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Abstract

The widespread use of computationally intensive statistical procedures has
inspired a world of research and practice that depends on massive, high-
dimensional datasets, and the need to efficiently process them. Bootstrap-
ping, the act of resampling with replacement from one sample, is one popu-
lar computational method, but it sacrifices time and memory efficiency with
large sample sizes. The “Bag of Little Bootstraps” (BLB) is a variation of
bootstrapping that avoids this loss of time and memory efficiency by intro-
ducing a layer of subsampling before bootstrapping. The original creators of
BLB proved its statistical effectiveness using the mean as an estimator, and
here, we examine the effects of using random forests, instead.
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Chapter 1

Introduction

Bootstrapping and other resampling methods are invaluable tools for under-
standing sampling distributions in modern statistics. Given some parameter
we would like to estimate, or some model we would like to fit, bootstrap-
ping is the act of repeatedly drawing resamples from one sample of data and
refitting or remeasuring an estimator on each resample [James et al., 2014,
pages 175]. Though simple-sounding in nature, this powerful tool gives us
access to more information about our model or estimator than allowed with
the original sample.

Bootstrapping is applicable to many situations, but the most familiar ap-
plication of bootstrapping is to assess the standard error of an estimator.
The main idea of bootstrapping is to treat a sample from the population of
interest as an empirical distribution of the data. Then, the sampling distri-
bution of that statistic can be estimated by bootstrapping from the sample.
If n is the size of the original sample, in bootstrapping, one draws r resamples
with replacement of size n from the original sample. Then, the statistic of
interest is computed from each resample, and all r statistics are aggregated to
form a bootstrap distribution which approximates the theoretical sampling
distribution of the statistic.

Although incredibly useful, bootstrapping has its limitations. The accu-
racy of estimating a sampling distribution is dependent upon the size of the
original sample, n, and the number of resamples, r. As both r and n be-
come large, the bootstrap distribution will come closer to approximating the
shape and spread of true sampling distribution. But if n and r are too large,
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then the computation required to perform bootstrapping is often not fast nor
space efficient enough to justify its usage. Computational issues have become
increasingly relevant due to the current trend in “big data”; massive, high-
dimensional datasets are now ubiquitous. Some methods have been proposed
to combat the computational problem; subsampling [Politis et al., 1999] and
the m out of n bootstrap [P.J. Bickel and van Zwet, 1997] are two examples,
but a recent procedure called the Bag of Little Bootstraps (BLB) has been
shown to “yield a robust, computationally efficient means of assessing the
quality of estimators” [Kleiner et al., 2014, pages 1–2]. BLB combines sub-
sampling and bootstrapping such that bootstrapping is performed on small,
independent subsets from one sample. Because bootstrapping is only per-
formed on each subset, the computational cost is favorably rescaled to the size
of each subset. As a result, this structure is well-suited to parallel computing
architectures that are often used to process large datasets by splitting a pro-
cess into parts that will run simultaneously on different processors. BLB was
introduced in the scenario to estimate the mean, but because bootstrapping
is such a flexible and accommodating resampling method for other statistics
and models, it is natural to ask if BLB can be applied to more complex mod-
els.

Random forests are one extremely popular ensemble learning method used
for classification and regression on large datasets. However, unlike the mean,
there is no single parameter to estimate; the output of a random forest de-
pends on a test observation whose response is to be predicted. Thus it is not
a trivial problem to substitute the mean in the BLB structure with random
forests. Random forests are a common tool used to find accurate predictions
for a set of test observations. Thus, we aim to see if we can quantify the
accuracy of a random forest prediction from BLB. We will explore how to
integrate random forests into the BLB structure of resampling, and if doing
so is a robust method in maintaining the results of performing traditional
bootstrapping with random forests.
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Chapter 2

Bag of Little Bootstraps

The Bag of Little Bootstraps is a relatively new procedure that combines the
features of bootstrapping and subsampling into a resampling method that
can accompany massive data sets, while still maintaining the same power
of bootstrapping [Kleiner et al., 2014]. This section will describe the Bag of
Little Bootstraps’ notation, procedure, and its statistical performance.

2.1 Setting and Notation

Assume that we observe a sample X1, . . . , Xn
1 of training data that is drawn

from some unknown population distribution P . We denote its correspond-
ing empirical distribution as Pn = 1

n

∑n
i=1 δXi

. Using only the observed data

we compute some estimate θ̂n ∈ Θ of some population value θ ∈ Θ that is
associated with the population distribution of P . When we want to specify
that we are using data, for example, Pn, to calculate our estimator θ̂, we
shall specify θ̂n = θ̂(Pn). Here we will choose θ̂n to be the sample mean.

We denote the true sampling distribution of θ̂n, as Qn(P ). Recall that boot-
strapping aims to estimate the sampling distribution Qn(P ), from which we
can compute an estimator quality assessment ξ(Qn(P ), P ), which could be
a confidence interval, standard error, or bias. For simplicity, we will use
ξ(Qn(P )) instead of ξ(Qn(P ), P ), to represent a confidence interval for a
given parameter. Then it follows that the bootstrap computes the plug-in
approximation ξ(Qn(P )) ≈ ξ(Qn(Pn)). The bootstrap algorithm repeatedly

1All notation is taken from [Kleiner et al., 2014].
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takes resamples with replacement of size n from Pn, computes θ̂n on each
resample, and forms the empirical distribution Q∗n, with the end goal of ap-
proximating ξ(Qn(P )) ≈ ξ(Q∗n).

2.2 Bag of Little Bootstraps

2.2.1 Description

The Bag of Little Bootstraps (BLB) is unique in that it employs bootstrap-
ping on mutually exclusive small subsets of our original observed sample
X1, . . . , Xn such that each subset has its own bootstrap distribution.

Figure 2.1: The Bag of Little Bootstraps.

Let each subset from our observed set be of size b < n. BLB randomly
partitions the n points into s subsets of size b. Let I1, . . . , Is ⊂ {1, . . . , n}
be the randomly sampled subsets, such that |Ij| = b, ∀j, and let P(j)

n,b =
1
b

∑
i∈Ij δXi

be the empirical distribution that corresponds to the jth subset.

Then, BLB’s estimate of ξ(Qn(P )) is

1

s

s∑
j=1

ξ(Qn(P(j)
n,b)). (2.1)
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Because we cannot compute ξ(Qn(P(j)
n,b)) analytically, we can approximate

ξ(Qn(P(j)
n,b)) ≈ ξ(Q∗n,j) by bootstrapping on each jth subset. That is, we re-

peatedly resample n points from P(j)
n,b, the empirical distribution correspond-

ing to the jth subset, to form the empirical distribution P(j)
n,b of our computed

estimates of θ̂n. We will see how to resample n points from b < n points in
subsection 2.2.3.

Symbol Meaning

X1, . . . , Xn original sample

I1, . . . , Is subsets of original sample X1, . . . , Xn

Pn = 1
n

∑n
i=1Xi empirical distribution of X1, . . . , Xn

P(j)
n,b = 1

b

∑
i∈Ij δXi

empirical distribution of the jth subset

P∗n,k = 1
n

∑b
a=1 naδXia empirical distribution of the kth resample

(for some subset)

θ̂ estimator of interest

θ̂∗n,k ← θ̂(P∗n,k) estimator computed from the kth resample
(for some subset)

Qn(P ) true sampling distribution of θ̂

Q∗n,j ← 1
r

∑r
k=1 δθ̂∗n,k

the empirical distribution of bootstrapped
estimates from the jth subset’s bootstrap
distribution

ξ(Qn(P )) confidence interval associated with the sam-
pling distribution Qn(P )

ξ(Q∗n,j) confidence interval estimated from the jth
subset

ξ̂(Qn(P ))← 1
s

∑s
j=1 ξ(Q∗n,j) estimate of ξ(Qn(P ))

Table 2.1: Table of notation used in BLB.
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Algorithm 1 Bag of Little Bootstraps (BLB)

Input: X1, . . . , Xn, data
θ̂, estimator of interest
b, subset size

s, number of sampled subsets
r, number of resamples
ξ, estimator quality assessment

Output: ξ̂(Qn(P )), confidence interval estimate

for j = 1 . . . s do
// Subsample the data

Randomly sample a set I = {i1, . . . , ib} of b indices from {1, . . . , n}
without replacement

for k = 1 . . . r do
// Resample the data

Sample up to size n: Sample (M1, . . . ,Mb) ∼ Multinomial(n, 1
b
)

P∗n,k ← 1
n

∑b
a=1 naδXia

θ̂∗n,k ← θ̂(P∗n,k)
end for
Q∗n,j ← 1

r

∑r
k=1 δθ̂∗n,k

end for

return
ξ̂(Qn(P ))← 1

s

∑s
j=1 ξ(Q∗n,j)

Figure 2.2: BLB Algorithm.
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2.2.2 Multinomial Method

Note that in each of the s subsets, we bootstrap by taking a resample of size n
from the subset of size b < n. We are able to bootstrap from size b < n up to
n by using a multinomial random variable M = (M1,M2, . . . ,Mb) that helps
“imitate” true bootstrapping. Each Mi coefficient represents the number of
times we encounter the ith observation from the subset in the resample. By
assigning an integer coefficient to every observation, space does not have to
be allocated in memory for n separate data points, but for b data points and
b coefficients. Each multinomial random variable is generated with a positive
integer, n, which is the size of the resample, and p = (p1, p2, . . . , pb), a vector
of probabilities. When bootstrapping from a subset in BLB, p will always
be a b-dimensional vector where p1 = p2 = . . . = pb = 1

b
because each ob-

servation has a probability of 1
b

of being drawn. This aspect of BLB avoids
the traditional bootstrap’s “problematic need for repeated computation of
the estimate on resamples having size comparable to that of the original
dataset” [Kleiner et al., 2014].

Figure 2.2 shows an example of resampling from a subset of size b = 5
up to size n = 100. In this example, M ∼ Mult(100, (1

b
, 1
b
, 1
b
, 1
b
, 1
b
)), and the

vector of coefficients is M = (21, 19, 23, 22, 15). Note that this is simply one
permutation of multinomial coefficients for this resample with the specified
parameters of b = 5, n = 100.

Figure 2.3: Resamping from size b = 5 up to size n = 100.
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2.3 Statistical Performance

Our main premise in using BLB is that it maintains the same statistical prop-
erties of standard bootstrapping. Here we provide evidence from Kleiner et
al. that BLB has both asymptotic consistency and higher-order correctness,
the two main statistical properties of the bootstrap.

2.3.1 Consistency

We would like to show that the estimate of standard error ξ(Qn(P(j)
n,b)) con-

verges in probability to the true standard error ξ(Qn(P )) as n, b→∞.

Theorem 2.1. [Kleiner et al., 2014].
We assert that the following is true as n → ∞, for any sequence b → ∞,
and for any fixed s.

1

s

s∑
j=1

ξ(Qn(P(j)
n,b))− ξ(Qn(P ))

P−→ 0 (2.2)

That is, the BLB estimate 1
s

∑s
j=1 ξ(Qn(P(j)

n,b)) approaches the population
value ξ(Qn(P )) in probability.

2.3.2 Higher-order Correctness

For BLB to be higher-order correct, it needs to converge to the true value of
ξ(Qn(P )) at a rage of OP ( 1

n
) or faster if s and b grow at a sufficient rate.

Theorem 2.2. [Kleiner et al., 2014].
Under certain regularity conditions, we assert that the following is true as
n→∞, for any sequence b→∞, and for any fixed s.∣∣∣∣∣1s

s∑
j=1

ξ(Qn(P(j)
n,b))− ξ(Qn(P ))

∣∣∣∣∣ = OP

(
1

n

)
, (2.3)

in which case BLB enjoys the same level of asymptotic higher-order correct-
ness as the bootstrap.
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2.4 Conclusion

The Bag of Little Bootstraps is a relatively new alternative to bootstrap-
ping, which is the traditional resampling method that is used to estimate the
theoretical sampling distribution of an estimator. In addition to sharing the
statistical properties of traditional bootstrapping, BLB is also well-suited to
large-scale datasets. In BLB, although bootstrapping is performed on small
subsets of the original sample, each bootstrap resample is scaled to to the size
of the original sample by using the multinomial method. This gives BLB a
“better computational profile” [Kleiner et al., 2014], such that memory and
computation are markedly less than that of traditional bootstrapping when
n is extremely large. Because BLB has the same statistical properties of the
bootstrap, it was presented in the scenario to estimate the mean. In the
following sections, we will introduce random forests and how BLB can be
applied to estimate the variability of the random forest model.
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Chapter 3

Random Forests

Whereas the mean is a function of data that is concerned with estimating
a fixed population parameter, µ, a random forest is a model that seeks to
predict the categorical or numerical response of a new test observation, or
set of observations, given by the model. More importantly, random forests
are built off of bootstrapped decision trees that are constructed through the
‘classification and regression tree’ (CART) algorithm. Decision trees and
random forests are predictive models for both classification and regression
problems, but here we will only focus on the regression case. We will define
the building blocks of a random forest, the CART algorithm that is used to
build decision trees, and how random forests are built from those decision
trees.

3.1 Classification and Regression Trees

Tree-based methods can be used for classification and regression problems
by partitioning a data-space into a finite number of regions that represent
the most homogenous space with respect to the response variable for the
data. A tree nicely summarizes the splitting rules that determine the best
regions. Random forests are built from binary decision trees, which consist
of repeated splits of a dataset into two descendant subsets. Each subset of
data is contained in a node. In each split of a binary decision tree, we refer to
the two descendent nodes as daughter nodes, and the node from which they
came the parent node. More importantly, each node in a binary decision tree
is either an internal node or a terminal node. The terminal nodes of a tree
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define subsets that provide the best final partitioning of our data according
to a sums of squares criterion.

Figure 3.1: A simple decision tree built to predict salary from baseball player
characteristics [James et al., 2014, pages 304-305].

Each node is defined by an “if-else” condition such that a subset of obser-
vations fit within that node only if they satisfy the condition. One of the
most popular methods for tree-based regression and classification problems,
called CART (Classification and Regression Trees), builds a decision tree
by recursively partitioning data into two parts to create a model that can
predict a new observation’s response value given a set of known explanatory
characteristics.

3.1.1 CART Overview

There are two major steps to the CART algorithm: the first is to recursively
build a single tree on the data, otherwise known as our training sample. The
second part consists of “pruning” the tree. The CART algorithm builds a
tree by finding the “best” binary split at each node, but the algorithm is
slightly different for classification problems than for regression problems.
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3.1.2 Finding the Best Binary Split

The central operation in the CART algorithm is to make a split in the ex-
planatory variable space. There are many several possible ways to make a
binary split in the training sample X. Each possible split is defined by an
explanatory variable Xj and a cutpoint s such that the explanatory variable
space can be partitioned into 2 regions, R1 and R2.

If Xj is discrete, let s0 be the set of values for Xj defined by the cutpoint s.
Then R1 and R2 are defined as the following:

R1 :{X|Xj ∈ s0}
R2 :{X|Xj 6∈ s0}

(3.1)

For example, suppose Xj is an explanatory variable for color. Possible val-
ues for Xj are blue, green, fuchsia, and red. One possible cutpoint s could
divide Xj into regions R1 : {X|Xj ∈ {blue, green}} and its complement,
R2 : {X|Xj 6∈ {blue, green}}.

If Xj is continuous, R1 and R2 are defined as the following:

R1 :{X|Xj < s}
R2 :{X|Xj ≥ s}

(3.2)

For example, suppose Xj is an explanatory variable for salary, whose range is
from $10, 000 to $500, 000. One possible cutpoint s = $129, 000 could divide
Xj into regions R1 : {X|Xj < $129, 000} and its complement, R2 : {X|Xj ≥
$129, 000}.

3.1.3 Growing a Classification Tree

In classification problems, the main goal is to predict a categorical response
variable based off of numeric or categorical predictors. Given a training set
L, let us define the different values of our categorical response variable as
classes, and our explanatory variables as predictors. Our set of observations
fall into the set of classes C = {1, 2, . . . , K}, with the set of possible pre-
dictors P = {X1, X2, . . . , Xp}. If the size of L is n, each ith observation
can be represented as (yi,xi), where xi is a vector (xi1, xi2, . . . , xip) and yi
is categorical.
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For a classification problem, the CART algorithm determines the best split
of each parent node such that the class distributions of each of its daugh-
ter nodes are “purer” than their parent nodes’. In other words, we seek to
minimize a measure of “impurity” with each iterative split.

Impurity

Impurity can be measured in multiple ways, but some common properties
hold for each measure of impurity. Let pk,t be the proportion of observations
in class k at node t. Impurity is a function φ defined on the set of all K-tuples

of (p1,t, . . . , pK,t) satisfying k = 1, 2, . . . , K, and
K∑
k=1

pk,t = 1.

For any tree, we can define the impurity I(t) at each node t as:

I(t) = φ(p1,t, p2,t, . . . , pk,t) (3.3)

Some common measures of impurity include the Gini index, Cross-entropy,
and Misclassification error. For the tree-building portion of the CART algo-
rithm, we focus on the Gini index.

The Gini Index

We define the Gini Index at node t:

G(t) =
K∑
k=1

pk,t(1− pk,t), (3.4)

which we can rewrite as:

G(t) = 1−
K∑
k=1

pk,t
2. (3.5)

Because impurity is a measure of how homogenous a node is, a node whose
observations all fall into one class would be considered homogenous, or pure
and result in G(t) = 0. A node whose observations are distributed evenly
across all possible classes has maximum impurity. There is a maximum value
of G(t) for each k.
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Using the Gini index, we can define the impurity at node t:

I(t) =
K∑
k=1

pk,t ·G(t). (3.6)

Each binary split can be across either a discrete or continuous explanatory
variable, as described in section 3.1.2. Once a split is made in some parent
nodet, region R1 describes the data that falls into the left daughter node tL
and R2 describes the data that falls into right daughter node tR. It follows
that for each binary split, we can calculate the overall reduction in impurity
as a difference of the impurity of a parent node t and the sum of the impurities
of both tL, and tR:

∆I = I(t)− (I(tL) + I(tR)). (3.7)

Because we are building a tree that predicts a qualitative response, a binary
split is just assigning qualitative values to the left daughter node, and the re-
maining qualitative values to the right daughter node. The CART algorithm
is greedy; it will find the best split by considering all possible splits on a
node across all explanatory variables, and choosing the split that maximizes
equation 3.7. The algorithm will iterate recursively on each of the resulting
daughter nodes until a stopping condition is reached. The resulting tree is
one whose terminal nodes are reasonably pure.

3.1.4 Growing a Regression Tree

In a regression problem, the main goal is to predict a numeric response vari-
able based off of numeric or categorical predictors. Our criteria for splitting
is to minimize sum of squared errors of the response.

At each node t where Nt is the number of observations in node t, we can
calculate an arithmetic mean of responses contained in node t:

ȳt =
1

Nt

Nt∑
n=1

yn. (3.8)

Using the mean response in each node, we can calculate the spread of re-
sponses within that node by finding the sum of squared differences from each
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response. We define the following as the Sum of Squared Errors (SSE) for a
given node t:

SSEt =
Nt∑
n=1

(yn − ȳt)2. (3.9)

A high SSE value means that the responses in a node are spread farther apart
from each other than if a node had a lower SSE. CART uses SSE to determine
each split in the tree, or each partition of our training data, as described in
section 3.1.2. The explanatory variable Xj and values that determine the
best split are values that maximize the reduction in SSE. The algorithm will
consider all predictors X1, . . . , Xp and all possible values of s for each of the
p predictors and calculate a reduction in SSE instead of impurity, which is
the difference between parent node’s SSE and the sum of the SSE for the
daughter nodes:

∆SSE = SSEt − (SSEtL + SSEtR). (3.10)

The CART algorithm will iterate recursively to find the value the explana-
tory variable Xj and cutpoint s that maximize equation 3.10 on each of the
resulting daughter nodes until a stopping condition is reached. The result-
ing tree is one whose terminal nodes contain values that are closely centered
around the mean of their respective nodes.

3.1.5 Prediction

After partitioning the data and building a tree, there will be mutually exclu-
sive regions R1, . . . , Rj corresponding to the explanatory variables and one
terminal node that corresponds to each of the j regions. Given a test obser-
vation, we can predict its response value by using its explanatory variables
to determine which terminal node which gives the average response variable
it falls into. Then, its predicted response value is the mean of the training
observations in the region to which that test observation belongs according
to the explanatory variables.

3.2 Bagged Learners

Decision trees often suffer from high variance, meaning if we were to split our
training data into two parts at random, and fit a decision tree to both halves,
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the results we get could be very different. This is related to the instability of
decision trees, defined such that a small change in our training set will change
the outcome of our best predictive tree model. Methods with low variance
will produce similar predictive models if applied to different samples from
the same population.

3.2.1 Bagging

One method, bootstrap aggregating, or bagging, is a procedure that reduces
the variance of decision trees, resulting in a more accurate model. The basic
idea behind bagging is to aggregate the results of multiple bootstrapped de-
cision trees through averaging or majority vote.

Given a training dataset of size n L with observations {(yi,xi), i = 1, 2, . . . , n},
where yi is either a categorical or numeric response which we want to predict,
we can use the CART algorithm to create a decision tree ϕ(x,L) such that
if the input is x, we predict y using ϕ(x,L). Suppose we take B bootstrap
resamples from L with replacement to make up the set {L(b), b = 1, 2, . . . , B}.
Then, from each bootstrap resample L(b), we can grow a decision tree such
that we have a set of decision trees {ϕ(x,L(b)), b = 1, 2, . . . , B}. When we
aggregate all our predictors, our bagged predictor for a regression tree is:

ϕB(x) =
1

B

B∑
b=1

ϕ(x,L(b)), (3.11)

and for a classification tree:

ϕB(x) = most common classb∈Bϕ(x,L(b)). (3.12)

By aggregating the predictions from highly variable decision trees, we can
reduce the variability of new predictions from test data.

We can show why averaging reduces variance [Breiman, 1996]. Let φ(x,L)
be a predictor for the population P with independently drawn sample L with
observations {(y,x)}, where y is numeric. Let φB(x) be our bagged predic-
tor, where φB(x) = EL[φ(x,L)]. The mean-squared-error for our predictor
φB(x) is:

EL[(y − φ(x,L))2] = y2 − 2yEL[φ(x,L)] + EL[φ2(x,L)]

= y2 − 2yφB(x) + EL[φ2(x,L)].
(3.13)

16



When we apply the inequality E2[X] ≥ E[X]2,

EL[(y − φ(x,L))2] = y2 − 2yφB(x) + EL[φ2(x,L)]

≥ y2 − 2yφB(x) + EL[φ(x,L)]2

≥ y2 − 2yφB(x) + φB(x)2

≥ (y − φB(x))2.

(3.14)

We can see that the mean-squared error of φB(x) is lower than the mean-
squared error over averaged over L of φ(x,L).

3.2.2 Random Forests

The random forests procedure [Breiman, 2001] is a modification of bagging.
Its purpose is to build a large collection of de-correlated trees, and average
their predictions. The difference between random forests and bagging is that
random forests grow de-correlated trees by using bootstrapped data and by
modifying one step of the tree-growing process. Before each split, given p
predictor variables, only m ≤ p are randomly selected as candidates for split-
ting. Intuitively, reducing m will reduce the correlation between any pair of
trees and hence reduce the variance of the average.

Consider the following example: if there is one very strong predictor in the
data set, then CART will repeatedly prioritize choosing this variable as the
splitting variable over the others, and all the bagged trees will be very similar
to each other, and thus, highly correlated. By choosing a random subset of
predictor variables to consider splitting on, usually m =

√
p, the resulting

bagged trees will not be as similar to each other such that averaging them
will lead to a overall larger reduction in variance than if we averaged deci-
sion trees based only on bootstrapping the data and not on subsetting the
variables. The averaged trees of random forests are less variable than the
average of standard bagged decision trees, making random forests a more
viable option than bagged predictors.
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Chapter 4

Integrating Random Forests
and BLB

4.1 Motivation

Random forests are an extremely popular machine learning technique. How-
ever, in settings that involve building random forests on extremely large
datasets, the computational burden of growing one random forest can be
large enough to justify not using it. We propose that integrating random
forests into the “Bag of Little Bootstraps” model can combat this computa-
tional burden, and still maintain the predictive appeal of traditional random
forests. This section will explore the main differences between building tradi-
tional random forests on large datasets, and building random forests within
the “Bag of Little Bootstraps” structure.

4.2 Differences

4.2.1 Runtime

Suppose we want to build a random forest on a training dataset of size
n = 1, 000, 000, 000 and p = 50 predictors. Recall that random forests are
built off of aggregated decision trees, and a decision tree is built using the
CART algorithm. For the case of building a regression decision tree, the
heart of the CART algorithm lies in maximizing 4.1:
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∆SSE = SSEt − (SSEtL + SSEtR), (4.1)

where t is the node to be split, tL is a potential left daughter node and tR
is a potential right daughter node. Given some predictor variable Xj and a
cutpoint s of Xj, all the observations for which {X|Xj < s} is satisfied will
fall into node tL and the rest, those that satisfy {X|Xj ≥ s}, will fall into
node tR. Recall that SSE is measured by:

SSEt =
Nt∑
n=1

(yn − ȳt)2, (4.2)

where Nt is the number of observations in node t.

Then it follows that for some predictor Xj and cutpoint s, we can partition
our predictor space into R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s}
which has the a corresponding reduction in SSE:

∆SSE =
Nt∑
n=1

(yn − ȳt)2 − (
∑

i:xi∈R1(j,s)

(yi − ŷtL)2 +
∑

i:xi∈R2(j,s)

(yi − ŷtR)2). (4.3)

Because the CART algorithm needs to find the R1 and R2 (which corre-
spond to nodes tL and tR, respectively) that maximize ∆SSE, it needs to
look through all possible partitions of the data in node t. For a random for-
est, CART only considers m ≤ p predictor variables to split on. Therefore,
determining the binary splits at each level of the tree means looking at m
predictor variables for each node at each level. Note that for each predictor
variable Xj, there are at most n possible cutpoints for which we need to cal-
culate ∆SSE. Each level of partitioning would then need to check at most
m · n partitions of the data to find determine tL and tR. The runtime would
be on the order of O(n), multiplied by the number of trees one wants to grow
(the number of trees grown for a random forest is usually at least 500). If n
is large, one can imagine that this process would take an extremely long time.

Fortunately, by integrating random forests into BLB, we can reduce the long
runtime. We will delve into how random forests are built in the BLB struc-
ture in the next section, and then we will talk about what final predictions
and estimates of standard error look like.
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4.2.2 Growing Random Forests in BLB

Just as the original BLB structure computes θ̂ from each resample of a sub-
sample, we propose that integrating random forests and BLB will similarly
involve building a random forest from each resample of a subsample, as in
figure below.

Figure 4.1: The Bag of Little Bootstraps with Random Forests.

Recall that in the Bag of Little Bootstraps, each resample of size n actually
consists of b unique values where b << n. This is because a multinomial co-
efficient Mi accompanies each of the b unique values, where Mi is the count
of each observation we see in the resample. Because there are only b unique
values, each with a corresponding multinomial coefficient, the algorithm for
growing a random forest on a resample in BLB is slightly different from that
used for growing a random forest on a dataset with n unique values.

The main operation in the construction of a random forest is maximizing the
sum of squared errors in equation 4.3 at each recursive partitioning of our
data. Usually this operation is on the order of n, the size of our training
dataset, as explained in the previous section.
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However, in the Bag of Little Bootstraps, the number of observations in
node t will always be less than or equal than b as opposed to always less than
or equal to n. The algorithm will run on the order of O(b), but with the
variability associated with statistics calculated on samples of size n, not b.
The multinomial coefficients, M = M1, . . . ,Mb simply need to be integrated
into equation 4.4 according to the following:

∆SSE =
Nt∑
n=1

(yn− ȳt)2− (
∑
i:xi∈tL

Mi · (yi− ŷtL)2 +
∑
i:xi∈tR

Mi · (yi− ŷtR)2), (4.4)

where Nt ≤ b.

This works because the resample in BLB consists of repeats of each unique
value from the subsample. Suppose we have some unique value from the
sample, (yi,xi) with its corresponding multinomial coefficient, Mi. Then,
Mi is the number of times we see observation (yi,xi) in the resample. Note
that we only need to check the b unique values instead of n unique values.
For example, in Figure 4.2, we only need to check splits between the 5 unique
values, instead of within the repeats of each value.

Figure 4.2: Splitting in BLB.

Here, we provide some pseudo-code to clarify the main modification to RF.
Our new BLB-RF algorithm is provided on the next page.
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Algorithm 2 Bag of Little Bootstraps (BLB) with Random Forests

Input: X1, . . . , Xn, training data
Z1, . . . , Zm, test data
γ, a random forest
b, subset size

s, number of sampled subsets
r, number of resamples
ξ, estimator quality assessment

Output: θ̄∗ = θ̄∗1, . . . , θ̄
∗
m, predicted values of test data

ξ̂(Qn(P )), confidence interval estimate

for j = 1 . . . s do
// Subsample the data

Randomly sample a set I = {i1, . . . , ib} of b indices from {1, . . . , n}
without replacement

for k = 1 . . . r do
// Resample the data

Sample up to size n: Sample (M1, . . . ,Mb) ∼ Multinomial(n, 1
b
)

P∗n,k ← 1
n

∑b
a=1 naδXia

// Build a random forest

γk ← γ(P∗n,k)
// Get m predictions for test data

θ̂∗n,k ← γk(Z1, . . . , Zm)
end for
Q(1)∗
n,j , . . . ,Q

(m)∗
n,j ← 1

r

∑r
k=1 δθ̂∗n,k

end for
return

θ̄∗ ← 1
s

∑s
j=1 θ̂(Q

(1)∗
n,j , . . . ,Q

(m)∗
n,j )

ξ̂(Qn(P ))← 1
s

∑s
j=1 ξ(Q

(1)∗
n,j , . . . ,Q

(m)∗
n,j )

Similar to the original BLB model, we take the average over all of the sub-
samples’ predicted values to determine the final predicted value for a given
test observation. Each subsample’s predicted values come from the means of
their bootstrap distributions of random forest predictions where each random
forest was grown on a different BLB resample.
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4.3 Predictions and Confidence Intervals

Now that we know how to construct random forests in the BLB structure,
we can move onto what to extract from the model. Instead of using BLB
to estimate the mean [Kleiner et al., 2014], here we want to estimate the
predictions of test observations using a random forest. The mean and random
forest seek to answer different questions about a dataset. A mean simply
takes the average response value of a set of data in order to estimate a
single parameter from a population, whereas a random forest uses training
data to construct a set of rules for predicting the value of an unknown, new
observation. That is to say, there is no true population value of a random
forest in the same way that there exists a true average value µ. A random
forest seeks to find the best prediction of a new observation.

4.3.1 Prediction

It suffices to say that integrating random forests into the BLB structure will
involve an additional component that did not exist in the original structure:
a new test observation(s) which we will denote as Z1, . . . , Zm. Then, when
we construct each random forest from each resample, we need to have the
new test observation available from which each random forest can predict its
value. Rather than have one prediction for a parameter, we produce a vector
of predicted values θ̄ = θ̄1, . . . , θ̄m for test observations Z1, . . . , Zm.

4.3.2 Standard Error

Central to our notion of standard error in the Bag of Little Bootstraps is that
we take independent subsamples of our data before bootstrapping. Then,
each bootstrapping procedure is independent of all the others because the
subsamples are independent from each other. Recall that in the Bag of Lit-
tle Bootstraps, a random forest is built from a BLB resample of a subsample.
This means that a random forest coming from one subsample is entirely in-
dependent of another random forest built from a different resample. Because
each random forest model is used to predict the response of an incoming test
observation, it follows that the averaged predictions from one subsample are
also independent from the averaged predictions from another subsample. If
our predictions are independent from each other, then we can use them to
calculate the appropriate standard error.
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Recall that s is the number of subsamples in BLB. Suppose we only have
one test observation that we are trying to predict. Instead of using bold
vector notation for the predictions, θ̂, we will use θ̂ for this section. Suppose
subset j has empirical distribution Q∗n,j of the bootstrapped random forest

predictions. Then θ̂∗j = θ̂(Q∗n,j) is the corresponding prediction for subset j.

Then, our final prediction is θ̄∗ = 1
s

∑s
j=1 θ̂

∗
j .

After computing predictions from each subsample, we end up with s pre-
dictions from one training dataset, which is similar to drawing observations,
or making predictions from one random sample. We can then extend the
standard notion of standard deviation for a sample and define

SD =

√√√√ 1

s− 1

s∑
j=1

(θ̂∗j − θ̄∗)2. (4.5)

Then, the standard error of the predicted value is the following:

SE(θ̄∗) =
SD√
s
. (4.6)

We will use this value of standard error to construct confidence intervals for
all predictions coming out of the “BLB-RF” as:

θ̄∗ ± t · SD√
s
. (4.7)

24



Chapter 5

Simulations and Results

The main purpose of running simulations is to compare the accuracy of pre-
diction from running traditional random forests on large datasets versus run-
ning random forests in the Bag of Little Bootstraps model. I used simulated
data to allow for knowledge of the true underlying distribution, P , sam-
pling distributions Qn(P ), and corresponding estimator quality assessments
ξ(Qn(P )). Because our focus is on random forests, a sampling distribution
Qn(P ) will be a distribution of random forest predictions of some test ob-
servation. For simplicity, we will denote a sampling distribution of some ith
test observation as Qi.

5.1 Data and Notation

Our data has the form Xi = (Xi, Yi) ∼ P , i.i.d. for i = 1, . . . , n where
Xi ∈ Rd. Each dataset is generated from a true underlying distribution P
that consists of a linear model Yi = XT

i βd + εi, with d = 10. The Xi are
drawn independently from Xi ∼ Unif(−5, 5) with εi ∼ Normal(0, 1). The β
coefficients are each drawn independently from β ∼ Unif(−10, 10). There-
fore, when we generate a prediction of a test observation, we are predicting
E(Yi) = XT

i βd.

Because we are dealing with random forests, our experiment consists of two
types of datasets: test and training. For this section, we will only have one
test set of size ntest = 500, and various training sets of size ntrain = 1000.
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The two models we are comparing are the BLB-RF model, as described in
Chapter 4, and bootstrapping traditional random forests, as described in
Chapter 3. The training sets are used to construct either model.

We can then use our models to generate predictions of our test data. Our test
data Z1, . . . , Z500 comes from our previously defined underlying distribution
P . Our estimator θ̄ = θ̄1, . . . , θ̄500 is a vector of predictions for our test
data where each prediction θ̄ is generated from either a random forest γ or
BLB-RF. We will define ξ as a procedure that computes a 95% confidence
interval of a prediction from a certain model. In particular, given a sampling
distribution of random forest predictions Qn(P ), ξ computes the standard
deviation σ of Qn(P ).

5.1.1 BLB-RF Model

Recall that when we create a BLB-RF model from a training dataset, we need
both the training and test set because our output will consist of prediction
estimates of the test data, and corresponding estimates of standard error. We
describe how to generate prediction and standard error estimates in Chapter
4.

5.1.2 Bootstrapping Random Forests model

The traditional random forest model also requires both a training set from
which to construct a model, and test data whose response values we want to
predict. Because BLB is a type of modified bootstrapping procedure, we will
compare it to bootstrapping where our statistic of interest is the prediction
from a random forest. We describe how to compute predictions in Chapter 3.

5.2 Procedure and Plots

In order to evaluate the estimates of ξ and θ̄ from a random forest model
to that of our BLB-RF model, we will compare the BLB-RF estimates and
estimates from traditional bootstrapping to an approximation of the true
values of ξ(Qn(P )), where Qn(P ) is the a sampling distribution of random
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forest predictions for some test observation.

First, we construct an approximation to the true sampling distribution of
random forest predictions of our test data. Then, we generate random for-
est predictions and corresponding standard error estimates from traditional
bootstrapping, and compare them to the approximation of the true sampling
distributions. Finally, we do the same for a BLB-RF model.

5.2.1 Generating an approximation to ξ(Qn(P ))

We can approximate a sampling distribution for each of the 500 test data
points by generating 2,000 realizations of datasets of size ntrain = 1000 from
P .

On each of the 2,000 training samples of size ntrain = 700 we do the following:

1. Build a random forest γ.

2. For each test observation Zi for i = 1, . . . , 500:

• Generate prediction θ̂i = γ(Zi).

Then, each test observation has a corresponding approximation to sampling
distribution Qi such that we end up with approximations of 500 sampling
distributions.

Each ith test observation Zi has 2,000 predictions θ̂i,1, . . . , θ̂i,2000. The center
of sampling distribution Qi of test observation Zi is the average over all 2,000
predictions, θ̄i = 1

2000

∑2000
j=1 θ̂i,j. Recall that the true standard error is just

the standard deviation of the sampling distribution. Our confidence interval
ξ(Qi) for some test observation Zi is θ̂i ± zασ. For each test observation, we
would hope that Yi = XT

i βd, would be contained in the confidence interval.

The plot below shows the confidence intervals and predictions of each test
observation’s sampling distribution. Each point is a prediction of a test
observation. The x-axis is our truth, and the y-axis is our predictions such
that we want to capture the dotted line y = x. The blue confidence intervals
are those confidence intervals that actually capture the truth. Only 242
out of the 500 test observations captured the truth. The “regression to the
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mean” effect is very noticeable in this plot, as the blue confidence intervals
are centered around 0.

Figure 5.1: Confidence intervals of sampling distributions of random forest
test predictions.

5.2.2 Generating predictions from a bootstrapping model

The purpose of bootstrapping is to give us information about a theoretical
sampling distribution of some statistic. For the case of random forests, we can
bootstrap from one training sample and generate a random forest prediction
on each bootstrap resample to create a bootstrap distribution which we can
compare our BLB-RF model to. Because BLB is supposed to maintain the
same statistical properties as bootstrapping, we would hope that both boot-
strapping random forests and BLB-RF produce similar information about
the sampling distributions which we approximated in the previous section.

To bootstrap, we used one training sample of size ntrain = 1000 to draw 200
bootstrap resamples. On each of the 200 bootstrap resamples, we do the
following:

1. Build a random forest γ.
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2. For each test observation Zi for i = 1, . . . , 500:

• Generate prediction θ̂i = γ(Zi).

Then, each test observation has a corresponding bootstrap distribution.

Each ith test observation Zi has 200 predictions θ̂i,1, . . . , θ̂i,200. The boot-
strap distribution of test observation Zi is the average over all 200 predic-
tions, θ̄i = 1

200

∑200
j=1 θ̂i,j. Our standard error estimate is just the standard

deviation of the bootstrap distribution. Our confidence interval for some test
observation Zi is θ̂i ± zασ. For each test observation, we would hope that
Yi = XT

i βd, would be contained in the confidence interval.

The plot below shows the confidence intervals and predictions of each test
observation’s bootstrap distribution. Each point is a prediction of a test
observation. The x-axis is our truth, and the y-axis is our predictions such
that we want to capture the dotted line y = x. The blue confidence intervals
are those confidence intervals that actually capture the truth. Only 197 out
of the 500 test observations captured the truth. The “regression to the mean”
effect is very noticeable again, according to the same trend as in Figure 5.1.
Because the regression to the mean is present in every plot, we will assume
that this is not due to the BLB-RF model, but either the population P from
which we are drawing our data, or random forest predictions.
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Figure 5.2: Confidence intervals of bootstrap distributions of random forest
test predictions that capture truth.

A bootstrap distribution is not necessarily centered around the center of its
corresponding theoretical sampling distribution, but a bootstrap confidence
interval is theoretically supposed to capture the center of its corresponding
sampling distribution. Therefore, we expect more of the confidence intervals
from bootstrap distributions to capture the sampling distribution centers
than the truth. The plot below is similar to that in Figure 5.2, except that
the blue confidence intervals are those that capture the sampling distribution
means rather than the truth. As expected, more confidence intervals capture
the centers of their corresponding sampling distributions than those that
capture truth. In Figure 5.3, 405 out of the 500 confidence intervals capture
their corresponding sampling distribution’s mean. This is almost double the
capture rate of capturing the truth, as expected.
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Figure 5.3: Confidence intervals of bootstrap distributions of random forest
test predictions that capture sampling distribution means.

5.2.3 Generating predictions from a BLB-RF model

Because BLB is supposed to be a means of assessing the quality of estimators
similar to bootstrapping, we can also compare our estimates of standard error
from BLB, ξ̂, with our approximations to the true ξ(Qi) for i = 1, . . . , 500.
We constructed one BLB-RF model from the same training dataset used for
the previous section (size ntrain = 1000) and generated predictions and esti-
mates of standard error (as in Equation 4.6) to create a confidence interval
(as in Equation 4.7) for each test observation.

The plot below shows the BLB-RF confidence intervals and predictions of
each test observation. Each point is a BLB-RF prediction of a test obser-
vation. The x-axis is our truth, and the y-axis is our predictions such that
we want to capture the dotted line y = x. The blue confidence intervals are
those confidence intervals that actually capture the truth. Only 99 out of
the 500 test observations captured the truth. This is much fewer than the
capture rate of the sampling distributions, and almost half the number of
confidence intervals that capture truth from bootstrapping. Similarly, the
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“regression to the mean” effect is also very noticeable in this plot, as the
blue confidence intervals are centered around 0.

Figure 5.4: Confidence intervals of BLB-RF test predictions that capture
truth.

Similarly with bootstrapping, we can assess how well confidence intervals
capture the centers of their corresponding sampling distributions. The plot
below is similar to that in Figure 5.4, except that the blue confidence inter-
vals are those that capture the sampling distribution means rather than the
truth. As expected, more confidence intervals capture the centers of sampling
distributions than those that capture truth. In Figure 5.5, 242 out of the
500 confidence intervals capture their corresponding sampling distribution’s
mean.
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Figure 5.5: Confidence intervals of BLB-RF test predictions that capture
truth.

Below is a summary of confidence interval capture rates from the bootstrap-
ping model and the BLB-RF model, both of which were constructed from the
same training dataset of size ntrain = 1000. It is obvious that bootstrapping
does a lot better, but it is important to note that both follow the same trend
of capturing more sampling distribution means than truth values.

Capture Bootstrap BLB-RF

Truth 197 99
Samp Dist 405 242

Table 5.1: Table to compare confidence interval capture rates.

5.2.4 Comparing standard error estimates

To see how the standard error estimates compare to our approximations of
true standard error from the sampling distributions, we can assess the devi-
ation of BLB-RF standard error estimates (according to section 4.3.2) and
bootstrapping standard error estimates from the true standard errors σ(Qi).
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Let c be the estimated standard error from either BLB-RF or bootstrapping
and let co be the true standard error from a sampling distribution. Then we
measure the deviation of c from co as |c− co|/co.

The plot below shows the distribution of deviance values. The red are the
deviance values from the bootstrapping standard error estimates, and the
blue are the deviance values from the BLB-RF standard error estimates.
We can see that the deviance values are right skewed for both BLB-RF
and bootstrapping, and range from 0 to around 0.8, which means that the
standard error estimates are very comparable to the approximations to the
true standard error values of our sampling distributions. Bootstrapping does
slightly better, as expected.

Figure 5.6: Comparing Deviance from Sampling Distribution Standard Error
between BLB-RF and bootstrapping estimates.

5.2.5 Discussion

Our goal was to assess how BLB-RF standard error estimates compare to
the true standard error values from sampling distributions of random forest
predictions, and to estimates and predictions from traditional bootstrapping.
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Recall that bootstrapping is a resampling tool that is used to approximate
the shape and spread of a theoretical sampling distribution. Because BLB
is purported to have the same statistical properties as bootstrapping, our
BLB-RF model should also approximate the shape and spread of a theo-
retical sampling distribution just as a bootstrap distribution does. From
looking at the deviance values of our BLB-RF standard error estimates, we
can see that our BLB-RF model has similar behavior to that of traditional
bootstrapping, but just not as good. Because I only compared BLB-RF with
bootstrapping on one training set, this simulation isn’t entirely exhaustive,
and likewise, ntrain is relatively small, and there are obvious regression to the
mean effects in all plots that are probably interfering with prediction accu-
racy. However, it is promising that our BLB-RF model behaves somewhat
similarly to bootstrapping, but on a smaller scale. Ideally, we would be able
to run this simulation on a much larger scale, because BLB is to be utilized
for processing high-dimensional, massive datasets.
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Chapter 6

Conclusion

The Bag of Little Bootstraps is a promising and new resampling model to
accommodate large datasets. From a preliminary simulation exercise, we can
see that integrating the random forest prediction model for regression into
the BLB structure (BLB-RF) approximately maintains the bootstrapping
property of estimating standard error from a sampling distribution. Because
the BLB-RF model was not tested on a parallel computing architecture, there
were limitations in computing time (a rather counter-intuitive and ironic bar-
rier) such that I could not test the BLB-RF model on large datasets, which
is a situation that BLB is meant for. In the future, I would like to build a
computing structure that does run BLB-RF in parallel such that it can be
tested on large datasets, and be accompanied with a more thorough analysis
of its accuracy. Large datasets are being utilized everywhere for all types
of operations so finding solutions to process and compute on large datasets
more quickly and efficiently is an extremely relevant problem. The
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