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Introduction

Imagine looking at a satellite image and trying to identify a filamentary
structure such a road or river. In many cases, there will be a considerable
amount of noise in the image from trees, buildings, or other sources obscuring
parts of the filament. Furthermore, there is the possibility that while trying to
sort through all of the noise, your eyes are tricked into recognizing a filament
when none is actually present.

The preceding problem is analogous to the following. Consider the set
Xi ∈ R2, i ∈ 1, ..., n, of data points uniformly distributed on the unit square.
Suppose that a fraction of these points, which we denote εn, appear to lie on
some function f : [0, 1]→ [0, 1] (Figure 1). We would like to have a systematic
approach to distinguish between situations when there is a subset of points on
f , and when there is not. If we determine that some fraction of points lie on
f , we would also like to have the ability to estimate the function. This type
of pattern recognition and estimation is a topic of great interest in the field
of machine learning, with applications ranging from medical imaging of blood
vessels to analyzing galaxy distribution throughout the universe [6].

A possible solution for filament detection, has been proposed by Arias-
Castro et al. for functions that satisfy the Hölder condition,

|f(x)− f(y)| ≤ β|x− y|α

where α ∈ (1, 2] and β > 0. Their method involves generating sets of anisotropic
strips with constant area that cover the unit square, counting the data points in
these strips, and finding runs of strips containing a significant number of points
that are good continuations, which we define in Section 1.1. The authors use
the length of these runs to test the hypotheses:

H0 : Xi ∼ Uniform(0, 1)2

H1 : Xi ∼ (1− εn)Uniform(0, 1)2 + εnUniform(graph(f))

If a filament is present, their method generates a set of strips that covers
f over its domain. This covering suggests the possibility of estimating the
filament by taking the midline of each strip. However, the initial covering must
use relatively large strips to ensure that the entire filament is contained in a
run, which produces only a rough estimate of f , denoted f̂ . Additionally, f̂ will
be a piecewise linear estimate, and we assume that f is some smooth function.
To correct for these problems, we propose applying Chandler et al.’s method
for automatic locally adaptive smoothing of level sets [3]. The general idea is

to use a kernel smoother on f̂ to produce a smooth estimate, denoted f̃ . We
then map f̃ to a new space where it is easier to estimate, and iterate through
the process until we have an accurate estimate of the filament.

While other estimation techniques have been suggested, the assumptions
that they make either limit the types of filaments that they are able to estimate
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Figure 1: 2500 points uniformly distributed on the unit square with εn = 1000
points uniformly distributed on the function f(x) = x2 + ε ∼ N(0, .0252)
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[4] or produce estimates that are unsatisfactory[5]. We show that our proposed
method has the potential to work for a wide variety of filaments, while producing
an estimate that is smooth.

1 Detecting Filaments

Detecting filamentary structures in the midst of background noise is a chal-
lenging problem that depends on the number of observations, the fraction of
points on the filament, and the length of the filament. The algorithm proposed
by Arias-Castro et al. utilizes counting and length thresholds N∗, L∗n ∈ N that
we define in Section 1.2, and runs as follows:

1. Construct sets of regions, R, with constant area but varied width, thick-
ness, and slopes, that cover the unit square.

2. Determine the number of data points contained within each region

N(R) = #{i : Xi ∈ R}

3. Identify significant strips, which we define to be those that contain more
points than our counting threshold N∗.

s(R) = 1{N(R)>N∗}

4. Find the length of the longest path of significant strips that are good
continuations, which we define as Lmaxn

5. Compare the longest path to the decision threshold L∗n.

Lmaxn ≤ L∗n, fail to reject H0

Lmaxn > L∗n, reject H0

1.1 Defining Anisotropic Strips

Central to the algorithm discussed above is the assumption that if f ∈
Hölder(α, β) is present, the algorithm produces a run of strips that contains
f . One can see that any run of strips that does not contain f over its entire
domain would most likely contain strips that are not identified as significant.
Because of this, we would probably fail to find a longest run exceeding L∗n if
the assumption did not hold. To ensure this covering property, we define our
anisotropic strips in the following manner.

Let J = dlog2ne be the maximum value of the range 0 ≤ j ≤ J which the
strips are indexed over, where j ∈ N. The width and thickness of the strips
are given by w = 2−j and t = 2−(J−j)+1 respectively. The variables k, `1 and
`2 control the slope and location of the strips, and S represents the maximum
absolute slope that the algorithm can detect. If we let δ1 = t/4 and δ2 = t/(4w),
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the strip R(j, k, `1, `2) will be centered at c = ((k+1/2)w, `1δ1) and have a slope
of s = `2δ2, where 0 ≤ k < w−1, 0 ≤ `1 ≤ δ−11 ,−Sδ−12 ≤ `2 ≤ Sδ−12 [1].

As a result of this construction, the strips have constant area 2/n, and at
each level of j, they have constant width and thickness. The center and slope
of the strips are defined in such a way that given j, strips with identical slopes
do not overlap each other horizontally, but do overlap vertically by t/4.

f

t    (thickness) 

w (width) 

c1 

c2 
 

R1 

R2 

Figure 2: Anisotropic strips that are good continuations of each other. Regions
R1(j, k1, `1,1, `1,2) and R2(j, k2, `2,1, `2,2) have centers c1 = ((k1 + 1/2)w, `1,1δ1)
and c2 = ((k2 + 1/2)w, `2,1δ1) with slopes s1 = `1,2δ2 and s2 = `2,2δ2 respec-
tively.

The strips are grouped into levels based on j, R(j) = {R(j, k, `1, `2) :
k, `1, `2} of equal width and thickness, and organized into a directed graph
G(j) = (V(j), E(j)). For this graph, the vertices are given by the regions
R(j) = V(j) and the edges between these vertices represent strips that are
good continuations of each other. We define strips as good continuations if the
regions are horizontally adjacent, and have altitudes and slopes that are less
than δ1 and δ2 apart respectively [1].

We claim that strips constructed in this manner efficiently cover Hölder(α, β)
functions that satisfy the conditions α ∈ (1, 2] and β > 0. As evidence for this
claim, we present the following three lemmas with proof.

Lemma 1.1 shows that there is some value j∗ for which the sizes of the strips
will be optimally associated with f . Lemma 1.2 shows that if we let j = j∗,
given some interval of defined length Ik = [kw, (k + 1)w) in the domain of f ,
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there is a R(j∗, k, `1, `2) that contains f over the interval Ik. Lemma 1.3 shows
that these regions can be combined into a run of strips that are good continua-
tions of one another.

Lemma 1.1. For any fixed (α, β) that satisfy 1 < α ≤ 2, β > 0 we have that
for sufficiently large n, there exists a j∗ = j∗(α, β;n) such that:

2βwα ≤ t < 16βwα

Proof. Let us expand our notation for strip width and thickness, w(j) = 2−j and
t(j) = 2−(J−j)+1, such that each take real arguments. Define j+ = j+(α, β, n)
so that

2βw(j+)α = t(j+)

2β2−αj
+

= 2−(J−j
+)+1

If we let j∗ = dj+e then w(j+)/2 ≤ w(j∗) ≤ w(j+) and t(j+) ≤ t(j∗) ≤ 2t(j+).
By hypothesis, 1 < α ≤ 2, 2α ≤ 4, giving us:

2βw(j∗)α ≤ 2βw(j+)α = t(j+) ≤ t(j∗) ≤ 2t(j+) = 4βw(j+)α ≤ 16βw(j∗)α

Here, we have shown that for a given Hölder(α, β) function f , there is some
value of j, denoted j∗, for which the graph G(j∗) will be optimally associated
with f . In other words, we have set a bound for t(j∗) which we use in subsequent
lemmas. We note that j∗ ≤ J and as J is defined by n, we are only guaranteed
this result for sufficiently large n.

Lemma 1.2. Let j = j∗(α, β) and suppose f is a Hölder(α, β) function with a
domain containing the interval Ik = [kw, (k + 1)w). Set xk = (k + 1/2)w, let
`1,kδ1 be the closest multiple of δ1 to f(xk) and `2,kδ2 be the closest multiple of
δ2 to f ′(xk). Then:

graph(f |Ik) ⊂ R(j, k, `1,k, `2,k)

We say that the region R(j, k, `1,k, `2,k) is associated to f on the interval Ik.

Proof. By definition, we have that f ∈Hölder(α, β) satisfies f : [0, 1] → [0, 1]
and

|f ′(x)− f ′(y)| ≤ αβ|x− y|α−1, x, y ∈ [0, 1]

from whence it follows

|f(x)− f(y)− f ′(y)(x− y)| ≤ β|x− y|α (1)

We define f .k(x) to be a function with constant slope tangent to f at xk. Using
(1) with Ik = [kw, (k + 1)w),

|f(x)− f .k(x)| ≤ β(w/2)α ≤ t/4, x ∈ Ik
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If we consider the midline of region R(j, k, `1, `2), g.k(x) = l1δ1 + l2δ2(x − xk),
we get

|f .k(x)− g.k(x)| ≤ |f(xk)− l1δ1|+ |f ′(xk)− l2δ2||x− xk| (2)

≤ δ1/2 + δ2w/4 (3)

≤ t/8 + t/16 (4)

We see that (2) follows from the fact that the distance between f .k(x) and g.k(x)
is at most the distance between them at xk plus any deviation that occurs due
to differences in their slopes (Figure 3). Therefore by (4) we have,

|f(x)− g.k(x)| < t/2

In other words, the distance between f and the midline of the regionR(j, k, `1, `2)
will be less than half the thickness of that region on the interval Ik. We can
therefore conclude that at our optimal level j∗, there exists a strip R(j, k, `1, `2)
that covers f over the interval Ik (Figure 3).

IK 
xk 

f 

f.
k 

g.
k 

	  

R 

Figure 3: The region associated with f over the interval Ik. As shown in the
proof of Lemma 1.2, this region will cover f entirely over the interval Ik

Lemma 1.3. Let j = j∗(α, β) and suppose f is a Hölder(α, β) function on
[0,1]. For each k = 0, ..., w−1 − 1 consider the region Rk ≡ R(j, k, `1,k, `2,k)
associated to f by the manner described in Lemma 1.2. We claim that the Rk
are neighbors in G(j). Thus Rk and Rk+1 form good continuations and are
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connected by edges in E(j). We define Tj(f) ≡ {Rk : 0 ≤ k < w−1} to be the
path in G(j) of spatially adjacent regions that form good continuations with one
another.

Proof. Using the notation from Lemma 1.2, we claim it is enough to show that:

|g.k+1(xk+1)− g.k(xk+1)| ≤ t (5)

and

|g′.k+1(xk+1)− g′.k (xk+1)| ≤ t/w (6)

If these conditions hold, our strips satisfy the conditions for good continuation.
This implies that there is an edge in E(j) connecting R(j, k, `1, `2) to R(j, k +
1, `′1, `

′
2), where `′1 and `′2 are associated to g.k+1. We know the following hold

from the Hölder condition or the properties of our regions:

|g.k+1(xk+1)− f(xk+1)| ≤ δ1/2 = t/8,

|f(xk+1)− f .k(xk+1)| ≤ βwα ≤ t/2,
|f .k(xk+1)− g.k(xk+1)| ≤ δ1/2 + δ2w/2 = t/4.

If we combine these equations with the triangle equality, (5) follows. Addition-
ally,

|g′.k+1(xk+1)− f(xk+1)| ≤ δ2/2 = t/(8w),

|f ′(xk+1)− f ′(xk+1)| ≤ αβwα−1 ≤ t/(2w),

|f ′.k (xk+1)− g′.k (xk+1)| ≤ δ2/2 = t/(8w).

Combining these yields (6).

With Lemma 1.3, we can conclude that the optimal covering regions de-
scribed in Lemma 1.2 can be combined into a sequence of strips, each of which
is horizontally adjacent to and shares a similar slope and altitude with the pre-
vious region. This guarantees us a set of strips that covers f over the interval
[0,1], which in turn enables us to detect the filament if a large enough fraction
of the data points lie on f .

1.2 Thresholds

While the covering property given to us by Lemma 1.3 is essential to Arias-
Casatro et al.’s algorithm, it alone does not guarantee us the ability to detect
f . Given a set of strips that covers our function, we need to identify each of
these regions as significant. In doing so, we end up with a run of significant
strips that we can compare to our decision threshold L∗n. Intuitively, one can
see that if the fraction of points on the filament is too small, it is unlikely that
the number of points in a given region would exceed N∗. Thus we define the
threshold T ∗ to be the minimum fraction of points on f for which H1 will be
detectable.
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1.2.1 Defining Counting Thresholds

To reject our hypothesis of uniformly distributed data, we must first be able
to identify individual strips as significant. This relies on a counting threshold
N∗. Before defining this threshold, we introduce the notion of a significant
neighbor. If some region Ri forms a good continuation with a region Rj and
s(Rj) = 1, where s(R) = 1{N(R)>N∗}, then we say that Rj is a significant
neighbor of Ri. Let p0 < 1 be the probability that a given strip has a significant
neighbor under the null hypothesis, and define N+(ε, λ) such that:

P [Poission(λ) > N+(ε, λ)] ≤ ε

By Poisson approximation of the binomial, we have that ∃n0 such that n ≥ n0
implies,

P [Bin(n, λ/n) > N+(ε, λ)] ≤ 2ε

If we let N∗ = N+(p0/162, 2), then for n ≥ n0,

P [s(R) = 1|H0] = P [Bin(n, 2/n) > N∗] = p0/81

1.2.2 Defining Length Thresholds

Maintaining the same notation used to set N∗, the length threshold is defined
as L∗n = 3 · log1/p0(n). This makes L∗n substantially longer than the longest
expected run of significant strips under the null hypothesis, a direct result of
the Erdös Rényi Law [2]. In 1200 experiments with data generated under the
null hypothesis and n = 1024, the longest observed run, Ln exceeded 3 in one
case [1].

1.2.3 Defining Detection Thresholds

Set p1 such that for all α ∈ (1, 2] and n1 > 0,

log1/p1(n1/(1+α)) ≥ 2L∗n

This will ensure long runs under H1, again a result of the Erdös Rényi Law.
Define Λ+(ε) so that

P [Poisson(Λ+(ε)) < N∗] ≤ ε

If we let λ∗ = Λ+((1− p1)/2) and,

T ∗(α, β, S) = 2λ∗β1/(1+α)
√

1 + S2

Then we claim that H1 will be detectable if the fraction of points on the filament,
εn, satisfies

εn > T ∗n−α/(1+α)
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This depends on the property

n · εn · w(j∗(α, β, n))/
√

1 + S2 ≥ λ∗ (7)

Looking at the relationship between w(j∗) and w(j+) in Lemma 1.1, we see that
by the definition of T ∗,

n · εn · w(j∗(α, β, n))/
√

1 + S2 ≥ n1/1(1+α) · T ∗w(j+(α, β, n))/(2
√

1 + S2) = λ∗.

1.3 Behavior of the Algorithm

Consider a filament f ∈Hölder(α, β) that contains a fraction of the data εn.
Let j = j∗ and consider the sequence of adjacent strips Tj ≡ {Rk : 0 ≤ k <
w−1}. For each region in Tj

N(R) ∼ Bin(n, (1− εn)area(R) + εnγ(f,R))

where area(R) = 2/n and γ denotes the arc length of f in the region R.

By Poisson approximation of the binomial,

N(R) ∼ Poisson(µ)

where by (7),

µ ≥ 1 + n · εn · w/
√

1 + S2 ≥ λ∗

Thus for each R ∈ Tj and sufficiently large n,

P [N(R) > N∗] ≥ p1

Denote the regions in Tj to be R0, ..., Rw−1−1. We would like to find the expected
length of the longest observed run Ln that satisfies,

N(R0) > N∗, ..., N(Rw−1−1) > N∗

and claim that

P [Ln > L∗n]→ 1, n→∞. (8)

Proof. Let Zi = 1{N(Rk)>N∗}, and note that Zi ∼ Bernoulli(pi) where pi ≥ p1.

If m = w−1 ≥ an1/(1+α) where a is some constant and p = p1,

Ln > log1/p1(n1/(1+α))(1 + op(1))

follows from the Erdös Rényi Law.
As we have chosen p1 such that

log1/p1(n1/(1+α)) ≥ 2L∗n,

(8) follows.
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If there is not a filament present in the data, we would like to show that the
probability of observing a run of significant strips greater than L∗n tends to 0
for increasing n.

Proof. Consider the probability that a run of length L begins at some region R.
Based on our choice of N∗, we have that,

P [s(R) = 1|H0] ≤ p0/81

We note that each region in G(j) has 81 neighbors so that,

P [s(R′) = 1 for at least one neighbor of R|H0] ≤ p0

follows from Boole’s inequality.

In order to observe a path of length L, we must have some starting point R
that satisfies s(R) = 1. This region must be neighbors with some R′ such that
s(R′) = 1 and so on. Thus, the probability of observing a run of length L will
be bounded by pL0 .

As there are at most Mj = w−1δ−11 δ−12 2S starting points for a run in G(j),

P [there is at least one significant path of length L in G(j)|H0] ≤Mjp
L
0

follows from Boole’s inequality. Taking log2,

log2(Mj) + log2(p0)L = log2(w−1δ−11 δ−12 2S) + log2(p0)L

= 2J − 2j + 3 + log2(S) + log2(p0)L

≤ 2J + C + log2(p0)L

Letting L = L∗n, the final expression tends to −∞ for increasing n. From whence
it follows

P [there is a significant run of length L∗n]→ 0, n→∞.

2 Estimation Methods

Detecting a filament in some d-dimensional space gives rise to the question of
how to estimate that filament. While techniques for doing so exist in literature,
the assumptions that they make either limit the types of filaments that can be
estimated [4], or produce less than satisfactory estimates [5].
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2.1 Medial Axis of Support

The first of the methods we consider relies on estimating the support of the
filament, denoted ξ, and using it as a basis for the estimate of f [4]. Genovese
et al. show that under certain conditions, the best estimate for f is the medial
axis of ξ. Before summarizing their filament estimation technique, it is useful to
provide definitions for two key elements used in the process, Hausdorff distance
and the smoothness of a filament.

Definition. For any sets A,B we define the Hausdorff distance between these
sets to be:

dH(A,B) = min{δ|A ⊂ B ⊕ δandB ⊂ A⊕ δ}

where A′ ⊕ δ =
⋃
x∈A′ B(x, δ), and B(x, δ) is the closed ball centered at x with

radius δ.

Definition. for any x, y, z on the filament f , let r(x, y, z) be the radius of the
circle tangent to x, y, z. We define the smoothness of f , to be:

∆f = minx,y,zr(x, y, z)

This can be interpreted as the largest possible radius for a ball that can roll freely
around the filament.

With these definitions, we can know look at the method proposed by Gen-
ovese et al. for estimating f . A filament is represented as

Yi = f(Ui) + εi

where f : [0, 1] → Rd for d > 1, Ui come from some distribution H on [0, 1],
and εi come from some mean 0 distribution F with noise level σ. The goal is to
estimate the support ofof the marginal density of Yi, ξ =

⋃
0≤u≤1B(f(u), σ).

Genovese et al. show that any estimate for the boundary of ξ can be con-
verted into a set that is close in Hausdorff distance to the true filament. If the
rate of convergence for the boundary estimator to the true boundary is rn, then
the rate of convergence for the filament estimator to the true filament will also
be rn [4]. In order to show this, Genovese et al. rely on several assumptions
about the distributions H and F as well as the smoothness of the filament. Of
these assumptions, the following about the error structure provide restrictions
as to the types of filaments that we would like to estimate.

• F has support B(0, σ) and a bounded, continuous density φ with respect
to Lebesgue measure on R2 such that φ(y) > 0∀y ∈ B(0, σ).

• φ is non increasing

• φ is symmetric

12



• f is sufficiently smooth, in other words σ < ∆f . If f(0) 6= f(1), then
||f(1)− f(0)||/2 > ∆f

The second and third assumptions provide only minor limitations to the
types of filaments that we might be interested in estimating. However, the first
requires some bound on the distribution for σ. This is a problem since many
common distributions, such as the normal distribution, do not satisfy this prop-
erty. Thus we would be unable to apply this technique where εi ∼ N(0, σ), a
property that we might expect to be common for many filaments.

2.2 Path Density Gradient Field

Another method for estimating filaments assumes that the data X1, ..., Xn

come from some distribution µX with density gX . The idea behind this tech-
nique is to create a vector field from the gradient of the density. Genovese et al.
show that under certain conditions, the flow of this field starting at a random
point, in the direction of steepest ascent, leads to the filament, where the path
density is large.

2.2.1 Flows

A key component to this method is the idea of flow. For some vector field
V , let ψ(t, x) denote the point obtained by starting at the point x and following
the flow of V for time t. Consider any neighborhood U of x ∈ R2. For such a
neighborhood, there exists a U1 ⊂ U , an interval I ⊂ R that contains 0, and a
smooth mapping ψ : I × U1 → U such that the following hold.

• ψ(0, x) = x

• ∂
∂tψ(t, x) = V (ψ(t, x))

• if s, t, s+ t ∈ I, ψ(s+ t, x) = ψ(s, ψ(t, x))

We note that the paths t 7→ ψ(t, x), known as integral curves or local flows, are
unique in that they will be equal when their domains overlap. These local flows
can be extended to global flows when the mapping ψ : R × R2 → R2 satisfies
the above conditions and I = R. These global flows exist whenever V has a
compact support [5].

2.2.2 Estimating Filaments with Path Densities

Let U0 denote the compact support of gX , and note that the vector field
V = ∇gX will have a unique global flow ψ(t, x). For any x, y ∈ U0, we have the
equivalence relationship x ∼ y if ψ(t, y) = x for some t ∈ R.

13



Definition. We say that y precedes x, y � x, if x ∼ y and t ≥ 0. The reverse
evolution of A ⊂ U0 under the flow ψ is defined as:

V (A) = {y0 : y � x, x ∈ A}

Definition. define the path measure π to be the probability that the flow, start-
ing from a random point, hits a set A as:

π(A) = µX(V (A))

Definition. The path density of gX , p : R2 → [0,∞] gives the π probability
associated with infinitesimal neighborhoods of x, and is defined as,

p(x) = limr→0
π(B(x, r))

r

The notion of path density, is used to capture filaments by finding sets for
which p exceeds some threshold λ. As gX is unknown, Genovese et al. use a
kernel estimator to obtain ĝn(x). Thus the path density used to find filaments
is p̂n(x), a weighted average of how many observed paths get close to x. Esti-
mating a function using this process produces whisker-like structures close to
the filament where p > λ (Figure 4). However, we expect f to be a smooth
function, so this is a satisfactory result.

ON THE PATH DENSITY OF A GRADIENT FIELD 3

A B

C D

Fig 1. Cosmological data: data set (plot A), steepest ascent paths of all data points(plot
B), paths after cutting the first 5 iterations (plot C) and level set at 90% quantile of the
estimated path density (plot D).

Figure 4: Estimate for a filament produced by Genovese et al. using the path
density
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3 Estimating Filaments

Using the method described in Section 1, we can detect a filament f by
constructing a run of strips that contains f . This idea provides motivation for
a new filament estimation technique. Using a modified greedy algorithm de-
scribed in section 3.1.1, we generate a set of strips denoted W1 that covers f .
To ensure that the entire filament is contained in this set, each strip’s thickness
must be relatively large. By taking the midline of the covering W1, we obtain a
piecewise linear function that acts as a rough estimate for f , which we denote
f̂1. While this provides a good starting point for an estimate, f is most likely
a smooth function, so a piecewise linear estimate is not ideal. To address this
issue, we apply Chandler et al.’s iterative process for automatic locally adaptive
smoothing.

Using a kernel smoother on f̂1, we produce the smooth function f̃1. We
then map f̃1 to a space where it is easier to estimate and iterate through the
process until ||f̃n − 1/2|| < η. The problem of finding the proper value of η is
left to further research, but we note that this value must be small enough so
that we obtain an accurate estimate of f , but large enough that ||f̃n−1/2|| < η
will be satisfied within a reasonable number of iterations. We also note that we
consider the distance between f̃n and 1/2 because our mapping takes points on
f̃n to the line y = 1/2. Additionally, we could consider stopping the algorithm
when ||f̃ i− f̃ i+1|| < δ, however finding the appropriate value of δ would present
similar challenges.

Our proposed method addresses some of the problems seen in other fila-
ment estimation techniques. For example, we do not make assumptions about
the noise level of the filament being bounded. Additionally, our estimates are
smooth functions that do not have the whisker-like structures that are seen
when using path densities to estimate filaments. Apart from addressing some of
the shortcomings of other estimation techniques, our method does not rely on
properly selecting tuning parameters, a process that can often be difficult [3].

3.1 Adapting Filament Detection

The ability to detect filaments using a greedy algorithm depends on correctly
identifying the starting point and orientation of the filament. While this is not
a trivial problem, methods such as principal component analysis could be used
to do this. By constructing a neighborhood around each data point and com-
puting principal components, we could determine if a filament started at that
point, and if so, the orientation of the filament. In our simulations, we assume
that the starting point and initial slope of the filament are known, and show
that we can estimate a filament with this information. We leave the problem of
determining the starting point to future work.
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3.1.1 Covering the Filament

Based on a known starting point for a filament, we define the first strip,
R1(l1, θ1, t1), in terms of its location, slope, and thickness, where location refers
to the coordinates of the bottom left corner of the strip and slope is defined
as tan(θ). If we let ri−1 = (xi−1, yi−1) denote the bottom right corner of
Ri−1(li−1, θi−1, ti−1), we can define successive strips as Ri(li, θi, ti), where li =
(xi−1, yi−1 + 0.5(ti−1 − ti)) and θi and ti are the values corresponding to the
optimal slope and thickness for the ith strip. We determine the optimal slope
and thickness for Ri with a greedy algorithm, modified to ensure robustness to
randomly occurring pockets of noise, that runs as follows.

• Let T = [tmin, tmax] denote the range of strip thicknesses that we are will-
ing to consider for the first covering, W1. To ensure that W1 contains the
entire filament, we begin with large values of tmin and tmax. These values
decrease in each successive iteration to allow us to narrow in on f . While
we have not found the optimal rate for which to decrease these values, tmin
should fall at a faster rate than tmax. This enables us to narrow in on
the filament while still allowing us to detect filaments when the mapping
has large changes in slope in successive iterations. Smaller increments for
this range make the algorithm more computationally intensive, but also
give us better results. We found that using an increment of 0.01 works for
many filaments.

• Let Θi = [θi−1+θmin, θi−1+θmax] correspond to the range of slopes we are
willing to consider for Ri, where slope is given by tan(θ) for θ ∈ Θi. With
this definition, θmin and θmax represent the maximum allowable difference
in slope between Ri−1 and Ri. As the original filament is unknown, we
start with larger values for θmin and θmax, allowing us to capture filaments
that have large second derivatives. We decrease these values in successive
iterations since the filament will be mapped to the line y = 1/2, suggesting
that the derivative of the filament in the new space should converge to 0.
Again, smaller increments in this range add computational intensity but
result in improved performance. We found that using an increment of
π/16 works for many filaments.

• With T and Θi, we consider Ri,t(θ), strips with a fixed thickness of t ∈ T
as functions of θ ∈ Θi.

• For each θ ∈ Θi, sum the number of points from our dataset contained in
Ri,t(θ) and denote this value ni,t(θ). We define Nt(θ) = {ni,t(θ)|θ ∈ Θi}

• Let Θ∗i,t = {θ ∈ Θi|ni,t(θ) ≥ 90thquantile(Nt(θ))}, then the optimal value
of theta for Ri,t(θ) will be θ∗i,t = median(Θ∗i,t), with n∗i,t corresponding
to the number of data points in Ri,t(θ

∗
i,t). The Θ∗i,t subset is chosen to

help ensure that our selection of θ∗i,t is robust to any randomly occurring
pockets of concentrated noise.
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• Repeating this process at each level of thickness yields Θ∗i = {θ∗i,t|t ∈ T}
and N∗i = {n∗i,t|t ∈ T}.

• The optimal values forRi(li, θi, ti) are then defined as θi = {θ∗i,t ∈ Θ∗i |n∗i,t =
max{N∗i }} and ti = {t|θ∗i = θ∗i,t}.

3.1.2 Mapping the Filament

By running through the process described in Section 3.1.1 once, we generate
W1. We can obtain a piecewise linear estimate for a filament f by taking the
midline of these strips, which we denote f̂1. However, many filaments that we
would like to estimate for practical purposes are smooth. Additionally, using
large values of tmin and tmax in the first iteration to ensure that W1 does not
lose the filament causes f̂1 to be a rough estimate and unsatisfactory as a final
result. To solve this problem, we adapt Chandler et al.’s process for automatic
locally adaptive smoothing of level sets to our filament problem. This involves
smoothing f̂1 to obtain f̃1 and mapping f̃1 to a space where it can be better
approximated. Iterating through this process results in a smooth and more ac-
curate estimate of f in the original space.

For the ith iteration, obtain a covering Wi in the manner described by section
3.1.1. Take the piecewise linear estimate f̂ i obtained from the midline of Wi,
and parameterize it as a path f̂(t) = (f̂ i,1(t), f̂ i,2(t)) for t ∈ [0, 1], where f̂ i(0)
represents the starting point of our estimate. We smooth this path using a box
kernel with bandwidth b to obtain:

f̃ i(t) =


1/(2b)

∫ t+b
t

f̂ i(t)dt, 0 ≤ t < b

1/(2b)
∫ t+b
t−b f̂ i(t)dt, b ≤ t ≤ 1− b

1/(2b)
∫ t
t−b f̂ i(t)dt, 1− b < t ≤ 1

By choosing b to be relatively small, we benefit from smoother estimates as we
iterate through this procedure, while avoiding having to select a global band-
width [3].

Our transformation depends on a map `f̃i,w
which takes the estimate of our

filament to a space where it is easier to estimate. We let Fi denote the estimate
of our filament so that f̃ i : [0, 1]→ Fi. In each iteration, we subset our data so
as to only consider points within a distance w of Fi. This tuning parameter al-
lows us to “zoom in” on the filament to obtain a more accurate estimate. While
this is a desirable result, setting w to be too small amplifies Fi’s error in the
transformed space, making our mapped filament harder to estimate. To adjust
for this, we define w as an increasing function tmax so that we subset the data
less with each iteration.

Before defining `f̃i,w
, we introduce the following notation. Let Pf̃i

(x) be
the orthogonal projection, in the functional sense, of x onto Fi. Then we
have that for each x ∈ R2, ∃tx ∈ [0, 1] such that Pf̃i

(x) = f̃ i(tx) and ∀t ∈
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[0, 1], ||f̃ i(tx) − x|| ≤ ||f̃ i(t) − x||. The domain of our map is defined to be
C(f̃ i, w) = {x ∈ R2 : ||Pf̃i

(x) − x|| ≤ w/2}. With this notation, we can define

`f̃i,w
: C(f̃ i, w)→ [0, 1] as,

`f̃i,w
(x) = (f̃ i

−1
(Pf̃i

(x)), 1/2 + ||Pf̃i
(x)− x||/w(−1)(1−q))

where q = 1x2>p2 for x = (x1, x2) and Pf̃i
(x) = (p1, p2). In other words if some

point lies on Fi, it will be mapped to the line y = 1/2, while points above and
below Fi will be mapped above and below the line y = 1/2 respectively.

4 Results

We examine the filament estimation method discussed in the previous sec-
tion, applying it to data simulated using R software. In each of these simula-
tions, we consider how our algorithm handles a filament represented as f(x) + ε
where f : [0, 1]→ A ⊂ R and ε is a noise term with unbounded support. While
we only consider filaments in R2, the algorithm should extend to higher dimen-
sions.

It is possible to define an inverse of the mapping procedure used in our algo-
rithm and evaluate the accuracy based on the distance between the true filament
and the estimated filament mapped back to the original space. For simplicity,
our algorithm labels points on the estimated filament and we evaluate accuracy
by comparing these data points with those that are actually on the filament.

It is important to note that in each iteration, we decrease the thickness of
the regions in an attempt to estimate the filament more accurately. Because
the support of our noise added to the filament is unbounded, we expect a cer-
tain percentage of our filament points to fall outside the strips at each level of
thickness. While this is not a problem for relatively thick strips, the percentage
increases as thickness decreases. Thus, if we iterate through the algorithm too
many times, we expect a large percentage of the filament points to fall outside
the strips. As a result, many points that should be labeled as on the filament
are labeled as noise (Table 1). This concern must be balanced with the fact that
at each thickness level, we expect a certain number of background noise points
to fall within the strips. This percentage corresponds to the area of the strips
and therefore decreases as area decreases. Thus, if we do not iterate through
the algorithm enough, many of the noise points will be labeled as part of the
filament (Table 1).

For many purposes though, we are concerned with finding f as opposed to
labeling points as either on the filament or noise. With symmetric error centered
at 0, the strips should converge to f as they converge towards the concentration
in data points. This means that even though the percentage of filament points
the strips capture decreases as their thickness decreases, they will still produce
a reasonable estimate of f .

We first consider the simple filament f(x) = x2+ε where ε ∼ N(0, 0.052). In
this simulation, 1000 data points are distributed uniformly on the filament while
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2500 data points are distributed uniformly on [0, 1]× [−1, 1]. Figure 5 shows the
results of six iterations of the algorithm. Examining the fourth through sixth
iterations, we can see one of the main issues that remains to be resolved with
the algorithm, identifying the correct stopping point when noise is added to the
filament. There will undoubtably be some error in any estimate for f in any
iteration. At some point, the error that running another iteration corrects for is
outweighed by the error that it picks up by trying to estimate again. This oc-
curs between the fifth and sixth iterations of the simulation when the algorithm
starts producing similar estimates but with different minor errors (Figure 5).
We chose to stop iterating when the estimated filament in the mapped space f̃ i
satisfied

||f̃ i − f̃ i+1|| < δ.

Our cutoff was selected somewhat arbitrarily, and there is likely a better value
that would provide an optimal estimate of f .
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Figure 5: Six iterations of the algorithm applied to f(x) = x2 + ε, where ε ∼
N(0, 0.052). The top left image shows the filament in the original space with
points on the filament represented in red. Each subsequent picture shows the
data mapped based on the procedure described in Section 3.1.1. Blue boxes
represent the covering selected by the greedy algorithm described in Section
3.1.2.

In the previous simulation, we noted that it was desirable to have mean 0,
symmetric noise added to our filament. The next simulation examines how our
algorithm handles noise that does not satisfy these properties. Again, we use a
filament of the form f(x) = x2 + ε, but here ε ∼ exp(20). For this simulation,
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Table 1: Classification Results for f(x) = x2 + ε ∼ N(0, 0.052)

Iteration False Positives (rate) False Negatives (rate)
1 641(.26) 4 (.004)
2 554 (.22) 30 (.03)
3 405 (.16) 44 (.044)
4 295 (.12) 229 (.229)
5 283 (.11) 260 (.26)
6 354 (.14) 177 (.177)

we decrease the minimum thickness and area between the first four iterations
at the same rates as the previous simulation. Although the algorithm loses the
filament in the fourth iteration, we see that it is capable of recapturing it in
subsequent iterations (Figure 6).

In order to recapture the filament, we decreased the rate that the minimum
thickness fell between iterations while keeping the rate at which the area fell
constant. This suggests that dropping thickness at an decreasing rate between
iterations while dropping area at a constant rate may help ensure that we do not
lose the filament. We could also consider generating several coverings at each
iteration, summing the points in each covering, and selecting the one with the
greatest density of points. This would enable us to find the optimal thickness
and area for the strips at each iteration. We leave these ideas to further study.
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Figure 6: Six iterations of the algorithm applied to f(x) = x2 + ε where ε ∼
exp(20). The top left image shows the filament in the original space with points
on the filament represented in red. Each subsequent picture shows the data
mapped based on the procedure described in Section 3.1.1. Blue boxes represent
the covering selected by the greedy algorithm described in Section 3.1.2.

22



Table 2: Classification Results for f(x) = x2 + ε ∼ exp(20)

Iteration False Positives (rate) False Negatives (rate)
1 627(.25) 34 (.034)
2 613 (.25) 116 (.116)
3 594 (.24) 83(.083)
4 369 (.15) 295 (.295)
5 583 (.23) 80 (.08)
6 438 (.18) 241 (.241)

Next, we consider a more complex filament of the form f(x) = sin(5x) + ε,
where ε ∼ N(0, 0.052). In this simulation, 1000 data points are distributed
uniformly on the filament while 2500 data points are distributed uniformly on
[0, 1] × [−1.5, 1.5]. In Figure 7, we see that our algorithm has some trouble
handling the curvature of the function. This is especially apparent in the original
space where f changes from decreasing to increasing. Despite this, the algorithm
does a reasonable job of mapping points on the filament to the line y = 1/2.

Although the algorithm works for this particular filament, the results suggest
that it will not handle filaments with large second derivatives well due to the
difficulty in generating an accurate covering. This shortcoming presents a major
problem because large errors can create peaks in the mappings. These peaks
are again difficult to cover, and increase the chance that our covering loses the
filament. We can observe one of these peaks in the upper right image of Figure
7, but it is relatively small and is corrected for in future iterations.

The fact that our algorithm will only work for a limited class of functions is
not surprising as Arias-Castro et al. showed their covering was only guaranteed
for certain Hölder functions. Again, we may be able to correct for some of
this problem by generating multiple coverings and selecting the one with the
greatest density of points. However, there will be certain filaments that we
cannot capture with our covering method.
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Figure 7: Six iterations of the algorithm applied to f(x) = sin(5x) + ε where
ε ∼ N(0, .052). The top left image shows the filament in the original space with
points on the filament represented in red. Each subsequent picture shows the
data mapped based on the procedure described in Section 3.1.1. Blue boxes
represent the covering selected by the greedy algorithm described in Section
3.1.2.
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Table 3: Classification Results for f(x) = sin(5x) + ε ∼ N(0, .052)

Iteration False Positives (rate) False Negatives (rate)
1 472 (.19) 46 (.046)
2 605 (.24) 34 (.034)
3 487 (.19) 92 (.092)
4 447 (.18) 142 (.142)
5 508 (.2) 101 (.101)
6 531 (.21) 57 (.057)

5 Conclusion

The results from these simulations suggest that our algorithm has the po-
tential to estimate a wide variety of filaments. However, there are still minor
concerns that must be addressed. One of the these is that if the covering loses
the filament in any iteration, it may never be recaptured. We may be able to
limit this by using a greedy algorithm to select the optimal thickness and area
of the covering, based on the density of points in that covering. This would
ensure the covering contains f if possible, given the constraints θmin and θmax.
However, limiting the θ values we are willing to consider makes it impossible
to capture filaments with relatively large second derivatives. That is not to say
that we should consider any values for θ, as we still have assumptions about
the smoothness of f . We merely note that there is a limit to the curvature of
filaments we can estimate.

Selecting thickness and area with a greedy algorithm addresses our second
concern as well. By choosing the optimal thickness and area for each covering,
it eliminates the need to find a rate for decreasing these values between itera-
tions. Finding this rate would prove to be a challenging problem as it appears
to depend on the curvature of the filament. In addition, we could not adjust
the rate based on curvature as filaments are unknown in practice. This would
again limit the curvature of the filaments that our algorithm can estimate.

Finally, we have yet to find the optimal point at which to stop iterating.
In the simulations, we saw the algorithm reaches a point where the differences
between estimates in each iteration are minor. This is an appropriate time to
stop, but we do not have a sense of how close subsequent iterations should be
before stopping to produce the best estimate for f . We could easily examine
this problem by comparing the distance between subsequent iterations in the
mapped space with the distance between them in the original space.
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