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Abstract

In this project, we analyzed data collected by NASA’s Venus orbiter Magellan from the
Ganiki Planitia Quadrangle (V14) to determine an optimal way to allocate geologic units
into groups corresponding to unit type. Previously, a team led by Dr. Eric Grosfils created
a geologic map of the region using Magellan radar images. However, they performed their
analysis without analyzing the numerical data encoded in these images and without consid-
ering the physical property data sets of slope, surface emissivity, and surface reflectivity. We
extracted the quantitative data corresponding to radar backscatter, elevation, slope, surface
emissivity, and surface reflectivity from Magellan images. Then, using the existing geologic
map as a baseline, we employed mixture models and the Expectation-Maximization (EM)
algorithm to devise an optimal geologic map based on the data and to identify units whose
data fits more closely with a different unit type than what was assigned by the mapping.
We also created modified versions of the EM algorithm, considering issues such as the area
of each geologic unit and the importance of different variables. Results showed that most
units were classified the same way as specified by the original geologic map, while a handful
of units were consistently assigned to different groups. We conclude that these areas should
be more thoroughly examined geologically.
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Chapter 1

Introduction to Problem

1.1 Venus Geology

1.1.1 Magellan Spacecraft

On May 4, 1989 the National Aeronautics and Space Administration (NASA) launched the
Magellan Spacecraft to study the planet Venus. From August 10, 1990 until September 14,
1992 Magellan orbited Earth’s sister planet, radar-mapping 98% of its surface at resolutions
that were ten times better than any previous mapping of the planet [6]. Additionally,
Magellan took detailed measurements of surface properties including elevation, slope, and
reflectivity.

The influx of data from the Magellan mission has allowed planetary geologists to study
surface-shaping processes on Venus at a remarkable depth. Scientists have discovered that
geology on Venus is dominated by tectonics, volcanism, and impact cratering with little
wind erosion. One important finding from the Magellan data is that the surface of the
planet is only 500 million years old [6]. Venus formed around 4.6 billion years ago with the
rest of the planets, so some sort of volcanic resurfacing event or events must have occurred
approximately 500 million years ago. Subsequently, competing theories have arisen: (1)
that the resurfacing of Venus occurred quickly in one planet-wide event, and (2) that the
resurfacing happened in several smaller, localized events.

1.1.2 Ganiki Planitia Quadrangle (V14)

Ganiki Planitia quadrangle V14 (180◦-210◦ E, 25◦-50◦ N) is a section of Venus that was
radar-mapped by the Magellan Spacecraft. It is a third the size of the United States.
Situated between regions where extensive tectonic and volcanic activity has occurred in the
past, Ganiki Planitia consists of volcanically-formed plains partially covered with tectonic,
impact, and young volcanic features. Because such varying types of geology exist on Ganiki
Planitia, studying the region may clarify the ways in which different geologic processes on
Venus interact with each other and might hold the key to resolving the problem of the
resurfacing of Venus 500 million years ago [5].
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Over the past three years, Dr. Eric Grosfils, Assistant Professor in the Department of
Geology at Pomona College has headed a team of undergraduate students to investigate
the Magellan data from Ganiki Planitia. They have undertaken the project in attempts to
understand the geologic processes on Venus more completely. The research is sponsored by
a grant from NASA’s Planetary Geology and Geophysics Program.

1.1.3 Geologic Goals

With the Ganiki Planitia data, Dr. Grosfils and his geology students have been investigating
an array of geologic issues. First, they have analyzed the volcanic features on Ganiki Planitia
in attempts to conclude whether or not there are systematic changes in the type of volcanism
on the region over time. Secondly, they have looked at tectonic activity to determine how
regional stresses are distributed and how they have changed. Lastly, they are in the process
of constructing a region-wide chronology of geologic events in order to place time constraints
on the resurfacing of the region to provide insight into the problem of global resurfacing [5].

However, none of these issues can be investigated without first creating a geologic map
of Ganiki Planitia. A geologic map is a division of a region into many smaller units based
on a mapper’s interpretation of what the main features of the region are. Each unit is
subsequently labeled as a certain type of geologic structure based on what the unit is. A
completed geologic map looks like a colored jigsaw puzzle, with each piece representing a unit
and each color representing a unit type. Researchers cannot begin to consider the relative
timing of geologic events until a geologic map is constructed. Therefore, it is extremely
important for Dr. Grosfils’ research group that a complete and accurate geologic map of
the Ganiki Planitia region be made. Additionally, one of the geologists’ goals is to submit
a final map of the region to the U.S. Geological Survey for publication.

Throughout the past three years, the group led by Dr. Grosfils has created a map of
the Ganiki Planitia region (Figure 1.1). The mapping consists of 200 units divided into 18
groups (e.g. craters, volcanic flows, radar-dark plains, radar-light plains). To construct the
map, the research team studied the Magellan radar image of the region via the computer
imaging program ArcGis. The team also looked at stereo images, which combine elevation
information and the radar image to create a three-dimensional overhead picture of the
region. The researchers did not explicitly use any of the numerical information that was
retrieved by Magellan to make their map.

1.2 Mathematical Problem

1.2.1 Formulation of Problem

Although Dr. Grosfils and his research team have spent three years studying the images of
Ganiki Planitia in the program ArcGis, they have not analyzed the numerical data encoded
in these images. Each of the more than 150,000,000 pixels that make up the radar image of
the Ganiki Planitia region has associated with it a numerical value. Also, each of the 350,000
pixels of each of the four physical properties: elevation, slope, emissivity, and reflectivity,
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Figure 1.1: Geologic map of V14 created by Dr. Grosfils’ team. Each section represents
a geologic unit and each color represents a type of unit. There are 200 units and 18 unit
types.

has a numerical value. This information is readily available and may reveal much about the
region. Yet, it has not been utilized by Dr. Grosfils’ research team.

The goal of our project is to devise an allocation of the 200 units into a number of
groups based on the numerical data of the radar backscatter and the four physical property
variables. Performing this classification will allow us to see whether or not the numerical
data of backscatter and elevation are consistent with the geologists’ allocation of units
based on the images produced by these two data sets in ArcGis. It will also provide insight
into whether or not the existing geologic map is consistent with the other three physical
properties that were not used by Grosfils’ team.

However, it is important to keep in mind that many properties of these geologic units
do not appear in the data and can only be seen by performing rigorous geologic analysis
of the images on ArcGis. Much of the region is an intricate web of tectonically-formed
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lineaments and volcanic flows. Failing to take into account the geologists’ interpretation
means depriving oneself of a massive amount of information that is not detectable in the
data alone. Therefore, throughout this project we depended heavily on the original geologic
mapping and kept close correspondence with Dr. Grosfils and his research team. Three
years have been spent devising the original geologic map. Therefore the ultimate goal of
this project is not to propose a massive overhaul of the geologists’ work but rather to expose
areas where the data sets are telling us that something is happening that does not coincide
with the geologists’ interpretation.

1.2.2 Clustering

We have data from 200 different geologic units and wish to classify each unit as belonging to
one unit type. The information with which we will perform this classification is the mean,
standard deviation, and median of pixel values within each unit boundary for each of the
five variables. To perform this classification, we will use cluster analysis. Clustering is the
allocation of n data points (in our case geologic units) into G groups (unit types) based on
k variables. There are several types of clustering methods available, ranging from heuristic
procedures to formal, model-based techniques.

Hierarchical clustering begins with a partitioning of the data points and either merges
groups (agglomerative) or divides groups (divisive) based on some criterion. For example,
one agglomerative clustering method is nearest neighbor (single link), where in each iteration
the two groups that are closest to one another are merged. The stopping point of the
algorithm is highly arbitrary, as the investigator must decide on an optimal number of
clusters or proceed until either the data is in one cluster (agglomerative) or each data point
is in its own cluster (divisive). Another problem with hierarchical clustering is that once a
merging or splitting is made, it can never be undone, even if in later steps it appears that
it should be. Hierarchical clustering is only stepwise optimal, and will not necessarily lead
to an optimal final solution. Hierarchical techniques are also computationally intensive [3].

Relocation (hill-climbing) clustering methods begin with some initial partition of the
data into groups. Then, the change in some clustering criterion is calculated for every
possible move of a data point to a different group. The change which leads to the greatest
improvement in the value of the clustering criterion is made, and then the process is repeated
until an optimal value of the clustering criterion is reached. One widely-used relocation
clustering method is k-means. In each iteration step in k-means, the centroid of every
cluster is calculated. The clustering criterion to be minimized is the distance from the data
points in each cluster to that cluster’s centroid. Drawbacks to the k-means method is the
large amount of computation necessary, especially when the number of data points is large.
Also, the selection of the clustering criterion is somewhat arbitrary, and different results
are possible for different criteria [3].

In this project, we will cluster with mixture models. Mixture model clustering is a
type of relocation clustering technique where it is assumed that each cluster has a unique
probability density function. The optimal clustering is obtained by maximizing a data
likelihood function based on these probability distributions[4]. Mixture models allow us to
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talk about the classification of data points probabilistically. Also, there are algorithms that
can perform this maximization very quickly. In this paper we will explore these methods and
apply them to the Nemesis Tessera problem. In Chapter 2 we provide a detailed description
and justification of the model and methods used. In Chapter 3 we use these methods to
analyze our geologic units. Chapter 4 presents a model that takes into account the area
of each unit and a model that includes weights on the importance of each variable. We
conclude with Chapter 5, where we present our final results to the geologists.
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Chapter 2

Methods

2.1 Mixture Models

The idea behind finite mixture models is that our data x1,x2, . . . ,xn are generated from
multiple underlying probability distributions, with each distribution corresponding to a
different unit type. Because each unit type has a unique set of characteristics that defines it,
we expect that each distribution will be different and hence have a distinct set of parameters.
With mixture models, each data point, xi, is generated from a population that is a mixture
of G subpopulations in proportions τk (k = 1,. . . ,G). The probability density function
(p.d.f.) of an observation xi is

f(xi|τ, θ) =
G∑

k=1

τkfk(xi|θk) (2.1)

which is simply the weighted sum of the probability density functions, fk(xi|θk), of each
of the G groups, where θk represents the vector of parameters that defines the kth density
function [8].

We assume that our data are independently and identically distributed (i.i.d.) with
common distribution f . Independence is an appropriate assumption in our case because
each geologic unit is a separate entity whose physical characteristics are for the most part
not affected by other units. By the independence of our data, we can devise a likelihood
function for the set of parameters based on the data by simply multiplying the densities for
each data point. This likelihood is

LMIX(θ1, . . . , θG, τ1, . . . , τG|x) =
n∏

i=1

f(xi|τ, θ) =
n∏

i=1

G∑

k=1

τkfk(xi|θk) (2.2)

which we maximize in order to determine the most likely set of parameters based on the
data [8]. These parameters will define an optimal set of density functions based on the data.
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Figure 2.1: Distribution of the mean elevations for each unit. The data appear to follow a
normal distribution. Because the mean elevation of each unit follows a normal distribution,
it is reasonable the elevations for each group will be distributed normally.

2.1.1 Multivariate Normal Distribution

In our model, we assume that the underlying distribution for each cluster is the multivariate
normal distribution. In other words, we assume that the set of data points belonging to each
cluster will be distributed normally with respect to each variable. This is a valid assumption
because this model has been used successfully in a great range of scientific fields [4] and
because our data on the whole appears to be distributed normally with respect to each
variable (e.g., see Figure 2.1).

We can now define our density functions for each of the G groups. For group k, the
density of the ith data point is the density of the multivariate normal distribution,

fk(xi|µk, Σk) =
exp (−1

2(xi − µk)TΣ−1
k (xi − µk))

( 2
π )

p
2 |Σ

1
2
k |

(2.3)

where µk , the mean vector, and Σk, the covariance matrix, completely define the density
function for group k. The dimension of each µk is v× 1, where v is the number of variables.
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The dimension of each Σk is v × v.
Each of the G probability density functions defines a cluster. The multivariate normal

distribution creates v-dimensional ellipsoidal clusters. For group k, µk determines the center
of the cluster and Σk determines other geometric features of the cluster, such as shape,
volume, and orientation.

The eigenvalue decomposition of the kth covariance matrix can be written

Σk = λkDkAkD
T
k (2.4)

where λk is a scalar, Dk is the orthogonal matrix of the eigenvectors of Σk, and Ak is a
diagonal matrix whose entries are proportional to the eigenvalues of Σk. This decomposition
is important because each element of the decomposition determines a property of the cluster.
For cluster k, the value of λk determines the volume of the cluster, Ak specifies the cluster’s
shape, and Dk determines the cluster’s orientation [4]. It is possible to let the values of some
or all of these parameters either vary between groups or be fixed across groups. For example,
if we forced the value of A to be the same for each group and let the other parameters vary
between groups, our clusters would all have the same shape but would vary in volume and
orientation.

2.1.2 Complete Data Likelihood

When clustering with mixture models, we wish to put the n data points into G groups by
maximizing a data likelihood function. Thus far we do not have a variable that specifies to
which group each data point belongs. Therefore, we have incomplete data. The complete
data are (xi,zi) where zi = (zi1,. . .,ziG) such that

zik =
{

1 if xi belongs to group k
0 else

. (2.5)

Recall that for each k, τk is the mixture proportion of the probability density function
for group k. A group will contribute to the overall density function proportionally to the
number of data points in the group. Therefore, τk is the proportion of data points belonging
to group k. Alternatively, τk can be thought of as the probability that a randomly selected
data point belongs to group k. Hence, for each data point, zi is distributed multinomially
i.i.d. with one draw on G categories with probabilities τ1, . . . , τG. [4] The probability density
function of zi given τ is

f(zi|τ) = τ zi1
1 τ zi2

2 . . . τ ziG
G (2.6)

which is the p.d.f. of a multinomial(1,τ) distribution.
Now we can write the probability density function of each data point, xi, in terms of

zi. Recall that in equation 2.1 we wrote the p.d.f. of xi as a mixture of G distributions in
proportions τk as if every data point had the same probability of belonging to group k for
k = 1, . . . , G. However, with the variable zi, we now know to which group each data point
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belongs. The p.d.f. of data point xi is simply the p.d.f. of that point in the group to which
it belongs. We can write this as

f(xi|zi, µ,Σ) =
G∏

k=1

fk(xi|µk, Σk)zik (2.7)

where fk(xi|µk , Σk)zik will be 1 if data point xi is not in group k. Thus, if xi is in group p,
then f(xi|zi, µ,Σ) = fp(xi|µp, Σp), which is what we want.

We are now in a position to construct the complete data likelihood equation. Recall
that we want to find the parameters (µ,Σ, τ), of the clusters that best fit the data. There-
fore we want to maximize the likelihood of our parameters based on the data and zi, our
knowledge of the allocation of data points into groups. For data point xi, the likelihood is
L(µ,Σ, τ |xi, zi). By the definition of likelihood [10], we can express this as

L(µ,Σ, τ |xi, zi) = f(xi, zi|µ,Σ, τ) = f(xi|µ,Σ, τ, zi)f(zi|µ,Σ, τ), (2.8)

where the last equality comes from the definition of conditional probability. We also know
that zi only depends on τ and is independent of µ and Σ. Therefore

f(zi|µ,Σ, τ) = f(zi|τ). (2.9)

Consequently, the likelihood for our ith observation is

L(µ,Σ, τ |xi, zi) = f(xi|µ,Σ, τ, zi)f(zi|τ). (2.10)

Substituting equations 2.6 and 2.7 into this expression yields the likelihood equation for
data point xi,

L(µ,Σ, τ |xi, zi) =
G∏

k=1

fk(xi|µk, Σk)zikτ zik
k . (2.11)

By the independence of our data, the complete data likelihood is

L(µ,Σ, τ |x, z) =
n∏

i=1

G∏

k=1

fk(xi|µk, Σk)zik τ zik
k (2.12)

and the complete data loglikelihood is

l(µ,Σ, τ |x, z) =
n∑

i=1

G∑

k=1

zik[log(τkfk(xi|µk, Σk))], (2.13)

which is easier to work with.
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2.2 The EM Algorithm

Our ultimate goal is to find the best allocation of data points into clusters based on the data.
Maximizing our complete data loglikelihood (2.13) gives us the optimal set of clusters given
z. However, z is unknown! In fact, it is the missing data that we are looking for in the first
place. Therefore, we need a means of maximizing equation 2.13 in the face of missing data
while at the same time solving for that missing data. The general approach to this kind of
problem is the expectation-maximization (EM) algorithm [4]. The EM algorithm iterates
between an M-step, which maximizes equation 2.13 with respect to the other parameters
while holding z constant, and an E-step, which calculates the expected value of z given the
parameters from the M-step.

The idea of the EM algorithm is that we have missing information and a likelihood
function that we want to maximize with respect to a set of unknown parameters. Because
of the missing information, we cannot do the maximization directly using maximum like-
lihood estimators. Therefore, we instead alternate between finding the expected value of
our missing information based on the parameters and maximizing the expectation of the
likelihood function with respect to the data and current values of the parameters.

2.2.1 EM Initialization

The EM algorithm must either begin with some initial value of z and then proceed to
the M-step, or begin with some initial values of the other parameters, µ, Σ, and τ and
proceed to the E-step. It is much easier to initialize with z: we can obtain a starting
matrix z by constructing some initial clustering of the data points into groups. The most
common initialization is typically given by non-model based methods such as hierarchical
clustering (see Section 1.1.2) [4]. In our problem, we have an existing allocation of units
into groups that was created by geologists. We have confidence in this clustering because
it was performed over a span of three years. Additionally, we do not want to lose the large
amount of information that was used to construct the existing map. Therefore, we will
initialize the EM algorithm with ẑ where

ẑik =
{

1 if the geologists say that unit xi belongs to group k
0 else

(2.14)

so as to use the geologists’ work as a starting point. Any differences that arise in our
analysis, then, can be attributed to properties of the data.

2.2.2 M-step (Maximization)

After initialization, the EM algorithm proceeds to the M-step. Here, ẑ is held constant and
equation 2.13 is maximized with respect to µ, Σ, and τ . The optimization is performed
by means of maximum likelihood estimation. In this section I will derive the maximum
likelihood estimator for τ and µ and discuss the model-based estimator for Σ.
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Claim: τ̂k =
∑n

i=1
ẑik

n , for k = 1, . . . , G is the MLE for τk for our likelihood equa-
tion

Proof:
let p ∈ (1, . . . , G− 1)

∂l

∂τp
=

∂

∂τp

n∑

i=1

G∑

k=1

ẑik [ln(τk) + ln(fk(xi|µk , Σk))]

=
n∑

i=1

[
∂

∂τp

G−1∑

k=1

ẑik[ln(τk) + ln(fk(xi|µk, Σk))]

+
∂

∂τp
ẑiG[ln(1−

G−1∑

k=1

τk) + ln(fG(xi|µG, ΣG))]

]

=
n∑

i=1

(
ẑip

τp
+ (−1)

ẑiG

(1−
∑G−1

k=1 τk)

)
= 0

⇒
∑n

i=1 ẑip

τp
=

∑n
i=1 ẑiG

1 −
∑G−1

k=1 τk

τp =
n∑

i=1

ẑip

[
1 −

∑G−1
k=1 τk∑n

i=1 ẑiG

]

1−
∑G−1

k=1 τk = τG = Pr(a randomly chosen unit is in group G)∑n
i=1 ẑiG = the number of units in group G

Therefore,
1 −

∑G−1
k=1 τk∑n

i=1 ẑiG
=

1
n

And by substitution τ̂p =
∑n

i=1 ẑip

n

We show that τ̂p is an MLE by taking second partial with respect to τp:

∂2l

∂τp
2

=
n∑

i=1

(
− ẑip

τ2
p

− ẑiG

(1−
∑G−1

k=1 τk)2

)

< 0

For the case when p = G, the proof is analogous.

Our maximum likelihood estimator τ̂k, the probability that a random unit is in group
k, is intuitive because it simply divides the total number of units in group k by the total
number of units overall.
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Claim: µ̂k =
∑n

i=1
ẑikxi∑n

i=1
ẑik

, for k = 1, . . . , G is the MLE for µk for our likelihood equa-

tion

Proof:
let p ∈ (1, . . . , G)

∂l

∂µp
=

∂

∂µp

n∑

i=1

G∑

k=1

ẑik [ln(τk) + ln(fk(xi|µk, Σk))] = 0

∂

∂µp

n∑

i=1

G∑

k=1

ẑik

[
ln(τk) +

(
− 1

2
(xi − µk)TΣ−1

k (xi − µk)
)

+ ln(2πm/2|Σ|1/2)

]
= 0

n∑

i=1

−1
2
ẑip

∂

∂µp

(
(xi − µp)TΣ−1

p (xi − µp)
)

= 0

n∑

i=1

−1
2
ẑip(2Σ−1

p (−1)(xi − µp)) = 0

n∑

i=1

ẑipΣ−1
p xi −

n∑

i=1

ẑipΣ−1
p µp = 0

Σ−1
p µp

n∑

i=1

ẑip = Σ−1
p

n∑

i=1

ẑipxi

µ̂p =
∑n

i=1 ẑipxi∑n
i=1 ẑip

We show that τ̂p is an MLE by taking second partial with respect to τp:

∂2l

∂µp
2

=
∂

∂µp
(

n∑

i=1

ẑipΣ−1
p xi −

n∑

i=1

ẑipΣ−1
p µp)

= −
n∑

i=1

ẑipΣ−1
p

< 0

So it is proved.

Again, this is an intuitive formula for the mean because we are simply taking the
weighted sum of the values of each variable for those units in group p and then dividing by
the total number of units in group p.

The maximum likelihood estimation calculations for Σk are not as straightforward. The
method of finding the M.L.E. depends on the model used. We will primarily use the model
with clusters of variable volume, equal shape, and variable orientation (VEV). We use VEV
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because it is the most unconstrained model that we can use. Less constrained models are
unavailable to us because they require more data to estimate additional parameters, and
in our situation the initial clustering of units contains some groups that have fewer units
than the number of parameters needed. For example, if we were to attempt to use a model
where the covariance was completely unconstrained (VVV), then our covariance matrix
would become singular (determinant equal to 0) on the first iteration because the number
of parameters would exceed the number of units in the smallest group. In general, it is
better to use unconstrained models because this allows clusters more flexibility in adjusting
to the values of the data points (see Section 3.3.2). With our data, better results came from
more unconstrained models.

In the VEV model, we begin maximum likelihood estimation with the eigenvalue de-
composition of Σk (equation 2.4). However, because we are assuming that our clusters have
equal shape, we use A, a diagonal matrix of normalized eigenvalues that does not vary across
groups. With the VEV model, maximizing equation 2.13 with respect to Σk is equivalent
to minimizing [1]

F (λ,D, A) =
G∑

k=1

1
λk

tr(WkDkA
−1DT

k ) + d
G∑

k=1

n∑

i=1

ẑik ln(λk) (2.15)

where

Wk =
n∑

i=1

ẑik(xi − µk)(xi − µk)T . (2.16)

If we let the eigenvalue composition of Wk be Wk = LkΩkL
T
k , then it can be shown that

the parameters λk, Dk, and A that minimize equation 2.15 are found by iteratively solving
[1]

λ̂k =
tr(WkDkA

−1DT
k )

d
∑n

i=1 ẑik
(2.17)

D̂k = Lk (2.18)

Â =

∑G
k=1

1
λk

Ωk

|
∑G

k=1
1
λk

Ωk|1/d
(2.19)

And finally, Σ̂k = λ̂kD̂kÂD̂T
k is the maximum likelihood estimate for the kth covariance

matrix. Hence we have found the MLEs for all of our parameters of interest, and now the
EM algorithm proceeds to the expectation step (E-step).

2.2.3 E-step (Expectation)

The M-step allowed us to find the values of µ, Σ, and τ that maximized our likelihood
equation while keeping ẑ constant. This determined the most likely set of clusters based on
our previous classification. Now, we wish to update ẑ to fit these clusters given the mixture
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likelihood parametrized by the MLEs. That is, we want to find the expected classification
based on the clusters defined by the M-step. Therefore, we will keep µ̂, Σ̂, and τ̂ constant
and find the expected value of zik for all i = 1, . . . , n and k = 1, . . . , G.

Recall that zik is 1 if unit i is in group k and 0 if unit i is not in group k. Therefore,
the expected value of zik given the fixed values of µ̂, Σ̂, and τ̂ and the data x is

ẑik = E[zik] = Pr(xi ∈ unit k|µ̂, Σ̂, τ̂ , xi) · 1 + Pr(xi /∈ unit k|µ̂, Σ̂, τ̂ , xi) · 0
= Pr(xi ∈ unit k|µ̂, Σ̂, τ̂ , xi).

Observe that zik, which began as an indicator variable, is estimated using a probability: it
is the probability that unit i is in group k given the parameters µ̂, Σ̂, τ̂ , and xi. Now, we
can apply Bayes’ rule to rewrite this equation as

ẑik = Pr(xi ∈ unit k|µ̂, Σ̂, τ̂ , xi) =
Pr(xi|xi ∈ unit k, µ̂, Σ̂, τ̂) Pr(xi ∈ unit k|µ̂, Σ̂, τ̂)

Pr(xi|µ̂, Σ̂, τ̂)
.

(2.20)
Notice that Pr(xi|xi ∈ unit k, µ̂, Σ̂, τ̂) = fk(xi|µ̂k, Σ̂k) because given that a unit is in

group k, we know it is described by the density function fk . Also, Pr(xi ∈ unit k|µ̂, Σ̂, τ̂) =
τ̂k, the probability that a randomly-drawn unit is in group k. Therefore we can rewrite
equation 2.20 as

ẑik =
τ̂kfk(xi|µ̂k, Σ̂k)
f(xi|µ̂, Σ̂, τ̂)

, (2.21)

and substituting equation 2.1 into the denominator yields the standard form of the equation
for ẑik [4],

ẑik =
τ̂kfk(xi|µ̂k, Σ̂k)∑G
j=1 τ̂jfj(xi|µ̂j , Σ̂j)

. (2.22)

Equation 2.22 says the probability that a unit i is in a particular group k given the
parameters that define the clusters is the density of that point in cluster k multiplied by the
probability that a randomly drawn unit is in group k divided by the sum of these products
across all units. The original probability density function for x was a weighted sum of the
density functions of all the groups (with weights τ), so the probability that a particular unit
is in group k is simply the proportion of the overall density of xi comprised by group k.

Our new estimate, ẑ, replaces equation 2.14 and we start again with the M-step. The
EM algorithm iterates between the M-step and E-step until some tolerance level in the log
likelihood function is reached. The algorithm finally stops when the value of the change
in the log likelihood function in an entire iteration divided by the absolute value of the
likelihood function is less than some predetermined value (we use a relative tolerance of
0.00001).
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2.3 Properties of the EM Algorithm

In this section, we aim to show that by using the EM algorithm, the likelihood function,
L, converges to some value L∗ under suitable regularity conditions. We will give sufficient
conditions for L∗ to be a local maximum of L and sufficient conditions such that the set
the parameters Φ = {µ,Σ, τ} converge to a stationary point.

2.3.1 General form of EM algorithm

Keeping with our notation from section 2.2, we will let Y be the complete data and X be
the observed data, where Y=(X,Z). Then, there is a many-to-one mapping X = f(Y),
because each observation X has many possible values of Z, and thus many corresponding
values of Y . Then, we define

Y (X) = {Y : f(Y) = X} (2.23)

as the set of all possible Y s corresponding to a particular X . We can write the probability
of our data X, given a set of parameters Φ as

g(X|Φ) =
∫

Y (X)
gc(Y|Φ)dY (2.24)

where we wish to maximize L(Φ) = g(X|Φ) [9] (Note: L(Φ) is given in equation 2.2 for the
general finite mixture model setting). In equation 2.24, g(X|Φ) is the probability density
function of the observed data X given Φ, while gc(Y|Φ) is the p.d.f. of the complete data Y
given Φ. In general, maximization of gc(Y|Φ) has an analytical solution, but maximization
of L(Φ) = g(X|Φ) does not [9]. We will assume that the maximization of gc(Y|Φ) has
an analytical solution. Therefore we use the EM algorithm, which iteratively attempts to
maximize L.

Let Φ(p) be the value of Φ after p iterations. Then, the next iteration will be:
E-step: Calculate Q(Φ|Φ(p)), where

Q(Φ|Φ(p)) = EΦ(p) [ln gc(Y|Φ)|X] (2.25)

M-step: We now maximize the value of this expectation with respect to Φ. Therefore
we choose Φ(p+1) to be any value of Φ that maximizes Q(Φ|Φ(p)). Thus

Q(Φ(p+1)|Φ(p)) ≥ Q(Φ|Φ(p)) (2.26)

for all Φ ∈ Ω. This can be done because as stated above by assumption, the maximization
of gc(Y|Φ) has an analytical solution.

2.3.2 L(Φ) is Non-decreasing for each Iteration

Claim:
L(Φ(p+1)) ≥ L(Φ(p)) for all p ∈ (0, 1, . . .) (2.27)
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Proof: We let p be a fixed natural number.

We define k to be the conditional density of Y given X = x:

k(y|x,Φ) =
gc(y|Φ)
g(x|Φ)

. (2.28)

Then,

L(Φ) = g(x|Φ)

=
gc(y|Φ)

k(y|x,Φ)

So,
lnL(Φ) = ln gc(y|Φ)− lnk(y|x,Φ) (2.29)

Now, we take the expectation of each side of equation 2.29 with respect to the conditional
distribution of Y given X = x, using our current parameters, Φ(p), which yields

EΦ(p) [lnL(Φ)|x] = EΦ(p) [ln gc(y|Φ)|x]− EΦ(p) [lnk(y|x,Φ)|x]

ln L(Φ) = Q(Φ|Φ(p)) − H(Φ|Φ(p))
where H(Φ|Φ(p)) = EΦ(p) [lnk(Y|x,Φ)|x] [9]

Then,

lnL(Φ(p+1)) − lnL(Φ(p)) = [Q(Φ(p+1)|Φ(p)) − Q(Φ(p)|Φ(p))]
−[H(Φ(p+1)|Φ(p)) − H(Φ(p)|Φ(p))] (2.30)

We now aim to show that lnL(Φ(p+1)) − lnL(Φ(p)) ≥ 0.
By definition, the M-step maximizes Q over all values of Φ, so Φ(p+1) is chosen such

that
Q(Φ(p+1)|Φ(p)) ≥ Q(Φ(p)|Φ(p)) (2.31)

Therefore to prove the result, we must show that necessarily

[H(Φ(p+1)|Φ(p)) − H(Φ(p)|Φ(p))] ≤ 0 (2.32)

For any Φ,

[H(Φ|Φ(p)) − H(Φ(p)|Φ(p))] = EΦ(p) [lnk(Y|x,Φ)|x]− EΦ(p) [lnk(Y|x,Φ(p))|x]

= EΦ(p)

[
ln

k(Y|x,Φ)
k(Y|x,Φ(p))

|x
]
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≤ lnEΦ(p)

[
k(Y|x,Φ)

k(Y|x,Φ(p))
|x

]

by Jensen’s inequality and the concavity of ln

= ln
∫

Y (X)

k(Y|x,Φ)
k(Y|x,Φ(p))

k(Y|x,Φ(p))dy

by the definition of expected value and using the fact that k(Y|x,Φ(p)) is the conditional
density of Y given x with respect to Φ(p)

Finishing the proof,

[H(Φ|Φ(p)) − H(Φ(p)|Φ(p))] ≤ ln
( ∫

Y (X)
k(Y|x,Φ)dy

)

= ln
( ∫

Y (X)

gc(y|Φ)
g(x|Φ)

dy
)

= ln
(

1
g(x|Φ)

∫

Y (X)
gc(y|Φ)dy

)

= ln
(

g(x|Φ)
g(x|Φ)

)

= ln(1)
= 0.

Using this result and the result in equation 2.31, we see that substitution into equation
2.30 yields

lnL(Φ(p+1)) − ln L(Φ(p)) ≥ 0
⇒ L(Φ(p+1)) ≥ L(Φ(p)).

2.3.3 Convergence of the EM Algorithm

We have proven that in each iteration of the EM algorithm, the likelihood equation neces-
sarily increases in value or stays the same. In this section, we will discuss the conditions
under which the likelihood converges to a value, L∗, and under which conditions L∗ is a local
maximum. Moreover, we will discuss the conditions under which the parameters converge
to some value Φ∗ as the likelihood equation converges.

If the sequence of loglikelihoods, {L(p)} is bounded above, then the loglikelihood will
increase monotonically to some L∗. It can be shown that if (1) Ω is a subset of Rr, (2) the
set of parameters Φ such that L(Φ) ≥ L(Φ0) for any L(Φ0) > −∞ is compact, and (3) L is
continuous in Ω and differentiable in the interior of Ω, then {L(p)} is bounded above [11].

The compactness assumption above can be restrictive when no realistic compactifica-
tion of the original parameter space is available, but this usually occurs only in variance
components models or factor analysis [11], so will not be a concern with our model.
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Therefore, in the EM process, the loglikelihood function converges to some value L∗.
However, we would like to know if this convergence is to a global maximum, local maximum,
or other stationary value such as a saddle point. Although global maximization of Q is
guaranteed in the M-step, there is no guarantee of similar optimization of H . In general,
the convergence point of the EM algorithm depends on the initialization of the algorithm
when several local maxima or stationary points exist [11].

For L to converge to a local maximum, the following two conditions must be met: [11]

Q(Ψ|Φ) is continuous in both Ψ and Φ

sup
Φ′

Q(Φ
′|Φ) > Q(Φ|Φ) for any Φ ∈ {stationary points that are not local maxima}

The first condition is weak and satisfied in most situations, but the second is usually
hard to verify. Therefore it is suggested that different initial values of the parameters be
tried to determine maxima [11]. If the algorithm is stuck on some stationary point such as
a saddle point, a small random perturbation of Φ away from the saddle point will usually
cause the algorithm to diverge from the saddle point [9].

Convergence of L to a local or global maximum does not automatically imply that
the sequence of parameters, {Φ} will converge to some point Φ∗. For the algorithm to
give meaningful results, the parameters should approach some point as the likelihood does
because ultimately we do not care about the value of the likelihood, only the values of the
parameters.

It has been shown [11] that {Φ} converges to a local maximum if there are a discrete
number of stationary points with a given L and ‖Φp+1 − Φp‖ → 0 as p → ∞. These
conditions are quite restrictive, and the requirements for them to hold are many and outside
the scope of this discussion.
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Chapter 3

Results

Our overall goal in clustering the units into unit type is to test if the geologic map of V14
is consistent with the numerical data. We aim to identify units on V14 whose classification
does not fit the data, and therefore might be incorrectly classified. We will not be the final
authority on decisions of correct classification, we only wish to present the geologists with
a set of units that should be further investigated.

3.1 Data Collection

We begin by assuming that the units are well-drawn and that the geologists’ classifications
are correct. These are reasonable assumptions because the geologists have spent three years
creating and revising the geologic map using standard planetary mapping techniques. The
assumption that the units are well-drawn is very important because it allows us to treat
each unit as a well-defined entity. Therefore, once we have extracted our data from each
unit, we do not have to concern ourselves with the possibility that the unit is misdrawn. If
we allow for the units to change, our model becomes much too complicated, as there are
uncountably many ways to draw the units.

The assumption that the existing geologic map is correct is essential because if we find
a handful of units whose classification does not fit the data, then these differences can
be attributed to characteristics of the data, and not some other initial classification. The
assumption is reasonable because we are not attempting to propose an entire overhaul of the
map, as this would be foolish given the amount of time and effort that went into creating
the initial map.

We extracted the data from the units using Arcview GIS software. With the “Zonal
Statistics” tool, we obtained the mean, standard deviation, and median of pixel values
within the boundary of each unit for each data set. The five data sets are surface emissivity,
surface reflectivity, topography (elevation), root mean squared (RMS) slope, and backscat-
ter (FMAP radar image). The backscatter has the highest resolution (225 m/pixel) and
represents an overhead picture of V14. The backscatter raster was latitude-corrected to
eliminate the dependency of pixel values on latitude [7].
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Figure 3.1: Plot of the mean of emissivity for each unit versus that unit’s mean of reflectivity.
The variables should be exactly inversely related. However, we observe that although there
is a significant inverse trend, there is much variation.

Although we have five data sets, two of them are measurements of the same property.
Emissivity and reflectivity both measure the percent of light that is absorbed (or reflected)
by the surface. Therefore, their values should correspond exactly. However, somewhere
between Venus and Pomona College, their values have been incrementally altered (e.g.
through imperfect extraction of the data) such that they are not perfect inverses (see Figure
3.1). Therefore, we expect to obtain slightly different results clustering with emissivity
versus clustering with reflectivity. However, we cannot cluster with both variables because in
that case we would double-weight the property, which would be reflected in the reassignment
of a large number of units with slightly anomalous values of emissivity/reflectivity.

The breakdown for the number of units in each group from the initial classification is in
Table 3.1. For the remainder of this paper, we will use the notation introduced by Grosfils
[5]. We notice that there are several groups with more than 15 units (t (56 units), prc
(25), fe (20), pe (18), and prb (16)). However, there are also five groups with only one unit
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Name of Group Symbol Number of Initial Members
Linear belt bl 5
Crater c 11
Crater deposit cf 1
Corona rim co 1
Corona flow cof 1
Airburst cs 4
Volcanic flow fe 20
Edifice plains pe 18
Homogeneous plains ph 1
Lineated plains pl 3
Lineated plains 1 pla 7
Lineated plains 2 plb 10
Lahevhev plains pLla 1
Lahevhev plains 1 pLlb 7
Light background plains pra 13
Intermediate background plains prb 16
Dark background plains prc 25
Tessera t 56

Table 3.1: Initial allocation of the 200 units by the geologists. Five units only have one
member, which is a problem for model-based clustering.

member (cf, co, cof, ph, and pLla). Single unit clusters are a problem in our model, because
the covariance matrices that we find for each of these five groups in the M-step of the EM
algorithm will be singular, and the algorithm will be forced to stop before completion. We
have two options: (1) we can attempt to reallocate these units into other groups based on
geologic knowledge, or (2) we can remove them altogether and continue with the remaining
units.

Relocation of the single units can be done by combining groups based on geologic knowl-
edge. The first single group we see is cf, or crater deposit. This is formed from the ejecta
of an impactor event (like a meteor hitting the surface). We will put this group into the
airburst group (cs). Airbursts on Venus are formed when a large impactor does not reach
the surface because it is broken up by the planet’s extremely thick clouds, yet still transfers
energy to the surface of the planet via a powerful shock wave, thus changing the geology
of the surface [5]. Although these two geologic unit types are not exactly the same, they
are formed in similar manners, and are suitable to be grouped together. Next we group the
co unit into the group bl. Corona, prevalent features on the surface of Venus, are circular
formations created by rising hot magma that does not reach the surface [5]. The structure
of the corona is a central region surrounded by concentric rings. The rings, which are a
series of tectonic ridges, are similar in nature to linear belts, which are linear regions with
much tectonic activity. We place the cof and ph units into the fe group. This is reasonable
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because the fe group contains units of relatively young volcanic flows. Both the cof and
ph units are, though slightly different geomorphologically than the fe group, well within
the comfort range of being relatively young flows units. Finally, we regroup pLla into pLlb.
Both of these unit types are a particular type of plains unit, and although slightly different
in nature, they fit better together than with any other group.

3.2 Clustering Results

3.2.1 Relocation of Single Units

We begin clustering by considering the adjusted groups (those where the single-unit groups
are relocated based on geologic knowledge). We will cluster with four different combina-
tions of variables: (1) means and standard deviations of every property except emissivity,
(2) means and standard deviations of every property except reflectivity, (3) means, stan-
dard deviations, and medians of every property except emissivity, and (4) means, standard
deviations, and medians of every property except reflectivity. These four are logical com-
binations of variables because we cannot include both emissivity and reflectivity in one
clustering attempt or we risk double-weighting the same property. Also, it is advantageous
to include medians in two clusterings because the medians may carry additional information
not present in the means data, such as skewness of the distribution of pixel values. It is
also important to note that there is no median information for the backscatter data set
because, unlike the other properties, each backscatter pixel has a non-integer value (due to
latitude-correction), and ArcGis does not compute medians for non-integer data.

Results for the four clustering attempts are in Table 3.2. When we use more variables
in our model, fewer units are moved to different groups and the algorithm converges more
quickly. This occurs because with more variables, the units are more rigidly bound to
their original groups since to be reallocated they now need to strongly differ from their
original group in more variables. This also explains why the algorithm converges more

Variables Included Number of Units % of Units # of Iterations
in Model Reallocated Reallocated to Convergence
means & standard devs., 61 30.5% 23
no emissivity
means & standard devs., 67 33.5% 22
no reflectivity
means, st. devs., and medians, 37 18.5% 12
no emissivity
means, st. devs., and medians, 29 14.5% 8
no reflectivity

Table 3.2: Basic results for the four clustering attempts. When more variables are included,
the algorithm stops after fewer iterations and results are closer to the geologists’.
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quickly: if fewer units are changing groups, they will settle into a stable arrangement
quickly. The fact that models with more variables “force” fewer units to be reallocated is
not problematic. With each clustering result, we obtain different information about the
units that are reallocated. For instance, if we find that a particular unit is reallocated
under one set of variables and not another, we can identify the variables in which the unit
is anomalous with respect to its original classification.

The final allocation after the convergence of the EM algorithm is determined by mapping
each unit to the group for which its value of z is highest. Therefore, theoretically we can
be uncertain about the mapping of some units (for instance if the largest zik is less than
0.5). However, in our case this is not a problem. For the two clustering attempts that use
medians, the smallest maximum values of zik are .899 and .893 respectively. For the two
clustering attempts that do not include the medians, the maximum values drop to .551 and
.542, respectively. However, this is still not a great worry because, for example, 195 of the
200 units in the no medians nor emissivity clustering result have maximum ziks greater
than 0.9, and 188 have maximum ziks greater than 0.95. Therefore there are only a few
units whose final classification is somewhat uncertain, and these can be easily identified and
studied.

Each of the four clusterings gives us different information. We want to combine this
information to get an overall idea of what the data sets tell us about the units. Also, keeping
with our original assumption that the geologic map is accurate, we want to present a small
subset of units for the geologists to reexamine. Therefore we will look at trends across the
four clustering results. For each unit, we see how many times that unit was reallocated in
the four clusterings (Table 3.3).

These results show confidence in the original geologic map, as over half of the units (103)
did not change at all in any clustering. Also, we can pinpoint 14 units (7.0% of the units)
that were reallocated every time and an additional 8 that were reallocated in three of the
four clustering attempts. For each of these units, we know the group in which it started,
where it is situated on the map, and to which group(s) it is allocated by clustering. This is
a wealth of information about a small number of units that can be easily transferred to the
geologists. For the units that were reallocated every time in the series of four clusterings we
performed, the area of the unit, its original classification and its classification(s) by model
based clustering are listed in Table 3.4. For the clustering classifications, the number in
parentheses denotes the number of times (out of four) that the unit was classified to that
particular group.

The two most commonly reallocated units are fe (6) and pe (4). Geologically, it is
sensible that these units may be distributed differently than the geologist-created map

Number of Times Reallocated Across the 0 1 2 3 4
Four Different Variable Combinations
Number of Units 103 36 39 8 14

Table 3.3: Results across the four combinations of variables for the individual units.
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Unit Unit Area Original Clustering
Number (meters2) Classification Classifications
50 7.15 ×109 t pLlb (4)
81 3.09 ×1010 pe prb (2), fe (1), prc (1)
98 2.24 ×109 prb fe (1), pe (1), pra (1), prc (1)
100 1.63 ×1010 fe plb (2), prb (1), prc (1)
102 4.18 ×109 pe prb (4)
105 2.37 ×1011 fe pe (2), prc (2)
111 8.81 ×1010 pe prb (3), fe (1)
133 1.50 ×1010 pe prb (3), prc (1)
136 3.55 ×1010 fe prc (3), pra (1)
139 1.92 ×109 prc pe (3), prb (1)
142 6.06 ×1010 fe prc (2), pra (1), prb (1)
143 5.57 ×1010 fe prb (3), prc (1)
167 2.07 ×109 fe prb (2), prc (1), c (1)
193 3.66 ×108 prc t (4)

Table 3.4: The 14 units that were reallocated in each of the four clusterings.

when the classification is performed with only the numerical data. The fe unit is a volcanic
flows unit, meaning that a relatively recent volcanic event created it. However, without
analyzing the geomorphology of these units, it is virtually impossible to tell volcanic flows
apart from other plains units, which were formed by older volcanic events. The pe units are
edifice plains, meaning plains filled with shield volcanoes. Again, without recognizing the
presence of these volcanoes, it would be hard to differentiate them from other plains units.
At the same time, only a handful of each of these units are reallocated every time. This
means that something starkly different is occurring on these particular fe and pe units than
on others, and therefore the processes that formed them may be different.

Additionally, two relatively small prc units, a small prb unit, and a slightly bigger t
unit are all reallocated every time. These units clearly have properties that are out of the
ordinary for their unit type. However, on very small units like unit number 193, the size
of a physical property pixel is very large compared to the size of the unit. There may be
strange things happening to the data from smaller units like these because a small amount of
pixels means a higher variability in the mean, median, and standard deviation of these pixel
values. Therefore, there may be characteristics in the data that are not actually present
geologically.

3.2.2 Removal of Single Units

Next, we cluster without the units that belong to single-member groups. This allows us to
cluster without first depending on a reallocation of some units to groups that are, although
similar in nature to the groups specified by the geologists, not actually the groups that the
geologists assigned these units to. By removing these five units, their data will no longer
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Variables Included Number of Units % of Units # of Iterations
in Model Reallocated Reallocated to Convergence
means & standard devs., 53 27.2% 14
no emissivity
means & standard devs., 68 34.9% 18
no reflectivity
means, st. devs., and medians, 40 20.5% 13
no emissivity
means, st. devs., and medians, 30 15.4% 13
no reflectivity

Table 3.5: Statistics for the four clustering attempts with single units removed.

Number of Times Reallocated Across the 0 1 2 3 4
Four Different Variable Combinations
Number of Units 96 43 29 18 9

Table 3.6: Results across the four combinations of variables.

affect the parameters of the groups into which they were relocated. In turn, clustering will be
initiated with a set of groups that is truer to the geologists’ original interpretation. Hence
we tie ourselves closer to the original null assumption that the geologists have correctly
partitioned the units into groups.

Using the same combinations of variables as the previous section, we obtain the results
in Table 3.5, which are similar to the results in Table 3.2. Looking at trends across groups
yields Table 3.6.

First notice that the number of units that are never reallocated has dropped to 96
(49.2% of the units–down from 51.5% in the relocation clusterings). At the same time, only
9 units (4.6%) are reallocated from the geologists’ classification every time. The proportion
of units that are reallocated in over half of the clustering attempts is slightly higher with
single units removed (13.8%) than with single units relocated (11.0%). Overall, the results
under removal of single units are very similar to the results under relocation. However, we
expect that a different set of units will be reallocated every time under single-unit removal
because the removed units no longer will affect the parameters of any cluster. This set of
units is in Table 3.7.

In reality, we see that of the nine units that are reallocated every time by our clusterings
(with single units removed), seven of these were also reallocated every time by the first set
of clusterings (with single units relocated). The two newly-reallocated units are a large t
unit and a very small prc unit. The reallocation of the large t (tessera) unit is unexpected,
especially since it is reallocated into the fe (volcanic flow) group, a unit type that does
not at all resemble extremely deformed tessera. The reclassification of the prc unit is not
troubling because the unit is very small.

An interesting result from this set of clusterings is that only one fe unit is reallocated
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Unit Unit Area Original Clustering
Number (meters2) Classification Classifications
39 1.29 ×1010 t fe (4)
81 3.09 ×1010 pe fe (3), prb (1)
95 6.68 ×108 prc fe (3), t (1)
102 4.18 ×109 pe prb (4)
111 8.81 ×1010 pe prb (3), fe (1)
133 1.50 ×1010 pe prb (2), prc (1), fe (1)
139 1.92 ×109 prc pe (4)
167 2.07 ×109 fe prb (3), prc (1)
193 3.66 ×108 prc t (4)

Table 3.7: The nine units that were reallocated every time by the single unit removal
clusterings.

every time compared to six that were reallocated every time by the clustering results where
single units were relocated. In the relocation of single groups, two units (one cof and
one ph) were placed into the fe group. This may have caused an artificial distortion in
the parameters of the fe group, thus causing a large amount of fe units to be incorrectly
reallocated.

3.3 More Clustering Results

3.3.1 Background Plains

We will briefly turn our attention to the background plains (pra, prb, and prc). Background
plains make up 62.3% of the area of the map and were created by region-wide volcanic events.
There are three categories of background plains corresponding to the brightness of the
radar backscatter. The pra units have bright, the prb units have intermediate, and the prc
units have dark radar backscatters. Essentially, the only way that geologists differentiated
between these three groups was by the color of the radar backscatter. However, they
performed this analysis before the backscatter data was latitude-corrected. Therefore, while
they have confidence in the comparison of brightness between two neighboring units, they
do not hold this same confidence for units that lie in significantly different latitudes.

To analyze the geologists’ final classification of background plains units, we will cluster
with only pra, prb, and prc units. Again, we will begin with the null assumption that the
geologists are correct so that any reclassifications can be attributed to properties of the
data. We will also use the same combinations of variables that we used in section 3.2 and
compare results between clusterings.

When we perform this clustering, we get results that suggest that the geologists have
classified these units well. For any one clustering, the maximum number of units that
are reclassified is nine (16.7% of background plains units). The best individual clustering
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Number of Times Reallocated Across the 0 1 2 3 4
Four Different Variable Combinations
Number of Units 38 10 3 2 1

Table 3.8: Results across clusterings for the 54 background plains units. Only one unit was
reclassified every time.

Unit Unit Area Number of Times Original Clustering
Number (meters2) Reclassified Classification Classifications
138 1.43 ×1011 4 prc prb (4)
101 1.21 ×109 3 pra prc (2), prb (1)
150 4.31 ×108 3 prb prc (3)
98 2.24 ×109 2 prb pra (1), prc (1)
130 1.40 ×109 2 prc prb (2)
162 4.01 ×1010 2 prc prb (2)

Table 3.9: The six units that were reallocated in at least two of the four clustering attempts.
Most of these units have very small areas compared to the average background plains unit.

reclassifies five units (9.3%). Results across clusterings are in Table 3.8.
Across clusterings, we see that well more than half of all background plains units (70.4%)

are never reclassified by model-based clustering. Also, only one unit is reclassified every
time, and only five others are reclassified in at least two of the four clustering attempts.

Unit number 138, a large unit in the northwest corner of V14, is the only background
plains unit that was reclassified every time. This unit, which is surrounded on three sides
by a pra unit and does not touch any other background plains unit, was originally classified
as a prc unit by the geologists. Our clusterings unanimously conclude that this unit should
be classified as a prb unit. Because the unit does not touch either of these unit types and
since the geologists performed the clustering with non-corrected backscatter data, this unit
definitely needs geologic reexamination with the latitude-corrected data.

Four of the other five units in the table are very small (the entire map has area 6.55
×1012), and none is reclassified every time. Therefore they do not warrant any geologic
reexamination with adjusted backscatter. Unit number 162 is somewhat sizable and was
classified as prb each time emissivity was used and as prc each time reflectivity was used.
Therefore, there is something anomalous in the unit’s data. The unit shares a long boundary
with a large prb unit, and is obviously darker. Thus, if it is indeed a background plains
unit, it should be classified as prc. An explanation for the reclassification by the clusterings
is a very large concentration of shield volcanoes on the unit.

3.3.2 A Less Constrained Model

Thus far we have been using the model where our clusters have variable volume, equal
shape, and variable orientation (VEV). This is the most unconstrained model available to
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us with the initial classification of geologic units (see section 2.2.2) because some groups do
not initially have enough units. If we want to use the most unconstrained model: variable
volume, shape, and orientation of clusters (VVV), we need to either combine or eliminate
groups such that each group initially has enough units.

The more unconstrained model we use, the more flexibility the individual clusters have to
fit the structure of the data. We want to use the most unconstrained model available because
we have no preconceived notion that all clusters should have the same volume, shape, or
orientation. We want the clusters to be able to fit the data without these restrictions.

We begin by relocating the single units as in section 3.2.1. Then, because craters and
airbursts are features that are essentially unmistakable under geologic scrutiny, we will
remove groups c and cs from our model. We will also remove the six linear belt units (bl)
because there are very few of them and because they are easily recognized with geologic
analysis. Next, we will combine all of the deformed plains units (pl, pla, plb) because they
are all similar geologically. Finally, we will remove the brushed plains (pLlb) because there
are very few of these units and they only occur in one small, isolated area of the map.

This leaves us with 170 units and seven groups, where initially the smallest group (pra)
has 13 unit members. When we run VVV clustering with the same combination of variables
as before, we run into problems with singularity of covariance matrices in the clustering
attempt that uses means, standard deviations, and medians with no emissivity (we do not
have this problem in any other combination of variables). The problem occurs because in
VVV clustering we need more units in each group than number of variables, and in this
clustering one of the groups (fe) drops below 11 members. We can resolve this problem by
using fewer variables. Therefore, in this combination of variables we will remove the slope
variable (arguably it is the least important in deciding group membership). We now cluster
using the VEV and then the VVV model.

VEV Results

Tables 3.10 and 3.11 present the results for each of the four clustering attempts using the
VEV model and our condensed groups.
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Variables Included Number of Units % of Units # of Iterations
in Model Reallocated Reallocated to Convergence
means & standard devs., 74 43.5% 32
no emissivity
means & standard devs., 58 34.1% 22
no reflectivity
means, st. devs., and medians, 65 38.2% 19
no emissivity or slope
means, st. devs., and medians, 46 27.1% 22
no reflectivity

Table 3.10: Results for each clustering attempt using the combined groups and VEV model.

Number of Times Reallocated Across the 0 1 2 3 4
Four Different Variable Combinations
Number of Units 65 29 28 34 14

Table 3.11: Results for individual units for the VEV clustering.

VVV Results

The corresponding results for our VVV clusters are in the tables 3.12 and 3.13.
The increased flexibility of the clusters in the VVV model yields results that are slightly

closer to the classification by the geologists. We see that 80 units (47.1% of the units) stay
classified the same as the original geologic map with the VVV model compared to only 65
(38.2%) with the VEV model. We are not surprised that VVV yields results closer to the
geologists’ because we initialize the EM algorithm by assuming the geologists are correct.
Thus in a less constrained model the clusters will have more flexibility to conform to the
data and the initial classification.

Five of the six units that were reclassified every time both the VEV and VVV models

Variables Included Number of Units % of Units # of Iterations
in Model Reallocated Reallocated to Convergence
means & standard devs., 54 31.8% 18
no emissivity
means & standard devs., 61 35.9% 40
no reflectivity
means, st. devs., and medians, 52 30.6% 19
no emissivity or slope
means, st. devs., and medians, 40 23.5% 13
no reflectivity

Table 3.12: Cluster results for the VVV model.
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Number of Times Reallocated Across the 0 1 2 3 4
Four Different Variable Combinations
Number of Units 80 31 17 26 16

Table 3.13: Results across clusterings for the VVV model.

Unit Unit Area Original Clustering
Number (meters2) Classification Classifications
95 6.68 ×108 prc t (3), fe (2), pra (2), pe (1)
105 2.37 ×1011 fe prc (3), pe (3), prb (2)
111 8.81 ×1010 pe prb (7), pl (1)
133 1.50 ×1010 pe prc (5), prb (3)
167 2.07 ×109 fe prb (6), prc (1), pe (1)
196 2.58 ×1011 prb fe (7), t (1)

Table 3.14: Six units were reallocated every time by both the VEV and VVV models. These
units are listed in the table above.

with combined groups were also reallocated by one of the original clusterings (see section
3.2). The sixth, unit number 196 is a large intermediate background plains unit. It is
continually being classified as a volcanic flows unit by the clusterings. As discussed before,
our clustering method’s failure to observe the geomorphological geometry of the unit may
be causing this reallocation.

There are some problems with the techniques we used to run the VVV model. We
removed 30 units, and although we only eliminated units whose original classification was
confident, we still lose much of the structure of the entire data set by eliminating them.
Also, we combined all of the deformed plains pl groups into one supergroup. While the
deformed plains are all similar, there are differences between the three subgroups. Hence
a pla unit may be very close to the pla cluster’s center but far from the center of the
combined pl cluster, causing it to be reallocated when in reality it should not have been.
These distortions cause changes throughout all groups because once a unit is reallocated
it subsequently changes the parameters of its new group, which may in turn cause more
reallocations.

Therefore, while the condensing of units into seven groups was an easy way to be able to
use the VVV model, major alterations to the original classification should not be performed.
We did show that more flexible models yield clusterings that are closer to the original
geologic map. In fact, as we use stricter and stricter models, our results stray further from
the geologists’ work. Therefore, if we had more geologic units at our disposal it would be
advantageous to use the VVV model, but with our data we must stay with the VEV model.
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Chapter 4

Weighting

4.1 Weighting by Unit Area

4.1.1 Motivation

In our original model, the ability of unit i to determine the parameters of cluster k only
depended on zik , the probability that unit i belongs to group k. For example, our equation
for the maximum likelihood estimate of µk ,

µ̂k =
∑n

i=1 ẑikxi∑n
i=1 ẑik

was only a function of the data, x, and ẑik . In fact, µ̂k was the weighted average of the
data, with the weights being the ẑiks.

Under this model, if two units belong to the same group k with probability 1, they will
both have the same power in determining µ̂k , Σ̂k, and τ̂k, even if one unit is 100 times
the size of the other unit. However, we want the larger unit to have more influence in
determining the center, size, and shape of the cluster because it is a more consequential
unit for the region as a whole, is easier for the geologists to study and categorize, and
produces more accurate data for the mean, standard deviation, and median of pixel values
for each variable because it contains more pixels.

On the V14 quadrangle, unit size is a major issue. The quadrangle is dominated by a
few extremely large units with many smaller units scattered throughout. The largest unit
on V14 makes up 28.6% of the area of the map while the smallest makes up only 0.0013%
of the map, a difference of 22,000 times the size! Figure 4.1 shows the large range of unit
areas on the quadrangle. In our original model-based clustering we heavily biased toward
the smaller units by not taking into account the large differences in unit areas. Our goal in
this section, then, is to devise a way to take into account these tremendous differences in
unit area in our model.
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Area of Units on V14 Quadrangle

Percentage of Area of V14

F
re

qu
en

cy

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
50

10
0

15
0

Figure 4.1: Distribution of the areas of the 200 units on the Ganiki Planitia (V14) Quadran-
gle. The vast majority of units are very small. There are a few very large units, including
one (prc) that takes up 28.6% of the map.

4.1.2 Methods

A sensible way to approach the unit area problem is to simply cut the map into more
units. Doing this would not only solve the area problem but also create more units and
consequently allow us to use more flexible models like VVV. There are several ways to cut
the map into smaller units. First, we can make a series of latitudinal and longitudinal cuts
across the existing geologic map, thus cutting all units that the lines intersect. This method
gives us some control over the areas of the new units, but we will also cut some smaller units
into even smaller parts. A second option is to set a maximum value of the area of a unit
and subsequently cut all units bigger than this threshold into the correct amount of pieces
so that each piece is smaller than the threshold. Here, although we reduce the range of the
areas of the units, there will still be a range of areas from the smallest unit to the threshold
value. A third option is to cut the map into equal-area squares and then assign each square
to the unit type which most of its area belongs to. This technique eliminates the range of
areas, but now we are ignoring the individual unit boundaries that the geologists created,
which is foolish because our original hypothesis is that the original geologic map is correct.
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Any method we choose to cut the map into smaller pieces introduces critical problems.
First, unless we ignore the geologists’ original boundaries altogether, we can never actually
completely equalize the areas. Also, there are an infinite number of ways we can cut
the map, and each will create different data that will probably produce different clustering
results. There is no correct way to cut the map, so unless we try every plausible combination
of cuts (which is impossible) we will not obtain robust results. Lastly, and probably the
most important reason we should not try to cut the map into smaller pieces is that the
geologists have drawn the units on the map in such a way that each unit is a single entity.
Although there may be variation across the unit, there are similarities across the entire unit
that the geologists have recognized. For example, when we attempted the second cutting
technique above, there was one pe unit that, although never reallocated once in nonweighted
clustering, had each of its six parts reallocated every time. The reason for this is that pe
units are plains units with large concentrations of small shield volcanoes. And, although the
characteristics of these volcanoes may vary across the unit, the fact that they are all located
on this single plains region is reason enough to call the region a single unit. Therefore, we
will not alleviate the unit area problem by cutting the map into smaller pieces. We must
stay with our original assumption that the geologists have correctly drawn the units.

Creating a New Likelihood

A better way to handle the unit area problem is to introduce a vector of weights, w, that
will indicate the size of the unit for each unit i. Similar to how our probability matrix z
determined how much each unit affected the parameters of each group, our vector w will
control how much influence each unit has over the parameters of the clusters. For instance,
we want the maximum likelihood estimate for our mean vector for unit k, ˆ µk , to be a
weighted average of the data that belong to the group and the corresponding area weights
of those units. Therefore we want

µ̂k =
∑n

i=1 wiẑikxi∑n
i=1 wiẑik

(4.1)

for all k = 1, . . . , G. If two units belong to group k with probability 1, but one is 100 times
the size of the other, we can scale our weights wi accordingly so the larger unit has much
more power to determine the value of µ̂k than the smaller unit.

Now, we need to determine how to integrate this MLE for µk (equation 4.1) back into
our original model. Recall from chapter 2 that we devised a likelihood equation (equation
2.12) using mixture models. This likelihood equation defined the likelihood of our clusters
based on the data and our current allocation. We now want to construct a similar likelihood
equation that produces an MLE for µ̂k that is equation 4.1.

Claim: µ̂k =
∑n

i=1
wi ẑikxi∑n

i=1
wiẑik

is the maximum likelihood estimator for µ̂k under the likeli-

hood equation

L(µ,Σ, τ |x, z) =
n∏

i=1

G∏

k=1

fk(xi|µk, Σk)wizikτwizik
k . (4.2)
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Proof:

∂l

∂µp
=

∂

∂µp

n∑

i=1

G∑

k=1

wiẑik[ln(τk) + ln(fk(xi|µk, Σk))] = 0

∂

∂µp

n∑

i=1

G∑

k=1

wiẑik

[
ln(τk) +

(
− 1

2
(xi − µk)TΣ−1

k (xi − µk)
)

+ ln(2πm/2|Σ|1/2)

]
= 0

n∑

i=1

−1
2
wiẑip

∂

∂µp

(
(xi − µp)TΣ−1

p (xi − µp)
)

= 0

n∑

i=1

−1
2
wiẑip(2Σ−1

p (−1)(xi − µp)) = 0

n∑

i=1

wiẑipΣ−1
p xi −

n∑

i=1

wiẑipΣ−1
p µp = 0

Σ−1
p µp

n∑

i=1

wiẑip = Σ−1
p

n∑

i=1

wiẑipxi

µ̂p =
∑n

i=1 wiẑipxi∑n
i=1 wiẑip

Therefore the likelihood equation we want to use for unit area weighting is equation 4.2.
Our loglikelihood equation is

n∑

i=1

G∑

k=1

wiẑik[ln(τk) + ln(fk(xi|µk, Σk))]. (4.3)

The MLE for τk for our new likelihood equation is

τk =
∑n

i=1 wiẑik

n
. (4.4)

However, there is a potential problem that the sum of the τks over all k will not equal 1.
Remember from section 2.1 that τk represents the probability that a randomly drawn unit
is in group k. Thus,

G∑

k=1

τ̂k = 1

∑G
k=1

∑n
i=1 wiẑik

n
= 1

G∑

k=1

n∑

i=1

wiẑik = n
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n∑

i=1

wi

G∑

k=1

ẑik = n

n∑

i=1

wi = n

Therefore, we must be sure that the sum of our weights, wi, is equal to the number of units
n. To do this we scale our original weights (that may or may not sum to 1) by the factor

n∑n

i=1
wi

.

4.1.3 Choosing the Weighting Vector

The most logical choice of weights is to set wi to the proportion of the total area of the map
that unit i contains. Then, the weights truly take into account the differences in area, as
each unit will have influence over the cluster parameters exactly proportional to its area.
Under these weights, τk is the probability that a randomly chosen point on the map is in
group k.

However logical this weighting system is, it does not work. The main problem is that
there is one huge unit on the map that, when given a weight proportional to its area, has so
much control over the parameters of its group that it essentially makes the group its own,
stripping off all the units that were initially in that group. This leaves the group with only
one member, and its covariance matrix goes to singularity, forcing the algorithm to stop.
The units that were initially in that group are allocated to groups in which they probably
do not belong, wrongfully changing the parameters of those groups and causing many more
unwarranted classifications.

To alleviate this problem we can do one of several things. We can construct our initial
vector of weights and then put a restriction on how big any weight can be. This will force
the very large units to have more reasonable weights and cause the algorithm to run to
completion. However, the value of this bound is highly arbitrary. Also, we lose information
about the relationship of the areas of the big groups to one another and information of the
actual differences in area between the large groups and smaller groups. Alternatively, we can
put a restriction on how small any weight can be. This essentially says that any one unit,
no matter how small, has importance of at least this lower bound. Again, this will cause
the algorithm to run to completion while sacrificing information about the relationship of
smaller units to one another.

Another possibility is creating a number of bins to allocate the units into based on their
area. For instance, if we made four bins we could give them weights 1/4, 1/2, 3/4, and 1 and
then assign each unit into a bin. This, again, eliminates the problem of extreme weights.
However, it is very difficult to decide which units belong to which bin, how many bins there
should be, and what weights the bins should receive. Also, by grouping the units we lose
information about the ordering of units based on area for those units that are assigned to
the same bin. We also lose all information about the actual sizes of the units.
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Lastly, we can choose to scale down the weights. For example, we can take the square
root of the unit areas and then assign weights as the proportion of these square root areas.
This method is good because it maintains the original ordering of the units. The method
scales down the actual differences between units, allowing the algorithm to run to comple-
tion. A drawback is that the choice of the scaling function (e.g. logs, exponents, etc.) is
arbitrary and greatly affects results.

4.1.4 Results

For each clustering result below we used the method of relocating single units discussed in
chapter 3.

Bound on Maximum Weight

First, we clustered using an upper bound on the value of the weights. To choose the upper
bound, we picked a high value that still made the algorithm continue to convergence. For
our data we chose .0075 (.01 caused singular covariance), meaning that the 21 units that
had area of more than .75% of the map were given the weight .0075 while the other 179 units
kept their original weights. Then, we clustered using the four combinations of variables that
we have used throughout this project.

Results for the individual clustering attempts (Table 4.1) show that more units are
being reallocated in each clustering attempt than in our nonweighted clusters. Results
across clusters (Table 4.2) show that more units (24) are being reallocated every time than
in the nonweighted clusters and fewer units (90) are never reallocated. Most of the 24 units
that are reallocated every time are very small units. Of these 24, 18 have areas that are less
than the median area of a unit (.076% of the map). Most of the reassigned units are prb
(8). This was a unit type that had very few reassignments in the nonweighted case. Also
a few prc (4), pe (4), and plb (3) units were reallocated. Interestingly, only 2 fe units were
reallocated, much fewer than in the nonweighted clusterings.

Variables Included Number of Units % of Units
in Model Reallocated Reallocated
means & standard devs., 85 42.5%
no emissivity
means & standard devs., 76 38.0%
no reflectivity
means, st. devs., and medians, 55 27.5%
no emissivity
means, st. devs., and medians, 46 23.0%
no reflectivity

Table 4.1: Cluster results for weighted clusters with a bound on the maximum weight.
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Number of Times Reallocated 0 1 2 3 4
Number of Units 90 30 32 24 24

Table 4.2: Results for individual units for the weighted clusterings with an upper bound on
weight.
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Figure 4.2: Histogram of the natural log of the area for each of the 200 units. Adjusting by
natural logs is a conservative way to assign weights, as the difference between the largest
and smallest unit is not very big.

Scaled Down Weights: Natural Logs

Next we scaled down the weights using natural logs. We chose natural logs because it is an
easy function to implement and it greatly decreases the range of the weights (see figure 4.2).
Taking the natural log of the weights may be an overly-drastic adjustment, as it decreases
the maximum weight from 28.6% to 0.75%. However, it still is useful because it retains the
ordering of the areas and gives bigger units slightly more power to determine the clusters.

In Table 4.4 are the results for our four clustering attempts. Compared to the non-
weighted clusterings, more units were kept in the groups as specified by the geologists (106).
Also, only 12 units were reallocated every time. Because the weights were not very extreme,
these results are fairly similar to the nonweighted results. However, the fact that they are
slightly closer to the geologists’ classification is reason to believe that heavier weights may
result in classifications even closer to the geologists’.
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Variables Included Number of Units % of Units
in Model Reallocated Reallocated
means & standard devs., 63 31.5%
no emissivity
means & standard devs., 60 30.0%
no reflectivity
means, st. devs., and medians, 37 18.5%
no emissivity
means, st. devs., and medians, 30 15.0%
no reflectivity

Table 4.3: Clustering results using the natural log scaled weights.

Number of Times Reallocated 0 1 2 3 4
Number of Units 106 36 32 14 12

Table 4.4: Results across clusterings for the natural log scales weights.

Unit Unit Area Original Clustering
Number (meters2) Classification Classifications
50 7.15 ×109 t pLlb (4)
81 3.09 ×1010 pe fe (2), prb (1), plb (1)
102 4.18 ×109 pe prb (4)
105 2.37 ×1011 fe pe (2), pra (1) prc (1)
111 8.81 ×1010 pe prb (3), fe (1)
133 1.50 ×1010 pe prb (3), fe (1)
136 3.55 ×1010 fe prc (2), pra (1), pla (1)
138 1.48 ×1011 prc prb (4)
139 1.92 ×109 prc pe (3), prb (1)
142 6.06 ×1010 fe prc (2), pra (1), prb (1)
167 2.07 ×109 fe prb (2), prc (1), pl (1)
193 3.66 ×108 prc t (4)

Table 4.5: The 12 units that were reallocated every time are in the table. Only one of these
units (unit number 138) was not reallocated by either of the nonweighted clusterings.
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Figure 4.3: Histogram of the square root of the area for each of the 200 units. These weights
are less extreme than the original weights (Figure 4.1), but much more extreme than the
natural log adjusted weights (Figure 4.2).

Scaled Down Weights: Square Root

Now we scale down the weights with the square root function. The weights produced by
this scaling (Figure 4.3) are not as extreme as the unscaled weights but are much more
extreme than the natural log scaling. Therefore we expect the weights to have a larger
influence on the clustering than in the natural log case and to produce results that are more
representative of exactly-weighted areas.

Results for the four clustering attempts are in Tables 4.6 and 4.7. These results are
slightly further from the geologists’ allocation than the unweighted clusterings, but still
very close to the original geologic map. Still, over half of the units (102) are allocated as
specified by the geologists every time and only a handful (16) are allocated differently than
this specification each time.

The 16 units that were reallocated every time are in Table 4.8. A large number of these
units (6) are prc. It makes sense that many prc units would be reallocated because the large
prc unit still has a very large weight and continues to dominate the group. Seven of the
16 units were not reallocated by the nonweighted clusterings. This includes one fairly large
plb unit and a sizable prc unit. It is interesting that these units were reallocated under an
area-weighted clustering but not a non-weighted clustering because having large size, they
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Variables Included Number of Units % of Units
in Model Reallocated Reallocated
means & standard devs., 69 34.5%
no emissivity
means & standard devs., 61 30.5%
no reflectivity
means, st. devs., and medians, 46 23.0%
no emissivity
means, st. devs., and medians, 33 16.5%
no reflectivity

Table 4.6: Clustering results for the square root scaled weights.

Number of Times Reallocated 0 1 2 3 4
Number of Units 102 35 31 16 16

Table 4.7: Results across clusterings for the square root scaled weights.

Unit Unit Area Original Clustering
Number (meters2) Classification Classifications
4 3.02 ×108 c t (4)
50 7.15 ×109 t pLlb (4)
95 6.68 ×108 prc fe (2), t (2)
101 1.21 ×109 pra prc (2), fe (1), pe (1)
105 2.37 ×1011 fe pe (2), prc (2)
111 8.81 ×1010 pe prb (3), fe (1)
118 9.91 ×108 prb pe (3), prc
133 1.50 ×1010 pe prb (2), fe (2)
136 3.55 ×1010 fe prc (3), pra (1)
139 1.92 ×109 prc pe (3), fe (1)
160 3.40 ×109 prc pe (2), fe (1), prb (1)
162 4.01 ×1010 prc fe (2), pl (2)
163 1.24 ×1010 plb prb (3), fe (1)
167 2.07 ×109 fe prb (2), pe (1), pl (1)
192 2.15 ×108 prc t (3), c (1)
193 3.66 ×108 prc t (4)

Table 4.8: The 16 units that were reallocated every time by the square root scaled cluster-
ings.
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have more influence over their clusters in the weighted clustering. Thus, the fact that they
are reallocated must mean that their data is significantly different than the other big units
in their groups. The other five units that were reallocated by the square-root weighted
clusterings but not the non-weighted clusters are all small. Notably, one crater unit (c) is
reallocated as tessera. This is the first time we have seen the reallocation of a crater unit.
Therefore, the data on this small crater must be significantly different than the data on the
larger craters in V14.

4.2 Weighting by Variable

4.2.1 Motivation

In our original model, each of our variables (mean, standard deviation, and median of
backscatter and four physical properties) is given the same amount of influence in deter-
mining the final clustering. However, each of these variables does not actually have the same
importance. For instance, the resolution of the backscatter data is more than 400 times the
resolution of the physical property data sets. Also, we expect that the mean of pixel values
is probably a better measure of the data than standard deviation of pixel values.

4.2.2 Methods

Saying that we want some variables to have more importance than others is equivalent to
saying that we want to change the shapes of our clusters so that they are wider in the
directions of less important variables and narrower in the directions of more important
variables. To see why this is the case, consider two variables v1 and v2, where v1 is more
important than v2. Then, for two data points we do not care about differences in v2 as much
as differences in v1. Subsequently, we want to stretch out our clusters in the v2 direction and
constrict them in the v1 direction so that subtle differences in our more important variable,
v1, are more important than subtle differences in v2.

Recall from chapter 2 that Ak , the diagonal matrix of eigenvalues for Σk where Σk =
λkDkAkD

T
k is what controls the shape of the clusters. To introduce variable weights into

our model we want to change Ak appropriately. To do this, we simply create a diagonal
matrix W , and multiply Σk on each side by W . That is, we create a new matrix Σ′

k such
that

Σ′
k = WΣkW. (4.5)

We need to decide the correct W to use to weight the variables. First let us define

W =




w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wv




,
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where wh is a scalar for h = 1, . . . , v and v is the number of variables. We want wh to be
large if variable h is not important and wh to be small if variable h is important. This will
stretch out our clusters in the directions of the least important variables and constrict the
clusters in the directions of more important variables.

We also have to be careful not to change the areas of the clusters. To do this, we
standardize our weights so their product is equal to 1. Then, the determinant of W will be
1, and multiplying Σk on either side by W will not change the determinant of Σk, which
controls the area of cluster k. To perform this standardization, we simply divide each weight
by the kth root of the product of the weights.

For example, if we have two variables v1 and v2 and v1 is twice important as v2, then
we will initially set w1 =

√
1/2 and w2 = 1. For each weight we take the square root of

the ratio because we will multiply Σk on both sides by W . Next, we standardize each w,
yielding w1 = 0.841 and w2 = 1.189.

4.2.3 Results

When we try to implement the variable weights we are unsuccessful. For all but the most
modest of weights (all wi between 0.9 and 1.1), the algorithm stops after a few iterations due
to singularity in the covariance matrices. This happens because we are manually forcing the
clusters to take on a certain shape while the data is causing the clusters to have a different
shape. Therefore, as the clusters conform to the structure of the data, we continually force
them away. Consequently, the clusters do not fit the data well and some groups go to zero
unit members quickly.

Weighting variables is not a successful addition to our model. However, it is also not
a necessary addition to the model. Left alone, the clusters will conform to the data. Any
differences in the data in any variables will be reflected in the final classification. The
important differences in the data points will come out in the clusters, so we do not need to
explicitly tell the clusters which differences are more important than others.
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Chapter 5

Conclusions

In this project our goal was to use the numeric data retrieved by Magellan on the Ganiki
Planitia (V14) Quadrangle to analyze an existing geologic map. By doing this, we could
cross-validate the geologists’ results against the unused physical property data sets of emis-
sivity, reflectivity, and RMS slope. Also, we could cross-validate their results against the
numerical data encoded in the images that the geologists used to create the map.

Our ultimate goal was to present to the geologists (1) a set of units whose data con-
sistently does not fit their original classification, and (2) an overall sense of how well the
geologic map as a whole fits the data.

In our model, we began with the hypothesis that the existing geologic map was correct.
Our clusters, then, will fall at a local maximum of the likelihood equation that is near
the original classification. Determining whether or not the geologic map fits the data is
a matter of seeing how far away this local maximum is to the starting classification. We
will do this by analyzing how many units are allocated differently by our clusters than the
geologic map.

The results we will analyze are two nonweighted clusterings (relocation of single units
and removal of single units), and two unit-area-weighted clusterings (log scaled weights and
square root scaled weights). For any one clustering, between 14.5% and 34.9% of the units
were reallocated, showing that a majority of the units are not changing from their original
classification in any single clustering. Trends across the clusterings with four different
combinations of variables also supported the original geologic map. On average, more than
half of all units were not reallocated in any of the four clusterings, giving support of the
original classifications of these units. Also, around 70% of the units were reallocated in
fewer than half of the four clusterings and about 85% of the units were reallocated either
zero times, once, or twice out of the four clusterings. Hence, our results support the original
geologic map. We can in turn tell the geologists that as a whole, their results are consistent
with the numerical data.

However, there are several units whose original classification does not fit the data. We
will consider those units that are reallocated every time by at least one set of clusterings.

Of the five units that are reallocated every time by every set of clusterings (Figure 5.1),
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Figure 5.1: The five units that were reallocated every time by all four clusterings (2 without
weights, 2 with unit-area weights) are indicated with circles.
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Figure 5.2: The five units that were reallocated by three of the four clusterings are indicated
with circles.
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Figure 5.3: The two units that were reallocated by two of the four clusterings are indicated
with circles.
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Figure 5.4: The 12 units that were reallocated by one of the four clusterings are indicated
with circles.
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two are large pe (green) units. Due to the significant size of these units, we will advise the
geology department that they need to study them more thoroughly. One of the units, a
tiny prc unit at the bottom of the map, is miniscule in size, so we will ignore it. The other
two units are small, but not inconsequential, so we will tell the geologists that they could
be reexamined, but it is not imperative that they are.

Five units are reallocated in three of the four clusterings (Figure 5.2). One of these
units is the solitary corona flows unit (cof ) that was relocated to the fe group in three of
the clusterings and removed from the model in one clustering. A corona flow and a volcanic
flow are geologically related, but not exactly the same unit type. This is reflected by the
constant reallocation of the cof unit from the fe group. We cannot conclude, then, that
there is anything wrong with the geologists’ classification of the cof unit, as our results
actually support their decision to put this unit in its own group. The other four units that
are reallocated three times are a very large fe unit, a moderately-large pe unit, a small pe
unit, and a small t unit. All of these warrant reexamination by the geologists, as they are
all reallocated by at least one nonweighted and at least one area-weighted clustering. The
two larger units need to be reexamined because they are so large. The two smaller units
could receive further treatment, but it is not necessary that they do.

Two units are reallocated in two of the four clusterings: one large fe unit and one small
prc unit (Figure 5.3). Each unit was reallocated once by a nonweighted clustering and once
by a unit-area weighted clustering, showing that the reallocation is robust across the two
different models. The fe unit is very large and the prc unit is small, so we will recommend
that the fe unit definitely be reanalyzed and that the prc could be reanalyzed.

Twelve units are reallocated in one of the four clusterings (Figure 5.4). However, five
of these have very small areas and will be ignored. The large prc unit in the northeast
corner of the map was reallocated in the log-weighted clustering. It was also the only
unit that was consistently reallocated when we just considered background plains units.
Therefore, we will tell geologists to further study the unit. The large fe unit on the eastern
part of the map was only reallocated by one of the nonweighted clusterings. Our model
has a tendency to reallocate fe units because it does not explicitly take into account the
geomorphology. Therefore, the geologists’ allocation is probably correct, and we will tell
them that it is not essential to restudy this unit. The three units in the southeast part of
V14 were only reallocated by the square-root weighted map, and we will advise geologists
that they could be further studied. The fe unit and the t units in the middle of the map
were only reallocated by one nonweighted clustering, which is also no cause for alarm.
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Unit Unit Area Original Clustering
Number (meters2) Classification Classification

Must Reexamine 81 3.09 ×1010 pe fe or prb
105 2.37 ×1011 fe pe or prc
111 8.81 ×1010 pe prb or fe
133 1.50 ×1010 pe prb
138 1.48 ×1011 prc prb
142 6.06 ×1010 fe prc, pra, or prb

Can Reexamine 39 1.29 ×1010 t fe
50 7.15 ×109 t pLlb
95 6.68 ×108 prc fe or t
100 1.63 ×1010 fe plb , prb, or prc
102 4.18 ×109 pe prb
139 1.92 ×109 prc pe
143 5.57 ×1010 fe prb
160 3.40 ×109 prc pe, fe, or prb
162 4.01 ×1010 prc fe or pl
163 1.24 ×1010 plb prb
167 2.07 ×109 fe prb

Table 5.1: To conclude, we produce a final table of units to be reanalyzed by the geologists.
The table is separated into units that the geologists must reexamine and those that they
should reexamine. We present six units that the geologists must reexamine and 11 that
they should reexamine.
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