos?
B D (1/2,dy/2,d,/2) 2
(3.40)

where D(-) is the Dirichlet function.
Going back to the joint probability of ¢,; and sf], and letting B(-, -) denote

16



the Beta function, we find

ffgj,sg (~gyv g|6gj = 0) = ngngfﬁw 52 <5ng ;Wgy = 0) (3.41)
12 o\ do/2 2(dg/2—1

Lo (3) ) g

~ 2vg;
= Sg\/Vgj D (1/2,dy/2,d,/2)
—(14do+dyg)/2
ga —|— d 3 + dOSO
) (3.42)
dys? + d, s 1/2
020 . _
- ( do + dg ) (doso) o/2 (dg)dg/%;(dgm 1)
T(1/2 4 do/2 + dy/2) T(do/2 + dg/2)
P(1/2)0(do/2)T(dy/2) T(do/2 + dy/2)
O ~(1do-+dg)/2
X (U—‘” +dgs; + dosg) 5.13)
97

B (dosg + dgsg) 12 (doso)do/2 (dg)dg/283(dg/2—1)
do + dg (dg/2,do/2)B(1/2,do/2 + d,/2)

- —(1+do+dy)/2
2 2\—1td0tdy 9i
ot (1 g
g

(3.44)
d d
_ (dos?)%df 55 "
B(%, %) (dys3 +d 32)7“ 1
) - _ L4dgtdg
do+d,)"2 2 ’
% % 14 —9 (3.45)
O A

The derivation above shows that conditional joint p.d.f of fgj and 53 is

the product of a standard t-distribution and F-distribution. Thus, fgj and

sg are independent with

sg ~ soFy, 4o (3.46)

and
tgjlBgj = 0 ~ tay+d, (3.47)
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Result 3.47 show that 53 not only produced a weighted average of the
pooled and individual residual variances, but also leads to a t-statistic which
follows a t-distribution with increased degrees of freedom. The increase in
degrees of freedom, from d, to dy + dg, reflects the added information from
the Bayesian hierarchical model, and results an increase in power [22]. In
addition, Smyth finds that the moderated t-statistic has a much lower false
discovery rate (FDR) than the standard t-statistic in a range of simulated
conditions [2].
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Chapter 4

RNA-seq Analysis with VOOM

4.1 Introduction to RNA-seq

While microarrays are currently the most popular sequencing technology,
they limit researchers’ abilities to accurately measure end expression in sev-
eral ways [23] [24]. First, microarrays rely on complementary hybridization,
forcing researchers to use a limited number of genes whose sequence is already
known. Second, probes measuring genes that are naturally low in transcrip-
tion abundance will pick up more background noise. Finally, relative to
next-generation sequencing (NGS) technologies, there is a high amount of
technical variation, which requires the use of imperfect preprocessing meth-
ods, such as RMA.

Because of these issues, NGS technologies that directly measure gene
expression, such as RNA-seq [25] have grown in popularity. RNA-seq tech-
nology sequences short RNA reads by adding fluorescent nucleotides to the
complimentary DNA (cDNA) strand. The fluorescent bases allow the exact
sequence to be captured and then mapped to a reference genome. If the
species being investigated does not have a reference genome, technologies
such as [26] exist for de novo assembly of full-length transcripts.The number
of reads mapped to a gene on the reference genome is known as that gene’s
“count”. A large reason that researchers are turning to RNA-seq is that it
does not limit the number of genes that can be sequenced.

Despite the fact that RNA-seq does not rely on prior knowledge of the
genome of interest, as researchers can create a de novo reference genome, the
process is still dependent upon conditions imposed by researchers, namely
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in determining sequencing depth. As sequencing depth increases, the num-
ber of differentially expressed genes detected also increases [27], most likely
due to the increased ability to detect differences in genes with low levels of
expression. This is especially of note, as the higher costs of RNA-seq experi-
ments compared to microarray experiments may prevent researchers to use a
sufficiently high sequencing depth [27]. With a lower sequencing depth, sam-
pling error can lead to deflated and/or inflated read counts [27], as opposed
to higher sequencing depth, where the read counts more accurately reflect
true expression levels. Perkins et al. find that some genes are only detected
as differentially expressed at lower sequencing depth due to these misleading
read counts [27]. This result indicates that lower sequencing depth can lead
to increased false positive results, despite finding less differentially expressed
genes than experiments with higher sequencing depth. As I will briefly dis-
cuss in section 5.2, the use of different bioimformatics tools to map the short
reads onto the genome of interest can lead to dramatically different results.
The interplay between biology, computer science, and statistics in this pro-
cess underscores the need for researchers in all of those fields to work together
in order to obtain accurate and interpretable results.

4.2 Modeling RNA-seq Data

Despite the benefits that RNA-seq provides over microarray technology, the
count-based nature of the data makes it difficult to develop statistical tests
for differential expression [3]. Law et al. argue that methods which use dis-
tributions made to model count data, such as the negative binomial (NB)
distribution, rely on knowing the true variation of the data [3]. More impor-
tantly, most statistical tools developed for inference, such as the standard
and moderated t-test, rely on normally distributed data, or data which can
be suitably transformed to be then considered approximately normal.
Relying on the theory that statistically powerful hypothesis tests strongly
rely on correctly modeling the relationship between the mean and variance
[28], Law et al. focus on estimating the relationship between the number
of counts and the standard deviation through “variance modeling at the ob-
servational level” (VOOM) [3], and then using a weighted LIMMA analysis.
Because gene counts are normalized by the number of mapped reads (in
millions) in each sample to get counts per million (cpm) values, genes with
different counts in sample 1 and sample 2 can have the same measured re-
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sponse. For example, if a gene gets 200 counts for a sample with 2 million
reads, while getting 100 counts in a different sample with 1 million reads, the
cpm measurement will be 1 for both samples. However, Law et al. observe
that observations with small log-count values have much higher variation
than observations with large log-count values [3]. Thus, observations with
the same log-cpm values may have different count values, resulting in highly
unequal variances, which violates a main assumption of LIMMA.

Once this relationship is established non-parametrically, the inverse of
the estimated variance for each observation can be used as that observation’s
weight in the LIMMA pipeline, where the log-cpm values can be used instead
of fluorescence intensities for the observed values y,. This method does not
rely on distributional assumptions, such as the NB exact test [29], which
requires that the variation of the data is known, leading to poor performance
when the variance is estimated [3]. This is especially true when small sample
sizes, sometimes as low as three [3], lead to especially imprecise estimates of
the variance. An additional advantage of VOOM is that it allows RNA-seq
data to be analyzed by a method that is easy to implement and is designed
for experiments with small sample sizes that are concerned with relative gene
expression .

4.3 Differential Expression Using RNA-seq Data
in the LIMMA Pipeline

After obtaining raw RNA-seq count data, the data is first normalized using
trimmed means of M-values (TMM) normalization [30]. As mentioned in
section 4.2, the counts are further normalized by dividing each count by the
corresponding library size (in millions) and then taking the log, of this value.
VOOM seeks to estimate the variation of individual observations. However,
obtaining a sample variance requires at least two observations from the same
sample, and RNA-seq only allows one observations of the number of counts
for each gene in a sample. To solve this problem, Law et al. estimate the
mean-variance relationship on a gene level, rather than on an individual
sample level. This relationship is then used to predict sample variances for
individual observations, based on the observed count value. The VOOM
method is as follows:

1. Create a design matrix, as in section 3.1, and fit a linear model using
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ordinary least squares to the individual log-cpm values (y,;) for genes
g=1,...,G obtained via RNA-seq. In matrix terms, the model is:

E[yg] = Xa, (4.1)
where X is the design matrix

. For each gene, calculate the residual standard deviations, s,, coefficient
estimates &, and fitted values for each observation, fi, = x;4,, where
x; represents the ith row, or ¢th sample, in the design matrix X

. Compute the mean log-cpm for each gene, y,. Note that if the design
matrix X is created as in section 3.1, the jiy will be the average log-cpm
for each experimental condition, while g, is the average log-cpm across
all conditions. Because g, is an average of log-counts normalized by the
number of mapped reads per sample (library size), we can convert g, to
an average log-count value, 75, by multiplying by the geometric mean
of the total number of mapped reads per sample. Mathematically:

. R+1
Te =Yg + lng (1—06) (42)

where R is the geometric mean of the library sizes

. Having obtained the average log-count and an estimate of the residual
standard deviation for each gene, we can now estimate the relationship
between the two statistics. To do this, we fit a LOWESS curve [31] to
/3¢ as a function of 7, (Figure 4.1). The LOWESS curve provides a
smooth trend between mean log-count and standard variation, and is
statistically robust [32]

. Convert fitted log-cpm values, fi4, to fitted count values, j\gi by replac-
ing y, with fig in the equation in step 3

. Find the VOOM precision weights, w,; for the log-cpm value y, by
taking the inverse of the squared predicted standard deviation for Ay

using the fitted LOWESS curve [31], lo():
we; = lo(Agi) ™ (4.3)

The wg; are then used as the ith diagonal entry in the definite weight
matrix W, specified in equation 3.2
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Figure 4.1: Gene wise variances versus gene wise means. A LOWESS trend,
represented by the red line, is fitted to the data. (a) Bottomly Mice Data.
(b) Marioni Human Data.

4.4 Performance of VOOM Relative to Other
Methods of Analyzing RN A-seq Data

Law et al. performed several simulations of RNA-seq data to compare VOOM
to other methods designed specifically for RNA-seq analysis, such as edgeR
[33], DESeq [34], and PoissonSeq [35]. The comparisons measured ability
to control the type I error rate, power to detect true differential expression,
and the number of false discoveries. Six samples of 10,000 genes each were
simulated, with the distribution of each sample modeled on an observed
distribution for a real RNA-seq dataset. Three samples were considered as
condition 1, while the other three samples were considered as condition 2.

To compare the methods on ability to control the type-I error rate, th
simulations varied the number of total counts for each sample. In addition,
the gene counts were created such that there was no true differential expres-
sion between condition 1 and condition 2, which implies that the distribution
of P values should be uniform if the method controls the type-I error rate
correctly. Using a P value cutoff of .01, VOOM is the only method where
the percentage of genes with P < .01 = .01, whereas other methods are too
liberal or conservative.

Law et al. then compare the methods on their power to detect true differ-
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ential expression by simulating the six samples such that in each condition,
100 random selected genes were significantly upregulated. When the sample
sizes are all equal, VOOM finds the third most differentially expressed genes
out of all methods using FDR < .01, only behind edgeR and PoissonSeq.
However, VOOM has a lower false discovery rate (FDR) than the other two
most powerful methods. When sample sizes vary, VOOM finds the second
most differentially expressed genes out of all methods using F DR < .01, only
behind edgeR, while still maintaining a lower FDR than edgeR.

Finally, Law et al. compare the number of false discoveries versus the
number of genes detected as differentially expressed for all of the methods.
For all values of number of genes detected as differentially expressed, VOOM
has the lowest number of false discoveries.

Several recent papers have compared RNA-seq analysis methods to VOOM,
and all find that VOOM performs extremely well relative to other methods.
Soneson and Delorenzi [9] perform simulations with a range of samples sizes
and number of truly differentially expressed genes. They find that VOOM
performs extremely well in almost all conditions, and was computationally
fast. Rapaport et al. use a spike-in data set to evaluate the RNA-seq anal-
ysis methods and find that VOOM generally outperforms methods designed
specifically for RNA-seq data. Finally, Seyednasrollah et al. [7] recommend
using VOOM over other methods due to performance, ease of use, and com-
putational speed.
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Chapter 5

Microarray and RNA-seq Data
Comparison

5.1 Sources of Data and Pre-processing Meth-
ods

To compare the abilities of microarray and RNA-seq to identify differentially
expressed genes, [ used VOOM and LIMMA to analyze the Bottomly mouse
data set [10] and the Marioni human data set [I1]. The Bottomly RNA-seq
data was downloaded from ReCount [36], while the Marioni RNA-seq data
was downloaded directly from www.genome.org. Both of the microarray
data sets were publicly available on the GEO database (Accession numbers
GSE26024 and GSE11045 for the Bottomly and Marioni data, respectively).
To obtain microarray data, the Bottomly study used the Affymetrix MOE
430 2.0 array, while the Marioni study used the Affymetrix HG-U133 Plus
2.0 array. Illumina sequencing was used to obtain RNA-seq data for both
studies. The Bottomly data set contains 10 RNA-seq samples for C57BL /6]
(B6) mice, 11 RNA-seq samples for DBA/2J (D2) mice, and 10 microarray
samples for each strain. The Marioni data set contains 7 RNA-seq samples
for both liver and kidney cell samples, and 3 microarray samples for both
cell types.

I used the RMA algorithm [14] described in Chapter 2 to normalize the
microarray data for both studies. To filter the RNA-seq data, I used the
protocol described in the respective papers. For the Bottomly data, I kept
genes which had at least one read for the 10 B6 samples and at least one
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read for the 11 D2 samples. The Bottomly data originally had mapped reads
for 36,536 genes, and had 12,839 genes (35 %) available for analysis after
filtering. Marioni used a less conservative filtering method, keeping samples
which had at least one read across all samples and cell types. The Marioni
data originally had mapped reads for 32,000 genes, and had 22,925 (72 %)
for analysis after filtering. After filtering, I used the TMM normalization
method briefly mentioned in section 4.3.

5.2 Results

Before applying differential expression analysis, I first compared the average
logs RNA-seq counts to the average log, microarray fluorescence intensities
(Fig. 5.1) for genes used in the analysis of both platforms. While both data
sets showed positive correlation between RNA-seq counts and microarray in-
tensities, the differences between the data sets become apparent through this
comparison. Most notably, a larger percentage of genes with low microarray
fluorescence intensity have higher RNA-seq counts in the human data. How-
ever, a higher percentage of genes with a low average RNA-seq count have
higher microarray fluorescence intensity in the mice data, compared to the
human data. Despite this, the human data still has a much higher percent-
age of differentially expressed genes when using the microarray technology,
although this is most likely due to greater difference in gene expression for
liver and kidney cells than for different breeds of mice.

VOOM and LIMMA were applied to RNA-seq and microarray data, re-
spectively, to obtain p-values for each gene. The p-values were then adjusted
using the Benjamini-Hochburg adjustment [37], and a false discovery rate
(FDR) of .01 was used to determine differential expression. The Bottomly
data set had 1,426 genes (11%) differentially expressed using microarray data,
and 607 genes (5%) differentially expressed using RNA-seq data. The Marioni
data set had 10,694 differentially expressed genes (47%) using RNA-seq data,
and 8,095 differentially expressed genes (35%) using microarray data. Using
the Ensembl annotation, I compared the genes found to be differentially ex-
pressed by VOOM and LIMMA. Figure 5.2 shows the overlap between the
genes called differentially expressed for both technologies. The Marioni data
set finds 43 % of all differentially expressed genes to be called differentially
expressed by both technologies, while the Marioni data set only finds 13 % of
all differentially expressed genes to be called differentially expressed by both
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technologies (Fig 5.2). In addition, the Bottomly data (Fig 5.2.a) has a much
larger number of differentially expressed genes found uniquely by LIMMA, as
compared to VOOM, while the opposite held in the Marioni data (Fig. 5.2.b).
However, it is of note that the results differ greatly from the original findings
in the Bottomly study, which found 1,727 genes to be differentially expressed
in the RNA-seq data using edgeR [33], and 1,652 genes to be differentially
expressed in the Affymetrix microarray data using LIMMA. In addition, the
Bottomly paper reported different number of genes before and after filtering
compared to the data that I obtained from the ReCount database. Although
ReCount database and the Bottomly paper both use Bowtie [38] to map the
short reads onto a reference genome, I believe a difference in the filtering
process between Bottomly and the creators of the ReCount database can
account for the data discrepancy .

To see if there were any trends amongst genes found to be uniquely ex-
pressed by one of the technologies, I again compared the average logs ex-
pression of microarray and RNA-seq data for both datasets, except this time
genes were filtered to be only those that were found to be differentially ex-
pressed in at least one of the technologies (Fig. 5.3). In the Bottomly data
set (Fig. 5.3.b), many of the genes found to be differentially expressed only
in the microarray data (green dots) were in the region of genes that had low
RNA-seq counts, but higher microarray fluorescence intensities. In the Mari-
oni human data, the trend for genes found to be differentially expressed only
by microarray technology is somewhat close to the trend for genes found to be
differentially expressed by both technologies (red dots). However, the genes
found to be differentially expressed only by RNA-seq technology (blue dots)
tend to have lower microarray fluorescence intensity for a given RNA-seq
count.

Finally, I compared the logs fold change from RNA-seq and microarray
data (Fig 5.4). Blue dots indicate genes that were not found to be differen-
tially expressed in any technology. The genes found uniquely differentially
expressed by one of the technologies (purple dots for RNA-seq and green
dots for microarray) fall on the x and y-axis for both data sets, which is to
be expected. Although the relatively low number of differentially expressed
genes in the Bottomly data set does not allow us to see trends as clearly as
in the Marioni data, the higher number of genes found to be differentially ex-
pressed by both technologies (red dots) in the Marioni data set demonstrates
the high concordance in fold change between microarray and RNA-seq data.
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Microarray Intensities vs. RNA-Seq Counts Microarray Intensities vs. RNA-Seq Counts
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Figure 5.1: Comparison of the the average logs RNA-seq counts to the aver-
age logy microarray fluorescence intensities for genes that appeared in both
the RNA-seq and microarray datasets and for which Ensembl annotation was
available. (a) Bottomly Mice Data. (b) Marioni Human Data.

Average RNA-seq (log2) C;)u nts

Microarray
1223

(a) (b)

Figure 5.2: Overlap between genes found to be differentially expressed in
RNA-seq and microarray technologies, based on Ensemble annotations. The
number of genes found to be differentially expressed by both technologies
appears in the overlapping region of each venn diagram. (a) Bottomly Mice
Data. (b) Marioni Human Data.

28



Microarray Intensities vs. RNA-Seq Counts Microarray Intensities vs. RNA-Seq Counts

Average Microarray (log2) Intensities
Average Microarray (log2) Intensities

5 10 4 8
Average RNA-seq (log2) Counts Average RNA-seq (log2) Counts

(a) (b)

Figure 5.3: Comparison of the the average logs RNA-seq counts to the aver-
age logs microarray fluorescence intensities for genes found to be differentially
expressed in at least one of the samples. Blue indicates that the gene was
differentially expressed only in RNA-seq data, green indicates that the gene
was differentially expressed in only microarray data, and red indicates that
the gene was differentially expressed in both technologies. (a) Bottomly Mice
Data. (b) Marioni Human Data.
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Microarray Fold Changes vs RNA-seq Fold Changes - Microarray Fold Changes vs RNA-seq Fold Changes
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Figure 5.4: Comparison of the the logs fold change in RNA-seq vs microar-
ray data. Blue indicates that the gene was not found to be differentially
expressed in any technology, purple indicates that the gene was differentially
expressed only in RNA-seq data, green indicates that the gene was differen-
tially expressed in only microarray data, and red indicates that the gene was
differentially expressed in both technologies. (a) Bottomly Mice Data. (b)
Marioni Human Data.

5.3 Discussion

Despite the difference in results obtained in my study and in the Bottomly
paper, the ability of RNA-seq to detect a greater number of differentially
expressed genes observed with the Marioni data are comparable with the
results obtained in the original study, along with results obtained in other
studies [23] [27]. Zhao et al. observed that RNA-seq is more sensitive in
detecting changes genes with relatively low expression levels [23].

Figure 5.2b shows that RNA-seq with VOOM finds over twice as many
unique differentially expressed genes than microarray with LIMMA. Looking
at the expression levels of the differentially expressed genes in both technol-
ogy, figure 5.3b shows that many genes that were detected as uniquely differ-
entially expressed by RNA-seq technology and VOOM had low measures of
fluorescence intensity, but had a range of log-counts with RNA-seq. Further-
more, figures 5.1 and 5.4 demonstrate the concordance between microarray
and RNA-seq technology, which should give researchers confidence in the
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ability of RNA-seq to accurately measure gene level expression. In addition,
the ability of RNA-seq to identify novel transcripts when researchers create
de novo reference genomes should be seen as a huge advantage over microar-
rays. This advantage will likely lead to more researchers choosing RNA-seq
over microarrays, and thus will have to decide on a statistical method for
detecting differential expression. I believe the results discussed above and
the results of other studies discussed in section 4.4 is a convincing argument
for using VOOM to identify differentially expressed genes using filtered and
normalized RNA-seq data.
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Chapter 6

Conclusion

In this paper I have examined the RMA normalization method for microar-
ray data, the empirical Bayesian hierarchical model used in LIMMA, and
how mean-variance modeling can be used to analyze RNA-seq data in the
LIMMA pipeline. The moderated t-statistic, using 57 instead of s; in the
denominator, still follows a t-distribution with added degrees of freedom
in comparison to the standard t-statistic. The moderated t-test has added
power over the standard t-test, while also having a lower FDR, giving reason
as to why LIMMA has become the standard for analyzing microarray data.
When the mean-variance trend is correctly specified for RNA-seq data using
VOOM, analyzing RNA-seq data with LIMMA outperforms methods created
specifically for RNA-seq count data. An item of interest would be to explore
the research of Sartor et al. [39] in creating a mean-variance relationship
for microarray data within the empirical Bayesian hierarchical model used in
LIMMA.

Given the results with the Marioni data set in section 5.2, I believe RNA-
seq has the potential to replace microarrays as the most common method for
measuring relative gene expression changes. Although I was not able to find
the FDR for either technology, RNA-seq with VOOM is much more powerful
for detecting differential expression than microarray with LIMMA especially
for genes with relatively low expression levels.

Although T briefly mentioned TMM normalization for RNA-seq data, I
did not compare this method to other normalization algorithms for RNA-seq
data. As RNA-seq grows in popularity, researchers will have to decide on
a standard method for normalization, or else results will continue to vary
between studies with the same samples of interest [13]. However, RNA-seq
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is a relatively new technology, and as the scientific community continues to
focus their research on RNA-seq, so will the statistical community.
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