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Chapter 1

Introduction

Since the early 2000’s, there has been a wave of thinking in baseball that departs from traditional player
evaluation into a more data-driven analysis. Apart from popular and easily-identifiable results such as
home runs, strikeouts, average, and earned run average, front-office analysts have begun focusing on more
under-the-hood statistics such as On Base Percentage, Slugging Percentage, and Walks and Hits per Innings
Pitched. From there, more advanced metrics have been developed to help quantify the contribution of a
player. In 2007, a revolutionary new tool known as PITCHf/x was introduced to track nearly every possible
variable of a pitcher’s performance. Variables range from simple data such as percentage of each type of
pitch thrown, to more complicated data such as percentage of pitches outside of the strike zone at which the
batter swings. While coaches, front office personnel, and baseball followers may have concrete opinions as to
what makes a “good” pitcher, I am interested in finding true and explanatory relationships between these
“under the hood” PITCHf/x statistics, and more traditional measurements.

The technique with which we explore these relationships is Canonical Correlation Analysis (CCA), pro-
posed by Hotelling (1936). Given two data sets, CCA produces as many pairs of linear combinations - called
“canonical pairs” - as variables in the smaller set. Each canonical pair has an associated correlation, called
“canonical correlation,” and is orthogonal to every other pair. The canonical pairs, derived through Singular
Value Decomposition of the joint covariance matrix, are ordered by their associated “canonical correlations.”
The goal of CCA is to maximize the correlation between linear combinations of the variables; this is given
by the first canonical correlation.

While CCA is extremely useful for efficiently discerning relationships between variables, there are some
drawbacks. Sensitivity to noise is one of the more prominent problems, and it has been only scarce exploration
in literature (Branco et al. (2005) and Karnel (1991)). Especially in high dimensionality, even a small amount
of noise or outlying values can lead to falsely high correlations and incorrectly associated variables. To
address this, we introduce the use of the translated biweight M-estimator, which is defined and analyzed by
Rocke (1996). M-estimation is a popular class of robust estimators of multivariate shape and location. Such
estimators utilize an iterative process to find an appropriate set of weights for a vector of values, with each
specific M-estimator uniquely determined by its weighting function. Through simulation, we demonstrate
the need for and success of M-estimation on the joint covariance matrix during CCA.

While Robust CCA might find pairs of the most highly correlated linear combinations, variable selection
is somewhat limited because the output includes coefficients for every variable in both datasets. If the
goal is to find highly correlated groups of variables, CCA becomes less helpful. To handle this, we employ
a technique known as Sparse Canonical Correlation Analysis, which sets a portion of the coefficients to
zero.Parkhomenko et al. (2009) introduce SCCA and provide an algorithm for computing sparse variables,
and subsequently demonstrate the success of SCCA for variable selection with a latent variable simulation
model. Parkhomenko et al. also demonstrate that as sample size decreases, SCCA outperforms CCA. Using
a similar technique but from the perspective of Penalized Matrix Decomposition, Witten et al. (2009) also
explore SCCA and provide the framework for computing sparse variables with different penalty functions.
In an investigations of possible extensions of SCCA, Chalise and Fridley (2011) explore different penalty
functions and their relative successes on simulated data.

In Chapter 2, we present the background mathematics of CCA and M-estimation. In Chapter 3, this
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background is applied as we demonstrate the success of CCA with clean data, as well as the need for a
robust estimator with contaminated data. Using the R package “CCA” described by Gonzalez et al. (2008),
we modify a function used to apply CCA by including the t-biweight M-estimator on the sample covariance
matrix. These explorations demonstrate the success of robust estimation on the joint covariance matrix,
but also show the necessity of sparsity. In Chapter 4 we introduce SCCA as defined by Parkhomenko et al.
(2009) and test its resistance to noise by showing success where robust CCA failed. However, Parkhomenko
et al. only provide code for one canonical variable - we extend this to multiple canonical variables, including
multiple parameter selection. In Chapter 5, we apply our findings to baseball data, focusing on comparing
PITCHf/x data to more traditional measurements of pitchers. Chapter 6 contains the discussion of all of
our results.
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Chapter 2

Background Information

The focus of this chapter will be to introduce the major ideas of this paper - specifically, it will develop the
mathematics behind Canonical Correlation Analysis and M-estimation, while also going into greater depth
regarding PITCHf/x, including the variables I will be investigating.

2.1 Canonical Correlation Analysis

As previously mentioned, Canonical Correlation Analysis (CCA) derives pairs of linear combinations between
two distinct data sets that are as highly correlated as possible. The focus of CCA is to reveal relationships
both within one group of variables and between the two groups of variables; coefficient values in one linear
combination explain relationships within one dataset, while the pair of linear combinations explains rela-
tionships between datasets. While the datasets are considered are symmetric (i.e., the same results hold
regardless of which dataset we call X and which one we call Y), CCA can be thought of in the context of
multiple regression where the number of response variables is not limited to one. First developed by Harold
Hotelling Hotelling (1936), CCA is a powerful tool for quickly determining relationships between large num-
ber of variables. The output of CCA will be pairs of linear combinations ordered by correlation between
linear combinations, such that each linear combination is orthogonal to every proceeding linear combina-
tion. The coefficients for the linear combinations are called canonical vectors, while the linear combinations
themselves are called canonical variables. The correlations between linear combinations are called canonical
correlations.

The mathematics for CCA will be developed in terms of the population - this means that instead of
finding linear combinations of datasets (nÖp) X and (nÖq) Y where the columns are variables and the
rows are observations, we will be finding linear combinations of p-dimensional random vector x and q-
dimensional random vector y. For normal data, the sample canonical correlation values (vectors, variables,
and correlations) will be the maximum likelihood estimators of their corresponding population values.

Let the mean vectors for x and y be µ and ν, respectively. Let the covariance matrices be defined as
follows:

Cov(x,x) = E{(x− µ)(x− µ)′} = Σ11

Cov(y,y) = E{(y − ν)(y − ν)′} = Σ22

Cov(x,y) = E{(x− µ)(y − ν)′} = Σ12 = Σ′21.

The goal of CCA is to find vectors a and b to maximize the correlation of linear combinations η = a′x
and φ = b′y. Once these first linear combinations are found (called the first canonical variables), CCA will
then maximize the correlation between pairs of linear combinations of x and y under the constraint that the
second pair of linear combinations is orthogonal to the first. This process will be repeated min(p, q) times.
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We focus initially on the first canonical variables. Note

Cov(η, φ) = Cov(a′x,b′y) (2.1)

= a′Cov(x,y)b (2.2)

= a′Σ12b (2.3)

Note, also that

V ar(η) = Cov(η, η)

= Cov(a′x,a′x)

= a′Cov(x,x,)a

= a′Σ11a

Similarly, V ar(φ) = b′Σ22b. Now, we look to find a and b in order to maximize

ρ(η, φ) =
Cov(η, φ)√
V ar(η)V ar(φ)

=
a′Σ12b√

a′Σ11ab′Σ22b
.

Because the scaling of a and b does not affect that maximum, we now look to solve the problem

maxa,ba′Σ12b subject to a′Σ11a = b′Σ22b = 1. (2.4)

In order to define the solution to equation 2.4, we need some notation.
We first require that Σ11 and Σ22 to be non-singular; we then define

K = Σ
−1/2
11 Σ12Σ

−1/2
22 (2.5)

and let

N1 = KK′ = Σ
−1/2
11 Σ12Σ

−1/2
22 Σ

−1/2
22 Σ21Σ

−1/2
11 (2.6)

= Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 (2.7)

N2 = K′K = Σ
−1/2
22 Σ21Σ

−1/2
11 Σ

−1/2
11 Σ12Σ

−1/2
22 (2.8)

= Σ
−1/2
22 Σ21Σ

−1
11 Σ12Σ

−1/2
22 (2.9)

and

M1 = Σ
−1/2
11 N1Σ

−1/2
11 = Σ−111 Σ12Σ

−1
22 Σ21, (2.10)

M2 = Σ
−1/2
22 N2Σ

−1/2
22 = Σ−122 Σ21Σ

−1
11 Σ12. (2.11)

We can think of K as the population correlation matrix - it is the covariance matrix scaled by the two vari-
ance matrices on either side. The next theorem will be instrumental in the development of CCA notation
as well as in the proof of CCA.

Lemma 1. If A and B are matrices, then AB and BA have the same eigenvalues.

Proof of Lemma 1. First I will show that if (I −AB) is invertible, then (I −BA) is also invertible.
Let X = (I −AB)−1.

⇒ (I −BA)(I +BXA) = I −BA+BXA−BABXA
= I −BA+B(XA−ABXA)

= I −BA+B(I −AB)(XA)

= I −BA+B(I −AB)(I −AB)−1A

= I −BA+BA

= I
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⇒ (I −BA) is invertible and (I −BA)−1 = I +BXA.
Case 1: λ = 0, λ is not an eigenvalue of AB

⇔ AB is invertible

⇔ 0 6= det(AB) = det(A)det(B) = det(B)det(A) = det(BA)

⇔ BA is invertible

⇔ λ is not an eigenvalue of BA

Now we only need to show that the result holds for nonnegative eigenvalues.
Case 2:λ 6= 0, λ is not an eigenvalue of AB

⇔ (λI −AB) is invertible

⇔ λ(I − [
1

λ
A]B) is invertible

⇔ λ(I −B[
1

λ
A]) is invertible by the above result

⇔ λ(I − 1

λ
BA) is invertible

⇔ (λI −BA) is invertible

⇔ λ is not an eigenvalue of BA

Thus, for any value of λ,

λ is not an eigenvalue of AB ⇔ λ is not an eigenvalue of BA

So AB and BA have the same eigenvalues.1

If we let A = Σ−111 Σ12 and B = Σ−122 Σ21, then M1 = AB and M2 = BA, and so M1 and M2 have the
same eigenvalues.

Clearly by their definitions, N1 and N2 have the same eigenvalues.

If we let A = Σ
−1/2
11 Σ12Σ

−1
22 Σ21 and B = Σ

−1/2
11 , then N1 = AB and M1 = BA, and so M1 and N1

have the same eigenvalues. By transitivity, M1,N1,N2, and M2 all have the same eigenvalues. Because N1

is symmetric and composed of real values, it is positive semi-definite, and thus has only only non-negative
eigenvalues.

The following definitions will aid in the development of CCA.

Unitary. An (nÖn) matrix U is unitary if and only if its columns form an orthonormal basis in Fn. One
result is that if U is unitary, then U ′U = I.

Singular Values (Singular Values). The singular values of a matrix M are the ordered eigenvalues of√
M ′M denoted (s1, s2, ..., sn) with s1 being the largest.

Singular Value Decomposition. For every matrix M , the singular value decomposition is M = ADB′

Where D=diag(s1, s2, ..., sn), the singular values of M
and A and B are unitary
A has columns α1, α2, . . . , αk that are eigenvectors for MM ′

B has columns β1, β2, . . . , βk that are eigenvectors for M ′M

1Note: it can be shown that AB and BA have eigenvalues of the same multiplicity, but it is not necessary for our purposes.
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Consider the Singular Value Decomposition of K

K = ADB′ (2.12)

= (α1, . . . ,αk)D(β1, . . . ,βk)′ (2.13)

where αi and βi are the eigenvectors of N1 = K′K and N2 = KK′, respectively, for λi, and D =

diag(λ
1/2
1 , . . . , λ

1/2
k ). Recall that λi is the ith largest eigenvalue of N1 = K′K; thus, λ

1/2
i is the ith sin-

gular vector of K, or the ith largest eigenvalue of
√

K′K. The corresponding eigenvector to λi for K′K and

λ
1/2
i for

√
K′K is αi.

Because (α1, . . . ,αk) and (β1, . . . ,βk) form the columns for Unitary matrices, they are orthonormal sets.
Thus,

α′
iαj = β′

iβj = δij (2.14)

where δij is the Kronecker delta.

Canonical Correlation Definition. Using the notation described above, let

ai = Σ
−1/2
11 αi, bi = Σ

−1/2
22 βi (2.15)

Then:

1. The random variables ηi = a′ix and φi = b′iy are the ith canonical variables

2. ρi = λ
1/2
i is the ith canonical correlation

Note:

Cov(ηi, ηj) = Cov(a′ix,a
′
jx)

= a′iCov(x,x)a′j

= a′iΣ11aj

= a′iΣ
1/2
11 Σ

1/2
11 aj

= (Σ
1/2
11 ai)

′(Σ
1/2
11 aj)

= α′
iα

′
j

= δij (2.16)

Cov(φi, φj) = Cov(b′iy,b
′
iy)

= b′iCov(y,y)b′i

= b′iΣ22bj

= b′iΣ
1/2
22 Σ

1/2
22 bj

= (Σ
1/2
22 bi)

′(Σ
1/2
22 bj)

= β′
iβ

′
j

= δij (2.17)

The following theorem will prove that aix and biy do indeed maximize the correlation between linear com-
binations of the two random vectors. As equations 2.16 and 2.17 show, with definition 2.15 we do get
orthogonality for different pairs of linear combinations. Thus, every new canonical variable gives us entirely
new information. 2.16 and 2.17 also show that every canonical variable has variance 1.

The proof will follow closely that of Mardia, Kent, and Bibby Mardia et al. (1979).
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Canonical Correlation Analysis. Using the notation up to the definition of Canonical Correlation Anal-
ysis, fix r, 1 ≤ r ≤ min(p, q) and let

fr = max
a,b

a′Σ12b (2.18)

subject to

a′Σ11a = 1, b′Σ22b = 1, a′iΣ11a = 0 for i ∈ {1, . . . , r − 1}

Then the maximum is given by fr = ρr and is attained when a = ar and b = br.

Recall that ar and br are the rth left and right scaled singular vectors of K. Essentially, this theorem
asserts that the rth canonical variates are obtained by the scaled singular vectors given the constraints that
they are orthogonal to every preceding canonical variate, and that the rth canonical correlation is the rth

maximum correlation of linear combinations of the two datasets under those constraints. The proof will rely
on two lemmas, which will be given and proved now.

Lemma 2. Let A,B be symmetric matrices, where B is positive definite.
Consider:

max
x

x′Ax (2.19)

subject to

x′Bx = I

The maximum is attained when x is the eigenvector of B−1A corresponding to the largest eigenvalue.

Proof of Lemma 2. Because B is positive definite, a positive square root exists. Let this square root be B1/2;
because B1/2 is positive definite, it is also symmetric and by the spectral theorem is diagonalizable, thus
ensuring that it has an inverse.
Let y = B1/2x⇒ x = B−1/2y. Now we can rewrite equation 2.19 as

max
x

x′Ax = max
y

(B−1/2y)′A(B−1/2y) (2.20)

= max
y

y′B
−1/2

AB−1/2y (2.21)

subject to

x′Bx = (B−1/2y)′B(B−1/2y) = y′B
−1/2

BB−1/2y = y′y = 1

Let B−1/2AB−1/2 = ΓΛΓ′ be the spectral decomposition. That is,

� Λ is diagonal with the eigenvalues of B−1/2AB−1/2 on the diagonal

� Γ =
[
v1|v2| . . . |vn

]
is a column matrix of eigenvectors corresponding to the entries of Λ. By the

Spectral Theorem, they form and orthonormal basis in Rn

Let z = Γ′y. Then z′z = (Γ′y)′Γ′y = y′ΓΓ′y = y′y. The last equality follows because Γ is a matrix
composed of orthonormal columns.
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Then 2.21 reduces to

max
y

y′B
−1/2

AB−1/2y = maxyy′ΓΛΓ′y (2.22)

= maxy(Γ′y)′ΛΓ′y (2.23)

= maxzz
′Λz (2.24)

= maxz

n∑
i=1

λiz
2
i (2.25)

subject to z′z = 1.
The last line follows because Λ is simply a diagonal matrix with λi on the ith diagonal.Note that for equation
2.24 we can switch directly from maximizing over y to maximizing over z because Γ is constant given A and
B.
If we let λ1 be the largest eigenvalue, then from 2.25 we have

maxz

n∑
i=1

λiz
2
i ≤ maxz

n∑
i=1

λ1z
2
i ≤ maxzλ1

n∑
i=1

z2i = λ1 (2.26)

The last equality follows from the constraint z′z =
∑n
i=1 z2i = 1.

Note that equality in 2.26 is attained for z =
[
1, 0, . . . , 0

]′
. Thus, because z = Γ′y,

z =


1
0
...
0

 =


v1

v2

...
v1



y1
y2
...
yn


Here y =

[
y1 y2 . . . yn

]
, giving us the set of equations

1 = v′1y

0 = v′2y

...

0 = v′ny

By the Spectral Theorem, {v1,v2, . . . ,vn} form an orthonormal basis in Rn, it must be the case that
v′ivj = δij . Thus, the only solution to the set of equations is v1 = y. Recall that v1 is the eigenvector

corresponding to the largest eigenvalue of B−1/2AB−1/2. Thus x = B−1/2v1.

By Lemma 1, B−1/2AB−1/2 and B−1A have the same eigenvalues, so λ1 is also the largest eigenvalue
of B−1A. Note that B−1/2AB−1/2v1 = λ1v1:

B−1Ax = B−1AB−1/2v1

= B−1/2B−1/2AB−1/2v1

= λ1v1

= λ1B
−1/2v1

= λ1x

λ1 is the largest eigenvalue of B−1A and x = B−1/2y = B−1/2v1. Recall that z was maximized when y = v1,

which led to x = B−1/2v1, which is the eigenvector of B−1A corresponding to the λ1, the largest eigenvalue
of B−1A.
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Lemma 3. For A(nÖp), B(qÖn), a(pÖ1), and b(qÖ1), the matrix Aab′B has rank ≤ 1. The non-zero
eigenvalue, if it exists, is b′BAa.

Proof of Lemma 3. By Lemma 1, b′BAa and Aab′B have the same eigenvalues. However, b′BAa is a
scalar and so it is its own eigenvalue.

Proof of Canonical Correlation Analysis. The sign is irrelevant because a with -a - we essentially want to
maximize the absolute correlation. Thus, we can replace fr with f2r , and we look to maximize f2r .
First, fix a, maximize f2r over b:

maxba′Σ12b
2

= maxb(a′Σ12b)(a′Σ12b) (2.27)

= maxbb′Σ21aa′Σ12b (2.28)

subject to b′Σ22b = 1.
By Lemma 2, 2.28 is given by the largest eigenvalue of the matrix Σ−122 Σ21aa′Σ12. By Lemma 3, this
eigenvalue is

a′Σ12Σ
−1
22 Σ21a (2.29)

.
Now we want to maximize 2.29 under the constraints

a′Σ11a = 1, and aiΣ11a = 0 for i ∈ {1, . . . , r − 1}.

Let α = Σ
1/2
11 a. Now we have

maxaa′Σ12Σ
−1
22 Σ21a = maxαα

′Σ
1/2
11 Σ12Σ

−1
12 Σ21Σ

−1/2
11 α (2.30)

= maxααN1α (2.31)

subject to the constraint

a′Σ11a = α′Σ
−1/2
11 Σ11Σ

−1/2
11 α = α′α = 1

and

aiΣ11a = αiα = 0 for i = 1, 2, . . . , r − 1

Recall that 2.31 follows from the definition of N1 = KK′ = Σ
1/2
11 Σ12Σ

−1
12 Σ21Σ

−1/2
11 . Note that a =

Σ
−1/2
11 α is the ith canonical correlation vector, and that αi are the eigenvectors of N1 corresponding to

the (r-1) largest eigenvalues of N1. We know that 2.31 is attained by letting α equal the eigenvector
corresponding to the largest available eigenvalue, which is αr. Thus

f2r = αr
′N1αr = αr

′λrαr = λrαr
′αr = λr (2.32)

The last equality follows from the Singular Value Decomposition - the vectors αi for i = 1, 2, . . . , n form an
orthonormal basis for Rn, so αiαj = δij .

2.2 M-estimation

As a class of robust estimation, M-estimators utilize an iterative process to find an estimate based on a set
of weights that changes with each iteration. To begin, it is necessary to define the relative deviation of each
point from the estimate. Hoaglin, Mosteller, and Tukey Hoaglin et al. (2000) define c as a tuning constant
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(loosely regarded as relating to the standard deviation) and S as the “spread” calculated from c and the
residuals. Thus, for an estimator T, they define the relative deviation as

ui =
yi −T

cS
(2.33)

Let w(u) be a symmetric weighting function, and for each iteration define

T∗ =

∑
w(ui)yi∑
w(ui)

(2.34)

The M-estimator is T such that an iteration does not change the value, or T∗ = T. Thus,

0 = T∗ −T =

∑
w(ui)yi∑
w(ui)

−
∑
w(ui)T∑
w(ui)

=
cS

yi −T

∑
w(ui)

yi −T

cS

=
cS

yi −T

∑
w(ui)ui

cS 6= 0 because we cannot have zero spread, and we choose our tuning constant to be nonzero, so then∑
w(ui)ui = 0 by necessity. Now let us define

ψ(u) = w(u)u (2.35)

so that ψ(−u) = −ψ(u) and ψ′(0) = 1. Thus, for a given ψ-function, we define the M-estimator to be
the solution T of ∑

ψui =
∑

ψ(
yi − T
cS

) = 0 (2.36)
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Chapter 3

Exploring CCA

The purpose of this chapter is to explore some of the workings of canonical correlation analysis through
simulation. Here I detail the simulation methods and the criterion for measuring level of success, as well as
the long-term results of the methods applied to the simulated data over 100 trials. This chapter demonstrates
the need for and success of M-estimation on the joint covariance matrix during CCA, but it also demonstrates
the need for sparsity, as we see that CCA breaks down when the the number of observations approaches the
number of total variables.

3.1 Simulation

Here we describe the simulation technique we used, as well as metrics to evaluate performance of CCA.

3.2 Structure and Strategy

We can perform canonical correlation analysis on two data sets X and Y that have dimensions (nÖp)
and (nÖq), respectively, in R using a function in the package CCA (Gonzalez et al., 2008). To explore
uses of this function, we investigated the outputs for multivariate normal data and how that varies given
different types of noise. The purpose of CCA is to determine relationships between variables within and
across datasets by creating highly correlated linear combinations. For multivariate normally distributed
data, the draws or observations will be based on an underlying joint covariance matrix. For datasets X
and Y, with p and q variables respectively, the joint covariance matrix will consist of a variance-covariance
matrix of each of X and Y that are (pÖp) and (qÖq) and are denoted ΣXX and ΣY Y , respectively. These
matrices give the covariances between variables within one set. The other two components of the joint
covariance matrix are the cross-covariance matrices. These are denoted ΣXY and ΣY X and are (pÖq)
and (qÖp), respectively. These matrices contain the covariances between variables across datasets. Note
that the variance-covariance matrices are symmetric because the covariance function is symmetric - that is,
Cov(Xi, Xj) = Cov(Xj , Xi). The former is the {i, j}th entry of ΣXX and the latter is the {i, j}th entry
of ΣXX . Clearly, Cov(Xi, Yj) 6= Cov(Yi, Xj) unless Xi = Xj and Yi = Yj , which makes for uninteresting
variables. These are the {i, j}th entry of ΣXY and the {i, j}th entry of ΣY X , respectively. It should also be
noted that the cross-covariance matrices are transposes of each other - that is, ΣXY = Σ′Y X .

For simulation, we create a joint covariance matrix such as the the one shown as a heat map in Figure
3.1 and draw multivariate normal data from this matrix. In regular CCA analysis, we will not have a handle
on the population covariance matrix, but we are using it here so that we know the underlying structure of
the data. The red denotes a value of zero, while yellow and orange are non-zero values.
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Figure 3.1: A heat map of the joint population covariance matrix, with labels.

As is easily noticed, most covariance values in the matrix are zero. This is because we wanted to create
distinct groups of variables that are correlated with each other, and have all other correlations be zero. In
our simulation structure, there are four such groups of variables, each with 25 variables - if CCA works
perfectly as a variable selection tool, then we should find only four highly correlated linear combinations,
each with only 25 non-zero coefficients corresponding to the 25 variables in each group of variables. Thus,
the true underlying structure of the data should look something like the heat map in Figure 3.2, with four
“block” or “clusters” of correlated variables, and zero correlation outside of these clusters. When we plot the
coefficient output of CCA with their appropriate indices, we should see these clusters of coefficients arises.
In our simulation, both X and Y contained 50 coefficients. However, because we are simulating normal data
rather than simply using the joint population covariance matrix, there will inherently be some noise and
CCA will most likely not work precisely. We will qualitatively consider it a success if CCA gives output that
strongly suggests these variable clusters.

Figure 3.2: A heat map of the underlying structure of the data. The only non-zero correlation between
variables are within groups of 25 variables. After simulating multivariate normal data, we expect CCA to
be able to identify these groups and assign distinctly higher coefficient values to variables within a cluster
for a given pair of linear combinations.

Our investigation includes four distinct phases:

1. Identify the “true” canonical correlation for the population joint covariance matrix.

2. Examine the outputs of the R code with clean Gaussian data.

3. Add contamination to the data and explore changes.

12



4. Use M-estimation to make the covariance matrix of the contaminated data more robust and examine
the effect on the simulation.

3.2.1 Phase 1 - Finding the “Truth”

Because we have a handle on the joint population population matrix, we can determine the true canonical
correlations as well as the true canonical vectors. In all practical settings, this will never be the case
- however, having the underlying truth allows us to compare different results from various simulations.
From Chapter 2, we know that the ith canonical correlation is the ith eigenvalue of the square root of

Σ
−1/2
XX ΣXY Σ−1Y Y ΣY XΣ

−1/2
XX . For the X dataset, the ith canonical coefficient vector is ai = Σ

−1/2
XX αi, where

αi is the eigenvector corresponding to the ith eigenvalue of Σ
−1/2
XX ΣXY Σ−1Y Y ΣY XΣ

−1/2
XX . For the Y dataset,

the ith canonical coefficient vector is b = Σ
−1/2
Y Y βi, where βi is the eigenvector corresponding to the ith

eigenvalue of Σ
−1/2
Y Y ΣY XΣ−1XXΣXY Σ

−1/2
Y Y .

3.2.2 Phase 2 - Investigation Clean Data

First recall the output of CCA by considering the first canonical pair, with (n Öp) dataset X and (n Öq)
dataset Y, as well as n-length variables xi and yi:

U1 = Xa1 (3.1)

= a11x1 + a12x2 + . . .+ a1pxp (3.2)

V1 = Yb1 (3.3)

= b11y1 + b12y2 + . . .+ b1qyq (3.4)

For clarification, a1 and b1 are the first canonical coefficient vectors, while a1i and b1i are the ith entries
of the first canonical coefficient vectors (also the “ith coefficient of the first canonical variable”). So U1 and
V1 are our first canonical pair of variables, and they have n instances for n observations; the correlation
Corr(U1, V1) is the first canonical correlation. There will be min(p, q) such canonical pairs, each with the
same number (but orthogonal, as shown in Chapter 2) coefficients. In our model, n = 1, 000, p = 50, and
q = 50, so there will be min(p, q) = min(50, 50) = 50 canonical pairs. It should be also noted that the
multivariate normal distribution from which the data is drawn had a mean vector of all zeros and a standard
deviation of 1 for each variable.

The purpose of Phase 2 is to generate clean multivariate normal data and compare canonical correlation
and coefficient values with the true values determined directly from the joint population covariance matrix.
With data sets X and Y as previously defined, we obtain the canonical correlations and the coefficients for
the linear combinations of X and Y for each set of canonical variables. Based on the population correlation
matrix of the distribution from which these observations were sampled, which contained four blocks of
variables with high correlation within the blocks and zero correlation outside the blocks, we expect four
very highly correlated pairs of linear combination. Because CCA outputs as many canonical variables and
canonical correlations as the number of variables in the smaller dataset, and because each of X and Y
have 50 variables, there are 50 total canonical correlations. 46 of these correlations should be close to zero.
Figure 3.3 demonstrates this grouping effect, as the true values display four high correlations (around .9)
and 46 correlations of zero. When sampling is introduced, the 46 extra correlations are nonzero but tend
towards the true values of zero. However, the grouping pattern of four high correlations remain for the clean
data, which would allow an observer to successfully identify the structure of the data without knowing the
population correlation matrix.
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Figure 3.3: Canonical Correlations by pair.

Besides canonical correlations, the other output of CCA is a list of coefficients for each canonical pair.
Using the notation from equations 3.2 and 3.4, the magnitude of entries in ai and bi should given an
indication of the important variables for canonical variables Ui and Vi. In this way CCA lets us perform
variable selection. Based on Figure 3.2, we expect 25 coefficients to have high magnitude for each of the first
four canonical pairs; this is because there are only four clusters of correlated variables between X and Y,
and there are 100 total variables (each cluster has 25 variables). When plotting the magnitude coefficients,
we found it useful to plot them with the variable number associated with Figure 3.2 - that way, it is easy to
see the clusters, as they will be 25 consecutive variables. We call these indices the “original” indices, because
the variables for X and Y were originally chosen by randomly choosing without replacement from the order
shown in Figure 3.2.

If CCA is performed with the joint population covariance matrix shown in Figure 3.1, we expect it to
perfectly find these four clusters. This entails (for each of the first four canonical variables,) giving 25
variables in a cluster nonzero coefficient values, while giving the other 75 coefficients a value of zero. The
coefficients derived from CCA applied to the joint population covariance matrix are shown in Figure 3.4
by the blue points. We see that they behave exactly has we expect - exactly 25 consecutive variables are
“selected” (i.e. have non-zero coefficient values) for each canonical pair, even though the variables were
scrambled in the order shown in Figure 3.1.
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Figure 3.4: Coefficient outputs of CCA. Each canonical pair highlights a cluster of 25 variables corresponding
to the underlying cluster covariance matrix.

Figure 3.4 also plots the magnitudes of coefficient values for CCA applied to multivariate normal data
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which was drawn using the joint population covariance matrix. These magnitudes are shown with the black
dots. Because there is variability in the multivariate normal distribution, CCA does not exactly and perfectly
select variables - that is, some of the variables which are uncorrelated with those in the cluster have non-
zero coefficient value. However, we can qualitatively see that there is general success in assigning higher
magnitude coefficients to variables within one cluster, as (for each canonical pair) there appear to be 25
consecutive coefficient values that are raised above the other 75.

Though Figure 3.4 qualitatively shows that CCA is successful with clean Gaussian data, to compare the
results with contamination and with a robust estimation we would need a metric that quantifies the success
in selecting variables. We know that the higher the coefficient is, the more important that that variable is
in the linear combination; correct variable selection for this model entails grouping together 25 consecutive
coefficients by assigning them higher absolute values than those of the other 75. Thus, to quantify success, for
each canonical pair we measure the fraction of the top 25 coefficients that are in each cluster. For example,
if 23 out of the 25 highest coefficient magnitudes occurred within the first 25 variables and the other 2 (of
the 25 highest magnitudes) are in the third group, then the group 1 gets a value of 23

25 = .96 and group 3
gets a value of 2

25 = .04. That process is repeated for each of the four canonical pairs. Table 3.1 shows the
results for this particular run. Note that the closer the highest value is to 1, the closer that canonical pair
is to having all of the top 25 coefficients in one cluster. Conversely, the larger the spread within each pair,
the worse that CCA performed in finding the cluster of correlated variables.

Group of Indices first second third fourth

Canonical Pair 1 0 0 1 0
Canonical Pair 2 0 .04 .08 .88
Canonical Pair 3 .96 0 .04 0
Canonical Pair 4 0 .96 0 .04

Table 3.1: For each canonical pair, fraction of top 25 coefficients contained in each group of indices.

Note that the highest value for each canonical pair is sufficient to summarize the spread of percentages.
Because the fractions for each pair must sum to 1, if the highest value is 1 then all others must be zero;
if the highest value is much lower, then all other groups must have substantially nonzero values. Table 3.2
demonstrates what this would look like for the previous trial - we call this “Cluster Recognition Success.”

CC1 CC2 CC3 CC4
1 0.88 0.96 0.96

Table 3.2: Cluster recognition success for previous run

Additionally, we examine the distribution of the first canonical correlation (FCC). Figure 3.5 displays
the FCC given a single joint population covariance matrix and many different multivariate normal samples.
An aspect worth noting is that the heavy majority of FCCs lie above the true FCC, as given by Phase 1.
CCA’s goal of finding the most highly correlated variables can explain this - when variability from sampling
is introduced, there is a higher chance that variables lie on the line drawn by CCA, thus falsely increasing
the correlation.
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Figure 3.5: Distribution of the first canonical correlation, with the “true” value emphasized by the vertical
line.

3.2.3 Phase 3 - Introducing Contamination

After observing the results of clean data, we aim to generate contaminated data which produce results that
differ substantially in these plots and metric. We compare three types of noise-generating functions, all with
2.5% of dataset values affected by contamination. The contamination values were chosen uniformly between
10 and 20 (each variable will be normal with mean 0 and standard deviation 1).

1. Replace all of the observations of many variables with contamination.

2. Replace completely random cells with contamination.

3. Select a subset observations uniformly from all possibilities. Uniformly select a subset of columns
from 1 to 50. For each observation, traverse across the column values. For each observation/variable
combination, give a 50% probability that the contamination goes in X and a 50% probability that the
contamination is inserted in Y.

To pick the contamination function, we are looking for the results from CCA when applied to data with
contamination to differ significantly from results when we apply CCA to the joint population covariance
matrix and to the clean normal data. We know from the literature such as Karnel (1991) and Branco
et al. (2005) that noise and outliers substantially affects CCA output, and to show our robust methods are
necessary and successful, we need to find a contamination function that also affects CCA.

We have two measures for determining if CCA is successful in this simulation model. The first comes when
examining plots of the canonical correlations. Because there are only four clusters of correlated variables,
as shown in Figure 3.2, there should be only 4 high canonical correlation values. If the contamination
works to “break” CCA, then with contamination CCA won’t be able to correctly identify that four-cluster
structure, and will find extra falsely high canonical correlation values, which would indicate that there are
more than four groups of correlated variables. The second measure comes when examining graphs of the
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absolute value of the coefficients. On clean normal data, as shown in the previous section, CCA will pick the
correct variables within each canonical pair - that is, it will assign high magnitude for coefficients to only 25
consecutive variables for each of the first four canonical pairs. If the contamination function works properly
to break down CCA, then within each canonical pair there should be no indication of the underlying cluster
structure. With contamination, CCA should not be able to identify that within one canonical pair there
should be only 25 correlated variables, and that these variables should be consecutive (with their original
indices).

We expect to see falsely high correlations with more contamination; as with sampling, adding contami-
nation will cause variables by chance to be more correlated than they would be with clean data. CCA will
pick up on these variables because the procedure is optimized to find the most correlated variables without
regard to how many there are. As shown in Figure 3.6, contamination function 3 is the only contamination
function that disrupts the grouping pattern of four high correlations and 46 lower correlations - though
contamination 2 has a lower value for the first four correlations, there is a still a discernable pattern. For
contamination 3, there are appears to be around 30 important canonical pairs; however, we know from the
population covariance matrix that there are only 4 real groups of correlated variables.
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Figure 3.6: Canonical correlations by pair for the truth, clean data, and contaminated data with all three
contamination functions applied.

The other measure of success with CCA is the degree to which CCA can pick out the clusters of variables
within each canonical pair as defined by the joint population covariance matrix. Figure 3.7 shows the
canonical coefficients of CCA when each of the three contamination functions are applied. As the graph
shows, each contamination function does impact the degree to which CCA picks up on the clusters. Each
graph depicts the CCA results from the same clean normal data, while also showing the results from the
contaminated data. Each row shows results arising from a different contamination function.

Row 1 depicts the results when CCA is applied to data that has been contaminated with function 1. The
red circles are the coefficient values from the contaminated data results, overlayed on the coefficient values of
the clean data results in black. For the first canonical pair, the contamination removes the clustering effect
we expect from CCA based on the population covariance matrix structure. However, for the other three, in
each variable there are groups of coefficients that are of higher magnitude than the others. For the second
and third canonical pairs, it looks like a group of around 25 are raised, while in group three around 50 are
raised. The results from this contamination aren’t perfect, but they allude to the underlying structure of
blocks of correlated variables.

Row 2 shows CCA results from data contaminated with function 2 in orange. For canonical pairs 1-
3, each pair clearly has one block of roughly 25 consecutive coefficients raised, which means that CCA
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worked (according to our structure and qualitative metrics) for those canonical pairs. Pair 4 has a cluster
of coefficients raised as well, although it isn’t as clear as in the first three. Though the exact group of 25
variables is not the same between the results from the contaminated data and those from the clean data
(i.e. in the first canonical pair the results from the contaminated data have the fourth group raised while
those from clean data have the second group raised), again the underlying population structure would be
apparent. We reject this contamination function.

Row 3 of figure 3.7 depicts the coefficient results from CCA applied to data contaminated with function
3 in purple. Not a single pair displayed a cluster of 25 coefficients that separated themselves from the other
75 in terms of absolute value. There is no way to discern the underlying structure of the block-like joint
population covariance matrix from the plots of the coefficients magnitudes. In this sense, contamination
function 3 worked “best” to break the results of CCA which we obtained from the population covariance
matrices and from the clean normal data.
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Figure 3.7: Coefficients for the first four canonical correlations, comparing results from clean data to data
with each of the three noise functions applied. Each row has results from the corresponding contamination
function number.

Contamination function 3 will be the only contamination investigated henceforth, and “contaminated
data” will henceforth be data contaminated with function 3.

3.2.4 Phase 4 - Applying M-estimation

The last step in the simulation process is to investigate the effects of applying a robust estimator to the
sample covariance matrices obtained from contaminated data. We use an M-estimator based on the translated
biweight (or t-biweight) (Rocke, 1996). The ψ-function for the t-biweight is given by:
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ψt(d; c,M) =

 d, : 0 ≤ d < M
d(l − ((d−M)/c)2), : M ≤ d ≤M + c
0, : d > M + c,

The constants c and M are chosen to specify the Asymptotic Rejection Probability (ARP). The ARP
is the chance that given all “good” data, a randomly chosen point has zero influence (i.e., lies beyond the
distance after which all points have zero influence). The point here is M + c; we use an ARP of 0.05.

The results are highly encouraging, especially in cluster recognition success - that is, the percent of top
25 coefficients that are in the same cluster for a given canonical pair. Figure 3.8 shows that the application
of the t-biweight aids CCA in restoring the clusters shown with the clean data even though the contaminated
data scatter plot demonstrates no clustering effect. The coefficients from the results of robust CCA applied
to contaminated data are shown in green, while coefficient results from contaminated data are again depicted
in purple. In all four canonical pairs, we can see a rough cluster of 25 consecutive coefficients raised above
the others, meaning that robust CCA was able to roughly determine the underlying structure of the data
even with contamination.
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Figure 3.8: Clustering results with robust estimation contamination introduced. The robust data is added
in green.

Table 3.3 quantifies this success - recall that this metric, the cluster recognition success, is the highest
percent of top 25 coefficients. We take the highest percent because this contains sufficient information to
determine the relative spread of the top coefficients. If 100% of the top coefficients are in one cluster or
block, then for that canonical pair CCA has succeeded in recognizing the block structure of the population
covariance matrices. If this value is 52% - meaning that the largest number of top coefficients between the
four blocks is only 13 - then the other three blocks have no more than 12 coefficients in each of them, and thus
the coefficients of highest magnitude are highly spread out. Because our structure has consecutive blocks of
correlated variables, this would be a relative failure on the part of CCA to perform variable selection.

The values for clean and robust results hover around 0.8 - 0.9 while the contaminated results are in the
0.3 - 0.4 range. Note that these three sets of cluster recognition success values are for the same originally
sampled multivariate normal distribution. That is, data was drawn from a multivariate normal distribution
with a joint covariance matrix resembling that of Figure 3.2. From there, CCA was applied directly to the
data (giving the “clean” results), then to the same data contaminated with function three, and then to the
same contaminated data but made robust with M-estimation on the sample covariance matrices. Thus, it is
very encouraging that we get “good” values (close to 1) for clean data, then “bad” values for contaminated
data, then good values again for robust data; we know here that it’s not just the variability from different
draws or from different noise - the results actually come from the contamination and the robust estimation.
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CC1 CC2 CC3 CC4

Clean 0.96 0.68 0.80 1.00

Contaminated 0.48 0.28 0.36 0.32

Robust 0.96 0.76 0.88 1.00

Table 3.3: The clustering recognition success of this particular run for the clean data compared with the
noisy and robust data.

While this plot and table show the promise of robust CCA, we demonstrate its consistency by performing
robust CCA on multiple runs.

3.3 Distribution Results

To summarize our findings, we explore combined results of 100 runs of results from CCA applied to clean,
contaminated, and robust data. Here “distribution” refers to the combination of the results from these 100
runs into a smooth histogram plot. For each numerical output, we save the 100 values and plot them as
a sample distribution in order to make sure that any results we find are not due to variability in sampling
from multivariate normal distributions or from the randomness of the contamination.

3.3.1 Original Assumptions

The first set of distributions we consider are on our original assumptions. Recall that include 1,000 obser-
vations, a 50/50 split of variables for X and Y, contamination function 3, 100 total variables, and 2.5% of
total contamination.

Figure 3.9 demonstrates the effectiveness of the M-estimator in returning the canonical correlations
closer to their true values. In each of the four canonical pairs, the canonical correlation value based on the
population matrix is denoted by a solid blue line. The closer the canonical correlation output is to this
“true” value, the better it is. The canonical correlations derived from the clean data (in black) is the closest
to the true value of the canonical correlation, while the canonical correlations calculated from contaminated
data (shown in purple) makes the canonical correlations much higher. Again, this is explained by the fact
that CCA looks to find the most highly correlated pairs of linear combinations, and when the values are
heavily outlying there is a greater chance they can skew the line of best fit and give falsely high correlation
values. The canonical correlations calculated from robust estimation applied to the same contaminated data
(shown in green) are closer to those of the clean data. Table 3.4 gives the numbers to compliment the trends
from Figure 3.9.
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Figure 3.9: The distributions of the canonical correlations for the first four canonical pairs on clean, con-
taminated, and robust data.

CC1 CC2 CC3 CC4
Clean 0.94 0.94 0.93 0.91
Noisy 0.96 0.95 0.94 0.94

Robust 0.95 0.94 0.93 0.91

Table 3.4: Means of plots from Figure 3.9

The other measure of success (for this simulation structure) is the clustering recognition. (In general
this is not the goal of CCA - however, cluster recognition for this model is simply a special case of variable
selection, which CCA is certainly used for.) Again, due to the block structure of the population covariance
matrices, for each canonical pair we expect a cluster of 25 consecutive coefficients to be higher in magnitude
than the other 75. Recall that the closer to 1, the more successful the cluster recognition. Thus for Figure 3.10
the closer the distributions are to 1, the better CCA performs with that data. Note that the the clean data
performs reasonably well, with a distribution near the positive end of the spectrum. However, the distribution
for the contaminated data is shifted heavily downward, suggesting that cluster recognition is much worse for
contaminated data. Again, results from robust data brings the distribution values back towards those of the
clean data, and restores the success of CCA that we achieved when applying it to the clean data. Table 3.5
supports the qualitative analysis.
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Figure 3.10: With our original assumptions, we see distributions close to 1 for cluster recognition.

CC1 CC2 CC3 CC4

Clean 0.9508 0.8088 0.7916 0.9764

Noisy 0.3840 0.3872 0.3887 0.3864

Robust 0.8964 0.7476 0.7452 0.9316

Table 3.5: The means for the cluster recognition success of 100 runs on clean, contaminated, and robust
data.

3.3.2 Different Sized Data Sets

One of the original assumptions was that each of X and Y have the the same number of variables. With the
baseball data, we expect to have many more “explanatory” variables, as there should be substantially more
PITCHf/x variables than traditional variables. (Indeed, in Chapter 5, there are 18 PITCHf/x variables and
6 variables from traditional statistics). Thus it is useful to see if results still hold when X and Y differ in
size. We examine the effects of assigning 30 variables to X and 70 to Y while keeping other parameters the
same.

As shown in Figures 3.11 and 3.12, changing the size of the data sets to 30 and 70 rather than 50 and
50 does not substantially impact the results. The clean canonical correlation distributions are fairly close
to the truth, and the robust canonical correlation distributions move back towards the clean results. The
cluster recognition densities generally have a bit higher spread than those of the original assumptions in
Figure 3.10, but the behavior is similar - densities relatively close to 1, with the results from robust data
following results from clean data more closely than the those from contaminated data. While this doesn’t
eliminate the possibility of problems arising from different-sized data sets, it doesn’t confirm such problems
either. If CCA doesn’t perform well on real baseball data, we would look elsewhere first for the root of the
issue.
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Figure 3.11: Canonical correlation distributions for runs with 30 variables in the X data set and 70 in the
Y data set. Results are comparable to those of the clean data set.
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Figure 3.12: Cluster recognition success distributions for runs with 30 variables in the X data set and 70 in
the Y data set. High distributions (values close to 1) for results on clean and robust data are maintained.

3.3.3 Lower Sample Size

Another assumption that most likely will not hold for real data is the number of observations. While we
have been assuming 1,000 observations, real data is more likely to be half or a quarter of that, depending
on the application. To investigate the consequence of cutting down on number of observations, we ran
our simulations with 220 observations. The results are shown in Figures 3.13 and 3.14, and both illustrate
that lower observation size is cause for concern. All densities (even those from clean data) for canonical
correlations are shifted to the right and away from the truth. Similarly, all densities for cluster recognition
are shifted to the left and away from 1. Perhaps even more disturbing is the behavior of the results of
CCA from robust data. Instead of the densities moving back towards the clean data, for both plots and
all canonical pairs, the robust densities closely follow those of the contaminated data. For example, in the
canonical correlation for the first pair in Figure 3.13, we see that the distribution of the canonical correlation
value is actually to the right of that of the contaminated data, and further away from the true value indicated
by the blue line. In the cluster recognition plots of figure 3.14, we see that in the first three canonical pairs
the density of the cluster recognition values for CCA on the robust data almost exactly matches that of CCA
on the contaminated data. These plots indicate that sample size is of the utmost importance, and a priority
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when looking for data is to insure that there are a substantial amount of observations.
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Figure 3.13: Canonical correlation distributions for runs with 220 observations. All distributions are shifted
away from the truth compared with the original assumptions.

CC1 CC2 CC3 CC4
Truth 0.9468 0.9425 0.9384 0.9313
Clean 0.9764 0.9705 0.9641 0.9555
Noisy 0.9944 0.9895 0.9868 0.9841

Robust 0.9959 0.9901 0.9853 0.9804

Table 3.6: The means for the the first four canonical correlations of 100 runs on clean, contaminated, and
robust data with only 220 observations. These numbers support Figure 3.13
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Figure 3.14: Cluster recognition success distributions for runs with 220 observations. All distributions are
shifted downwards, away from the desired value of 1.
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CC1 CC2 CC3 CC4
Clean 0.5096 0.4908 0.4944 0.4900
Noisy 0.3500 0.3456 0.3440 0.3388

Robust 0.3476 0.3504 0.3564 0.3612

Table 3.7: Means of cluster recognition success for runs with only 220 observations. These numbers support
Figure 3.14

3.4 CCA Exploration Conclusion

Given clean, Gaussian data, CCA will correctly identify correlated variables almost all of the time. How-
ever, given only 2.5% contaminated data, performance drops significantly. This can be remedied with the
introduction of a robust estimator in the joint covariance matrix - we chose and had success with the t-
biweight M-estimator. Other problems arose in the explorations, though, the most prominent being the lack
of sufficient observations compared to variable number. There are not been 1,000 pitchers in one year - it
it is around 400 if we impose an innings cap - and we have seen that even robust CCA fails with too few
observations. Though not discussed in this chapter, there is a problem of interpretability; if we are using
CCA to perform variable selection (which has been the crux of this chapter) we will run into problems when
real data does not have distinct clusters as in our simulations. Though these simulations are still valuable
because they allow for easy interpretations of success or failure and demonstrate the need and success of
robust estimation when performing CCA, they do not accurately portray real-life population matrices. In
real-world examples, it may be difficult to discern from the coefficient values which variables are important
(especially if the number of variables rises into the triple and quadruple digits such as in genomic applica-
tions). Thus, we want to find a method that cuts down on variable input while performing CCA. To do
this, we will employ a method known as Sparse Canonical Correlation Analysis (SCCA). The next chapter
details SCCA - its worth, underlying math, and application.
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Chapter 4

Sparse Canonical Correlation Analysis

In order to increase interpretability, we introduce Sparse Canonical Correlation Analysis (SCCA). In this
paper, we will follow the algorithm defined by Parkhomenko et al. (2009), although others exist. The
objective of SCCA is to limit output of the linear combinations by setting unimportant coefficients to zero.
This effectively allows the user to find groups of variables between two datasets that form highly correlated
pairs of linear combinations - they are by definition not as highly correlated as possible, because we include
a penalty on the coefficients (i.e. they are not the coefficients from CCA). Here I will give the definition
of SCCA, and demonstrate that it solves some of the problems that arose from robust CCA (i.e. robust
estimation performed on the sample joint covariance matrix before eigenvalue decomposition).

4.1 SCCA Algorithm

In their paper, Parkhomenko et al. (2009) provide an algorithm for deriving the sparse vectors for the first
canonical vectors. Given sparse parameters θα and θβ , their algorithm is as follows:

1. Pick θα, θβ

2. Pick α(0),β(0), set i = 0

3. Repeat until convergence

(a) Update α

i. α(i+1) ← Kβ(i)

ii. Normalize α(i+1)

iii. α
(i+1)
j ← (|α(i+1)

j | − 1
2θα)+Sign(α

(i+1)
j ) for j = 1, 2, . . . , p

iv. Normalize α(i+1)

(b) Update β

i. β(i+1) ← K′α(i+1)

ii. Normalize β(i+1)

iii. β
(i+1)
j ← (|β(i+1)

j | − 1
2θβ)+Sign(β

(i+1)
j ) for j = 1, 2, . . . , p

iv. Normalize β(i+1)

(c) Increment i

*Note: (a)+ = a when a ≥ 0 and 0 when a<0
Note that α(i) denotes the value of α at the ith iteration of the algorithm; it does not denote α raised to

the ith power. Note also that α denotes the sparse canonical vector, while αj denotes the jth element in the
sparse canonical vector. We see that their algorithm performs a soft thresholding on each canonical vector
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element, as elements shrink towards zero. θα and θβ can be chosen through k-fold cross-validation in order
to maximize the correlation between sparse canonical variables, or they can be manually chosen to achieve
a desired level of sparsity. Because α and β are normalized at each iteration, θα and θβ must be bounded
within [0,2]. θα = θβ = 0 will result in no coefficients being thresholded, and it can be shown that this leads
to the singular value decomposition for regular canonical correlation analysis. θα = θβ = 2 will result in
every coefficient being set to zero.

Parkhomenko et al. demonstrate that for low numbers of observations, SCCA substantially outperformed
the full SVD, regular canonical correlation output on test sample correlation. However, they note that
maximizing correlation is not the same goal as selecting the correct subset of variables, which is more of an
interest for our purposes. our goal is to find groups of highly related variables between PITCHf/x datasets
and traditional pitcher statistics. In order to work more towards this goal, we introduce robust estimation
into the model.1. Parkhomenko et al. also only explicitly lay out the algorithm for the first sparse canonical
vector pair. For our purposes, we need to extend their algorithm to produce min(p, q) sparse canonical
vector pairs.

However, in their paper, Parkhomenko et al. only allude to a way to extend their algorithm, citing the
use of “the residual of the matrix K after removing the effects of the first singular vectors” rather than the
whole matrix K. The following definition will provide our interpretation of this residual matrix, and will be
followed by a strong argument for this interpretation.2

Residual of K Matrix. Let α1, . . . ,αk and β1, . . . ,αk be the left and right singular vectors of matrix K,
respectively. Then define the rth residual of matrix K after the effects of the first r singular values as

Kr = K−
r−1∑
i=1

(α′iKiβi)αiβ
′
i (4.1)

Define K1 = K.

Consider the SVD of K as given in 2.12 and 2.13, where A and B are unitary matrices and D is a
diagonal matrix with singular values {s1, s2, . . . , sn} on the diagonal. Recall that the columns of A and B
are orthonormal, so

α′
iαj = β′

iβj = δij .

Now,

K = ADB′ (4.2)

=
[
α1|α2| . . . |αk

]

s1 0 · · · 0

0 s2
...

...
. . .

0 · · · sk



β1

β2

...
βk

 (4.3)

=
[
s1α1|s2α2| . . . |skαk

]

β1

β2

...
βk

 (4.4)

= s1α1β1 + s2α2β2 + . . .+ skαkβk (4.5)

It is apparent that to remove the effects of α1 and β1, then we should take K2 = K − s1α1β1. So now
all that remains is to derive s1 in terms of given variables. Note:

1As with CCA, we implement Tukey’s Translated Biweight M-estimator on the cross-covariance matrix ΣXY , and on the
two variance-covariance matrices ΣXX and ΣY Y

2Here we refrain from label this as a “proof” because we really defining our terms, rather than proving facts about accepted
terminology.
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α′1Kβ1 = α′1(s1α1β
′
1 + s2α2β

′
2 + . . .+ skαkβ

′
k)β1

= (s1α
′
1α1β

′
1 + s2α

′
1α2β

′
2 + . . .+ skα

′
1αkβ

′
k)β1

= s1α
′
1α1β

′
1β1 + s2α

′
1α2β

′
2β1 + . . .+ skα

′
1αkβ

′
kβ1

= s1(1)(1) + s2(0)(0) + . . .+ sk(0)(0) (4.6)

= s1 (4.7)

It is quite straightforward to extend the result from equation 4.6 to obtain the recursive relations

sr = α′rKrβr (4.8)

Kr = Kr − srαrβ′r (4.9)

= Kr−1 − (α′r−1Kr−1βr−1)αr−1β
′
r−1 (4.10)

From here we simply remove the recursion3 to obtain equation 4.1.

Witten et al. (2009) also use a soft thresholding technique for calculating sparse canonical variables, and
they use a near identical method for computing multiple canonical variables agrees with equations 4.8 and
4.1. The fact that our result agrees with a procedure outlined in their paper reinforces this definition and
our extension. Thus, to compute more than one sparse canonical variable, we implemented an extended
version of Parkhomenko et al., as shown below:

Let K1 = Σ
−1/2
11 Σ21Σ

−1/2
22 , set r = 1

1. Pick θr,α, θr,β

2. Repeat until convergence

(a) Update αr

i. α
(i+1)
r ← Krβ

(i)
r

ii. Normalize α
(i+1)
r

iii. α
(i+1)
rj ← (|α(i+1)

rj | − 1
2θr,α)+Sign(α

(i+1)
rj ) for j = 1, 2, . . . , p

iv. Normalize α
(i+1)
r

(b) Update βr

i. β(i+1)
r ← K′α

(i+1)
r

ii. Normalize β(i+1)
r

iii. β
(i+1)
rj ← (|β(i+1)

rj | − 1
2θr,β)+Sign(β

(i+1)
rj ) for j = 1, 2, . . . , p

iv. Normalize β(i+1)
r

(c) Increment i

3. sr = α′rKrβr

4. Kr+1 = Kr − srαrβ′r

5. Increment r for r ≤ min(p, q)

Note that αrj and βrj refer to the jth elements of the rth canonical vectors associated with datasets X
and Y, respectively. αr and βr refer to the entire rth canonical vectors. It should also be noted that in
this algorithm, there is now a θα and θβ for each rth canonical variable - denoted θr,α and θr,β . Again,

3We develop it initially via recursion because this is the method employed in our code

28



these are chosen through cross-validation to maximize sample correlation, but as the first values use the K
matrix to do so, the rth values must use Kr. Because these are not determined until the rth of the loop, we
must calculate θ values each time and pass information from the previous iteration. The r cross-validations
necessary to determine r sets of θ is by far the most time-intensive part of the entire procedure. However,
we consider multiple pairs of θ values necessary to accurately find multiple sparse canonical variables; the
first pair of θ values will be based on K and would be inappropriate to use as soft-thresholding on sparse
canonical vectors derived from eigenvalue decomposition on Kr.

With this, we are able to compare sparse results for the simulation to regular results which broke down
when we had a limited number of observations. We repeated the earlier simulation setup (multivariate
normal data based on the population joint covariance matrix shown in Figure 3.1), with 400 observations
instead of 1000, and the same contamination function as applied in Chapter 3. Here we show results for
single-θ-pair robust SCCA, with θ values chosen through 5-fold cross-validation.
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Figure 4.1: The sparse canonical correlations.

Figure 4.1 shows the 50 canonical correlation values for one run, with the first four highlighted. Recall
that the population covariance matrix has four blocks, or clusters, of correlated variables within each block
and zero correlation outside the blocks. We can see that the first four canonical correlations are quite high,
and then the rest are scattered between -0.5 and around 0.8. The cutoff is not as clear as with CCA applied to
clean data (shown in Figure 3.3), but it isn’t as deceiving as the canonical correlations from CCA applied to
contaminated data (as shown by the purple points in Figure 3.6).In this situation, the first four correlations
are clustered together, which could possibly allow an observer to identify the top four as the significant
variables (though they might wrongly choose five variables).

Figure 4.2 depicts the correlation values for 100 runs of the same setup. Here we see that unlike with
robust CCA, robust SCCA is under the true canonical correlation value, and avoids falsely high correlation
values while still remaining close to the true value.
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Figure 4.2: The first four sparse canonical correlations for 100 runs

Figure 4.3 displays the cluster recognition success for the 100 runs. Recall that values close to 1 indicates
that most of the top 25 coefficient magnitudes were in the same cluster and that SCCA succeeded in
recognizing the block structure of the underlying population matrix from Figure 3.1. Here we see that
robust SCCA almost perfectly picks the correct 25 variables that are associated with each other. Where
robust CCA was better than non-robust CCA for 1000 observations, even that wasn’t near perfection, as
shown in Figure 3.10.
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Figure 4.3: Cluster recognition success distributions for SCCA output

This demonstrates that in terms of finding the true correlation and in terms of variable selection for this
model, robust SCCA is indeed much better than robust CCA - even with observations as low as 400. For
our PITCHf/x data, we have observations around 400 and only 28 variables. Because we only expect SCCA
to perform better when we choose θ for each sparse canonical pair, this is good indication that we should
proceed with robust SCCA for the baseball data From here we would like to apply multiple-θ-pair robust
SCCA, to demonstrate its success with even low values of observations.

For this simulation, we ran the same setup as before - X and Y drawn from multivariate normal distri-
butions with population joint covariance matrix similar to that of Figure 3.1, and contamination function
3 - but this time including only 220 observations - the number at which robust CCA failed (see section
3.3.3). We used the multiple-θ-pair SCCA algorithm to calculate the robust sparse canonical coefficients and
correlations. Figure 4.4 displays the density plots of 88 runs of multiple-θ-pair robust SCCA on this data.
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Figure 4.4: Canonical Correlations for multiple-θ-pair SCCA on contaminated data with 220 observations.

Compared to Figure 3.13 in section 3.3.3, which was robust CCA applied to the same-structured data,
SCCA greatly outperforms. The means of these densities are around the true value shown in blue, and
none of them are falsely high for substantial amounts. From the perspective of canonical correlation values,
multiple-θ-pair robust SCCA certainly succeeds for 220 observations where robust CCA fails.

The other metric we have is the percentage of top 25 coefficients that are in the same cluster. Figure 4.5
depicts the distribution of these values for the 88 runs. As we can see, for sparse canonical pairs 2-4, the
cluster recognition success is quite high. Compared with Figure 3.14 in Chapter 3 from robust CCA, these
plots tend much more towards the true population values of 1. The first sparse pair with low values for the
cluster recognition success is inexplicable, but the other three are vast improvements by the metric for this
simulation structure.
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Figure 4.5: Cluster recognition success distributions for multiple-θ-pair SCCA on contaminated data with
220 observations

Based on the success of single-θ robust SCCA for 400-observation contaminated data and multiple-θ-pair
robust SCCA for 220-observation contaminated data, we will choose to use robust SCCA when analyzing
baseball data. Because multiple-θ-pair SCCA makes more intuitive and mathematical sense, we will proceed
in analyzing baseball data with multiple-θ-pair robust SCCA. Henceforth, “multiple-θ-pair robust SCCA”
will simply be referred to as “robust SCCA.”
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Chapter 5

PITCHf/x Analysis

Here we look to apply the SCCA algorithm to PITCHf/x data and traditional pitcher statistics. The goal of
this analysis is to identify groups of highly correlated variables between these two datasets. We can think of
the PITCHf/x data as the “explanatory” variables, and the traditional statistics as the “response variables,”
if we are thinking of this is the multiple regression context. Both SCCA and CCA treat the datasets
symmetrically and do not make distinctions between variable types, but for our case it helps interpretability
in the analysis. The motivation would be to have coaches or managers identify which PITCHf/x variables
are correlated with which groups of traditional statistics - depending on what traditional results the manager
might value, he might target pitchers with high values in the identified PITCHf/x variables. In this sense this
analysis could add to the predictability element of pitchers - PITCHf/x statistics could be used to predict
traditional statistics, based on these sparse canonical vectors. Another important feature is that PITCHf/x
data is independent of the batter - it can be obtained with minor league batters, or with no batters at all.
Thus, SCCA can be performed on data from pitchers who have yet to reach the big league level, a value
feature especially for teams that need to rely more on development of players within their organization that
they drafted.

5.1 Description of the Data

Before any analysis can be performed, we need to explain what data specifically we are using. All of the
data comes from 2010 season, with observations being single pitchers.

PITCHf/x

� Velocity - average start velocity in MPH

� x-Movement - average movement, in inches, in the x-plane over the duration of the pitch. From the
point of view of the umpire, positive is to the right.

� z-Movement - average movement, in inches, in the z-plane over the duration of the pitch. Positive is
up from home plate.

� Spin - average spin rate, in revolutions per second

� Break - average distance in inches from the furthest point of the trajectory of the pitch from the
straight line created from the release point to end location

� Angle - angle in degrees in xy-plane, from straight-line path directly to home plate to theoretical
straight line created from release point to end location
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All of these variables are aggregated by pitch type, and we look at data for fastballs (FB), curveballs
(CU) and changeups (CH) for starters. We expect fastballs to have higher velocities, curveballs to have
higher z-movement values, etc. Figure 5.1 gives a visual explanation of Angle, Break, and x-Movement,
from the “bird’s eye” perspective of directly above a pitch. From Figure 5.1 we see that x-Movement is the
amount of inches across home plate that the ball travelled from its theoretical straight-line trajectory to its
end location. Break is the length in inches from the trajectory of the pitch to the straight line created by
connecting the initial release point to the end location. The angle from the theoretical straight line trajectory
with no x-Movement to the straight line created by connecting the release point of the pitch and the end
location of the pitch, measured in degrees.

Figure 5.1: A visual explanation of x-Movement, Break, and Angle

Traditional Statistics

� Innings Pitched

� Strikeouts Per 9 innings

� Hits Per 9 innings

� Walks Per 9 innings

� Home Runs Per 9 innings

� Earned Runs Per 9 innings

The traditional statistics are measured in rates so as not to additionally penalize or benefit pitchers fewer
or more innings pitched. In order to ensure that the number of pitches thrown are substantial enough to
warrant analysis, we include only pitchers who threw at least 40 innings. We also partition the data into
starting pitchers, or starters, (those with a positive number of games started) and relievers (those with zero
games started). This is necessary because starters and relievers come into the games at different times, have
different prerogatives, and will throw the ball differently. Most relievers are only expected to throw one or
two innings per game, and so will not pace themselves; starters are expected to pitch for at least 5 innings,
and so will pace their effort in order to remain in the game longer. Because they must pace themselves
and will face the same batters multiple times, starting pitchers usually have at least three effective pitches
- relievers, on the other hand, typically have two pitches that they throw almost exclusively. All of our
analysis will focus on output from robust SCCA applied to data from starters.
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5.2 Starters

In this analysis, we focus on starters that threw on average .75 CU per IP, 1 CH per IP, and 2 FB per IP. (The
purpose of thresholding here is to ensure that the player throws that type of pitch with some regularity.
Occasionally the PITCHf/x system mislabels pitches, but if the pitcher has enough pitches labeled as a
certain pitch, we can be confident that that pitch actually is in his arsenal.)

Figure 5.2 displays the absolute value of canonical coefficient vectors for the first canonical pair, using
CCA, robust CCA, SCCA, and robust SCCA. The purpose of this plot is to illustrate that even with 24
variables in our case, variable selection with CCA can be quite difficult. It is not easy in the bottom two plots
to discern which variables should be labeled as important due to the magnitude of their coefficients. SCCA
solves this problem by setting unimportant variables to zero. In all of our coefficient plots, we include a line
that partitions the two datasets - to the left of the line are the PITCHf/x variables, and to the right of the
line are the traditional variables. It is worth noting that robust SCCA adds two variables from non-robust
SCCA, but other variables remain the same.

Figure 5.2: The magnitude of coefficient values from CCA, robust CCA, SCCA, and robust SCCA performed
on PITCHf/x data and traditional statistics from major league pitchers during the 2010 season. The line in
each plot signifies the partition between

Before we examine individual sparse canonical variables, we should examine the correlation outputs.
Figure 5.3 shows this output.
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Figure 5.3: Correlation values for the canonical variables created by from CCA, robust CCA, SCCA, and
robust SCCA performed on PITCHf/x data and traditional statistics from major league pitchers during the
2010 season.

We see that, as expected, in general CCA has higher correlation values than does SCCA. Again, this
is because CCA will find the most highly correlated pairs of linear combinations, while SCCA imposes
thresholding that will lower correlation values. It is interesting to note that robust and non-robust methods
have strikingly similar correlation values, when we can see quite easily from the plots of coefficients that the
canonical and sparse canonical vectors are quite different.

Before we examine the robust SCCA coefficient output, we check to make sure that enough variables will
be given coefficients of zero for us to interpret the plots in any meaningful way. From Figure 5.4, we can see
that only the first and fourth sparse canonical variables will be worth investigating, for not enough variables
were affected by thresholding in the other sparse canonical variables.
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Figure 5.4: Robust SCCA coefficients for all variables.

Unlike in strict variable selection, sign becomes important here - we want to ensure that the outputs
make sense (i.e. it would be extremely surprising to find that fastball velocity was negatively correlated with
strikeouts). Figure 5.5 displays the first sparse canonical coefficients.

Figure 5.5: Coefficients of first robust sparse canonical variable calculated from PITCHf/x data and tradi-
tional statistics from major league pitchers during the 2010 season.

There are some interesting features of this graph. We note, confirming prior assumptions, that fastball
velocity contributes to the same sign as strikeouts per 9, and the opposite sign of hits per 9. These are widely
accepted beliefs in the industry. The other two coefficient values are fascinating. Fastball break contributes
to the opposite sign of fastball velocity, which could possibly be explained by pitchers giving up break on
their fastball in order to get more speed. Thus, those with more break and less give up more hits and strike
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out few opponents. It is also surprising the changeup velocity coefficient is the same sign as the strikeout per
9 coefficient and the opposite sign on hits per 9. The changeup is most effective when its speed differs greatly
from that of a fastball, so we would expect slower changeups to contribute in the same direction as strikeouts
and the opposite direction as hits. However, it could be the case that pitchers who throw harder fastballs
also throw harder changeups, enough so that the relationship between changeups and hits and strikeouts is
no longer important.

Figure 5.6: Coefficients of fourth robust sparse canonical variable calculated from PITCHf/x data and
traditional statistics from major league pitchers during the 2010 season.

Figure 5.6 shows the coefficients from the fourth robust sparse canonical variable for this data. There are
quite a few interesting things to note about this plot. First, fastball break, hits per 9, and strikeouts per 9
show up again, but fastball break is now on the opposite side. However, there is a lack of fastball velocity in
this plot, indicating that perhaps fastball break dominates this sparse canonical pair. Another factor worth
noting is that while many negative statistics for pitchers (i.e., statistics for which lower values are better)
have negative coefficients, but earned run average (ERA) does not. ERA should trend in the same direction
as hits, home runs, and walks (BB) allowed by a pitcher - its presence above 0 is inexplicable. Another
strange feature is innings pitched having a coefficient below 0. Pitchers who allow fewer hits, home runs,
and walks should stay in the game longer, but perhaps this is offset by pitchers who have high strikeout
totals - strikeouts generally cause pitchers to throw more pitchers per at bat. Higher pitch counts means
they exit the game sooner. It is encouraging to see hits, home runs, and walks on the opposite side of zero
from fastball break and strikeouts.
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Chapter 6

Discussion and Future Direction

In this paper, we investigated the multivariate technique known as Canonical Correlation Analysis, or CCA,
defined by Hotelling (1936). We examined the mathematics behind CCA and proved rigorously how it
derives the most highly correlated pairs of linear combinations of variables as possible from two datasets.
From there we examined how CCA performed with clean multivariate normal data and with contaminated
data, showing how contamination causes CCA to fail to capture the structure of the population covariance
matrices. We then introduced M-estimation into the sample covariance matrices and had success for large
observation values, but did not have success for observation values closer to the number of variables. In
order to deal with this as well as increase interpretability, we investigated Sparse CCA (SCCA) as defined
by Parkhomenko et al. (2009). By extending SCCA to output multiple sparse canonical vectors and adding
robust estimation to the sample covariance matrices, we found results for the simulation to succeed where
those from robust CCA failed. From there we applied robust SCCA to baseball data, and analyzed coefficients
of linear combinations for PITCHf/x variables and traditional statistics.

There are a few interesting directions in which this investigation can go. Robust SCCA warrants more
investigation, and it would be valuable to examine the output of robust SCCA applied to simulations more
realistic than those in Chapter 3. The simulations we studied are still valuable because they showed that
CCA can break down with contamination and be fixed with robust estimation of the sample covariance
matrices, but it is somewhat difficult to assert that CCA will behave similarly for data with population
covariance matrices that are not constructed from discrete blocks of correlated variables. Because SCCA is
most useful for variable selection, a latent variable model or something similar might be used to asses the
rate of false positives and false negatives, and how that changes when robustness is added.

Another direction is further investigation and analysis on baseball data. This includes looking at different
years, starters with different pitch types, relievers, and a more in-depth investigation of the differences
between the different types of canonical correlation analysis on that data. More PITCHf/x variables could
be added - for instance, we could take into account the rate at which pitches land in the strike zone and
related variables.

Robust SCCA shows promise both within and outside the context of baseball. For genomic data, when
looking at RNA-seq and finding highly groups of genes expression output and phenotypic data, robust SCCA
could be very helpful for performing variable selection and increasing interpretability through thresholding.
In baseball, managers and coaches could utilize the plethora of data from advanced technology to find
predictive statistics in order to both assess talent and structure training regimens. Robust SCCA is an
efficient method for determining the relationships of very large amounts of data, and in the modern world
of increasing information flow, it could prove to be enormously valuable.
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