
Senior Thesis in Mathematics

Local Prediction Confidence for
Classification Random Forests

Author:
Xiaotong Gui

Advisor:
Dr. Johanna Hardin

Submitted to Pomona College in Partial Fulfillment
of the Degree of Bachelor of Arts

May 9, 2019

Acknowledgements

I am very grateful for Professor Hardin’s guidance and men-
toring throughout senior year. I would not finish this thesis
without her support and patience. I want to thank Math De-
partment and the amazing professors (Professor Sarkis, Profes-
sor Rad and Professor Shtylla) whom I have taken classes and
worked on research with. They intellectually inspired me and
helped me learn to appreciate the beauty of math. I would also
like to thank Benjamin Lu whose senior thesis laid the founda-
tion for my work.

Contents

1 Introduction 1

2 Confidence and Prediction Intervals 3
2.1 Example: Linear Regression 4

2.1.1 Simple Linear Regression 4
2.1.2 Interval Estimation for E[Yh] 4
2.1.3 Interval Estimation for a New Response 5

3 Random Forests 6
3.1 Decision Tree . 6

3.1.1 Tree Growth . 7
3.1.2 Tree Prediction . 8

3.2 Random Forests . 9
3.2.1 Bootstrapping and Bagging 9

3.3 Constructing Random Forests 10
3.3.1 Out-of-Bag Estimation 10

4 Prediction Confidence in Machine Learning Models 12
4.1 Overall Training Accuracy . 12
4.2 Test Accuracy . 13
4.3 Out-of-bag Training Accuracy 13
4.4 Class Probabilities . 14

5 Local Prediction Confidence 16
5.1 Define Local Confidence . 16

6 Evaluation 18
6.1 Approximate True Prediction Confidence 18

i

6.2 Simulations . 20
6.3 Simulation Results . 22
6.4 Root Mean Square Error . 30
6.5 Theoretical Justification . 31

7 Applications and Future Directions 33

8 Conclusion 35

9 Appendix 36

ii

Chapter 1

Introduction

Random forests are an ensemble learning model widely used in classification
and regression tasks. They gained popularity within the machine learning
community due to their robust performance on high dimensional data (Hastie
et al., 2009). Through producing de-correlated trees and leveraging an aggre-
gated decision, random forests are able to greatly reduce variance of models
describing data with correlated explanatory variables.

While random forests have great predictive power, their inference mech-
anism in classification tasks are not well-understood. Unlike in regression
setting where construction of prediction intervals is well-defined, the predic-
tion confidence of a new observation in random forests is often approximated
by the overall predictive performance over previous data. Sensitivity analysis
gives us the extra ability to break down prediction accuracy by classes, but
metrics such as AUC score still does not speak to individual sample variabil-
ity. Shafer and Vovk (2008) introduced conformal prediction as a measure of
how unsual the sample is from the training data, and Bhattacharyya (2013)
further applied the method in random forests. However, conformal predic-
tion is computationally inefficient as it requires running multiple k nearest
neighbor procedures on the test data, making applications on big data inac-
cessible.

Despite more recent literature on constructing confidence intervals on
regression forests, few are directly on classification random forests. Wager
et al. (2014) created confidence intervals in regression random forests using
sub-sampling method to approximate standard error. Lu and Hardin (2018)
in Lu’s senior thesis explored prediction intervals in regression forests. How-
ever, the methods proposed in regression literature are immensely useful for

1

our study of prediction confidence in classification forests. Both Wager et al.
(2014) and Lu and Hardin (2018) introduced a proximity measure that eval-
uates the similarity between the new observation and training data using
properties of the bootstrapped trees in random forests. We further include
this idea into our construction of classification confidence.

We propose a local confidence metric that is a direct improvement to ex-
isting metrics that are widely used in classification tasks. In Chapter 2- 3,
we present prediction intervals in linear regression and the random forests
machinery. Chapter 4 reviews current existing confidence metrics and dis-
cuss their shortcomings. In Chapter 5, we propose a local confidence metric
based on a similarity measure between the new observation and the training
sample. In Chapter 6, we show that our purposed method is computationally
efficient, close to the true confidence and can better capture the heterogene-
ity of the feature space. To support that claim, we carefully define prediction
confidence in classification random forests and empirically compare our pro-
posed metric with other confidence metrics. The overall goal of this thesis
is to construct a confidence metric that is relatively easy to understand, fast
to implement and fairly unbiased.

2

Chapter 2

Confidence and Prediction
Intervals

Confidence and prediction intervals are well-defined inference mechanisms for
the well-studied linear regression. In this chapter, we will focus on the fre-
quentist definitions and examine the theoretical foundation. The theoretical
setup is based on James et al. (2014) and Neter et al. (1996).

Confidence intervals for population parameters are constructed at a select
level chosen by user. It means that if we repeatedly take samples from the
population, then a certain proportion of the intervals constructed will contain
the true population parameter.

Definition 2.0.1 Let α ∈ [0, 1]. A (1 − α)100% confidence interval for a
population parameter is an interval created by a procedure such that among
the intervals constructed on repeated samples taken from the population, (1−
α)100% of them contain the true parameter.

A confidence interval gives a range of estimated value for a population
parameter, whereas a prediction interval estimates a range of values for the
individual response of a new observation. The notion of taking repeated
samples also holds true in prediction intervals.

Definition 2.0.2 Let α ∈ [0, 1]. A (1−α)100% confidence interval for a new
response is an interval created by a procedure such that among the intervals
constructed on repeated samples taken from the population, (1 − α)100% of
them contain the true response of the new observation.

3

2.1 Example: Linear Regression

2.1.1 Simple Linear Regression

We will start building the interval concepts from simple linear regression.
We assume the normal error regression model:

Yi = β0 + β1xi + εi for i = 1, ...n (2.1)

where
Yi is the response of the ith observation.
β0 and β1 are regression parameters
xi is the value of the explanatory variable of the ith observation

εi
iid∼ N(0, σ2)

2.1.2 Interval Estimation for E[Yh]

A common objective in regression inference is to estimate the mean of Y at a
certain level of x. Let xh denote the level of x for which we wish to estimate
the mean response. The mean response when x = xh is denoted by E[Yh].
The estimate of E[Yh] is given by:

ŷh = β̂0 + β̂1xh (2.2)

The sampling distribution of ŷh is normal with mean and variance:

E[ŷh] = E[Yh] (2.3)

σ2(ŷh) = σ2

(
1

n
+

(xh − x̄)2∑n
i=1(xi − x̄)2

)
(2.4)

Unknown σ2 is estimated using s2(ŷh), the estimated variance of ŷh

s2(ŷh) = MSE

(
1

n
+

(xh − x̄)2∑n
i=1(xi − x̄)2

)
(2.5)

where

MSE =
1

n

√√√√ n∑
i=1

(yi − ŷi)2 (2.6)

The (1 − α)100% confidence interval for the mean response of Yh at xh is
then

ŷh ± t(α/2,n−2)

√
MSE

(
1

n
+

(xh − x̄)2∑
(xi − x̄)2

)
(2.7)

4

2.1.3 Interval Estimation for a New Response

A prediction interval gives a range of plausible values for individual responses
as opposed to a population mean. Therefore it includes the variance of the
data at hand. Using the same set up from the previous section, the (1−α)%
prediction interval for the response of a new observation at xh is:

ŷh(new) = ŷh ± t(1−α/2;n−2)s(ŷh(new)) (2.8)

where an unbiased estimator of σ2(ŷh(new)) is

s2(ŷh(new)) = MSE + s2(ŷh) (2.9)

= MSE

(
1 +

1

n
+

(xh − x̄)2∑
(xi − x̄)2

)
(2.10)

Therefore the (1− α)100% prediction interval for a new response at xh is

ŷh ± t(α/2,n−2)

√
MSE

(
1 +

1

n
+

(xh − x̄)2∑
(xi − x̄)2

)
(2.11)

Frequentist confidence and prediction intervals are conceptualized from
taking numerous samples from the population. Later we will use a similar
idea to define prediction confidence in classification random forests. Since we
want a confidence score on a new response rather than population mean, our
construction of prediction confidence in classification random forests echoes
that of prediction intervals in linear regression.

5

Chapter 3

Random Forests

Random forests consist of decision trees grown on bootstrap samples drawn
from the same data set using a subset of randomly selected explanatory vari-
ables at each split. In this section, we will examine classification random
forests and identify their unique properties that enable us to create a lo-
cal confidence metric in the following chapters. Decision trees, bootstrap
sampling methods, and bagging will be explained.

3.1 Decision Tree

Classification trees make predictions by partitioning the feature space into
non-overlapping regions and assigning labels given by the most occurring
class in a specified region. The best split is made by minimizing a crite-
ria function. This top-down, greedy approach is known as recursive binary
splitting (James et al., 2014).

The splitting criteria, formally defined as a loss function, is a measure of
of how well the split differentiates the observations in a region. Classification
trees use the Gini index to evaluate each split.

Definition 3.1.1 Let z1, ...zn be a set of n training observations each with p
explanatory variables and a categorical response variable with K levels. For
the Rth region of the predictor space, the Gini index is given by

GR =
K∑
i

p̂Rk(1− p̂Rk)

6

where p̂Rk represents the proportion of training observations in the Rth region
that are from the kth class.

Gini index is a measure of total variance across the K classes. In other
words, it measures nodes purity and a small value indicates that the node is
dominated by observations from the same class.

3.1.1 Tree Growth

Algorithm 1 Grow a Classification Tree

procedure split(set Z of observations with p predictors x1, x2, ..., xp, region
R of the predictor space, int minNodeSize)

if |Z| <minNodeSize then return R

end if

for j in 1,2,...p do

Define R1(j, s) = {x|xj ∈ s} and R2(j, s) = {x|xj /∈ s}
where s is a subset of values xj can take

end for

Identify (j′, s′) among all (j,s) that minimizes G(R1(j, s)) +G(R2(j, s))

split({z ∈ Z : x ∈ R1}, R1(j
′, s′),minNodeSize)

split({z ∈ Z : x ∈ R2}, R2(j
′, s′),minNodeSize)

end procedure

Definition 3.1.2 Let T be a classification tree. A node of T is a region
created by each split in the tree construction algorithm. A node can be further
divided in the next recursive step.

Definition 3.1.3 Let T be a classification tree. A terminal node of T is
the region returned by the tree growth algorithm. A terminal node cannot be
further split and determines the final prediction of a new observation.

7

Figure 3.1: A visualization of recursive binary splitting and tree growth.
Figure from ISLR (James et al., 2014)

3.1.2 Tree Prediction

After growing a tree based on the training samples, we assign labels to the
terminal nodes based on the most occurring classes of the observations in the
terminal nodes. The final prediction of a new observation is decided by the
assigned label of the terminal node the observation falls into.

There are many great things about using decision trees in classification
tasks such as easy interpretability and computation efficiency. However, trees
are often non-robust and have large variance from sample to sample. In
the next section, we will introduce random forests, a much more powerful
predictive model that use trees as building blocks.

8

3.2 Random Forests

3.2.1 Bootstrapping and Bagging

Bootstrapping is widely used in statistics to approximate the unknown sam-
pling distribution of a statistic. In the context of decision trees, the bootstrap
can be particularly useful to improve the predictions themselves. The proce-
dure of bootstrap is: take repeated samples which are the same size as the
data with replacement. The underlying assumption is the original data are
an accurate representation of the population and the bootstrap procedure
allows us to emulate the process of obtaining new sample sets from the pop-
ulation. Through constructing bootstrap samples and averaging or majority
vote on the predictions built on each sample, we can greatly reduce the vari-
ability of our predictions from different training samples. This technique is
called bagging.

(a) Bootstrapping demo (b) Bagging demo

Figure 3.2: An illustration of bootstrapping and bagging. This figures come
from this tutorial on towardsdatascience.com

.

9

https://towardsdatascience.com/decision-trees-and-random-forests-for-classification-and-regression-pt-2-2b1fcd03e342

3.3 Constructing Random Forests

The procedure of constructing a random forest follows from bagging. The
only difference is, instead of looking through the entire predictor space, for
each tree at each split, we only evaluate a randomly chosen subset of pre-
dictors to evaluate the splitting criteria. The procedure for random forest
prediction is as follow:

1. Bootstrap B samples from the data z1, ...zn.

2. Grow classification trees T1, T2, ...TB where Tb is constructed on the bth
bootstrap sample with m randomly chosen predictors (0 < m < p)
considered at each split.

3. For a new observation, make predictions using each of the B trees. The
final prediction is the majority class of all B predictions from B trees.

Since at each split only a random subset of the predictors are considered,
the bagged trees will not be dominated by a single strong predictor. In
such random forests are able to generate de-correlated trees, making the
aggregated prediction less variable and more robust.

3.3.1 Out-of-Bag Estimation

Each bootstrap sample is sampled with replacement from the original data,
thus some observations from the original data might appear in the bootstrap
sample while some might not. This property enables us to directly estimate
random forests’ predictive performance on new data. We will lay out the
following definitions.

Definition 3.3.1 Let ϕ be a random forest with B trees T1, ..., TB. For the
bth decision tree Tb, a training observation zi is out-of-bag if zi is not in
the bth bootstrap sample.

Proposition 3.3.1 On average, each bagged tree makes use of around 2/3
of the training observations.

The proof to Proposition 3.3.1 is fairly straightforward. Pr(zi not in a
bootstrap sample) = (1 − 1

n
)n. As n → ∞, the probability converges to

1
e
≈ 1

3
. Therefore for each bagged tree, around 1/3 of the training data are

out-of-bag.

10

Definition 3.3.2 The out-of-bag prediction of a training observation zi is
the majority vote over all predictions of zi by trees where zi is out-of-bag.
Each training observation yields around B/3 such predictions toward the final
out-of-bag prediction.

We can use the out-of-bag prediction accuracy for all training data to
estimate the predictive performance of the model on new observations since
the out-of-bag prediction of each training sample is yielded only on trees that
were not used to fit the sample. We will revisit out-of-bag prediction error
estimation in the next chapter in our discussion of prediction confidence. We
will also use the out-of-bag concept to construct local confidence in Chapter
5.

11

Chapter 4

Prediction Confidence in
Machine Learning Models

In classification tasks, in addition to the actual predictions, we are also in-
terested in knowing how confident the model is in making the individual
predictions. In other words, how likely is the model to be correct in pre-
dicting a new observation? Having an estimate of prediction confidence is
particularly crucial in many real-world situations where classification results
drive high-stake decision-making.

This chapter will discuss existing metrics that are commonly used in the
machine learning community to estimate prediction confidence and introduce
the motivation behind our novel proposed method.

4.1 Overall Training Accuracy

The most common approach to quantify the learning model’s predictive abil-
ity is to look at the training accuracy.

Definition 4.1.1 Let z1, ...zn be the set of training data. Let y1, ...yn be their
true labels, and ŷ1, ...ŷn be the predicted labels. The training accuracy of the
model is

Acctraining =

∑n
i=1 I(ŷi = yi)

n
(4.1)

However, assessing a model’s prediction capacity on future data based
on the data used to fit the model is problematic. Since the model is tuned

12

to fit the training data closely, its prediction accuracy of new data will be
overestimated by the training accuracy.

4.2 Test Accuracy

Since we are interested in the model’s performance on unseen data, a better
idea for assessing accuracy is to create a test data set independent of model
fitting. If we randomly sub-sample a part of our data and make predictions
after the model is fitted, the prediction accuracy on the test data set will
approximate that on future new observations, assuming that the test data is
representative of the population.

Definition 4.2.1 Let z1∗, ...zm∗ be the set of test data. Let y1∗, ...ym∗ be
their true labels, and ˆy1∗, ... ˆym∗ be the predicted labels. The test accuracy of
the model is

Acctest =

∑m
i=1 I(ŷi∗ = yi∗)

m
(4.2)

However, splitting data into train and test will result in fewer data for
the training set, making the training set less representative. This problem
will become especially prominent with a small sample size.

4.3 Out-of-bag Training Accuracy

In random forests, instead of a train-test split we can also assess prediction
accuracy on new data with training observations only using out-of-bag pre-
dictions. Since each bootstrap sample uses approximately 2/3 of the data,
and each training observation is not included in the building of around 1/3
trees, we can conveniently use the training set to assess our model’s prediction
accuracy on new data. We define this metric out-of-bag training accuracy.

Recall the definition of out-of-bag predictions from 3.3.2.

Definition 4.3.1 Let ŷ−1, ...ŷ−n be the out-of-bag predictions for training
observations z1, ...zn. The out-of-bag training accuracy is

Accoob =

∑n
i=1 1(ŷ−i = yi)

n
(4.3)

13

A shared problem with the confidence metrics we have discussed so far is
none of them directly considers the prediction confidence of individual new
observations. The underlying concept behind training, test and out-of-bag
accuracy is we can approximate the prediction accuracy of a set of future
data using accuracy of a set of known data. However, the model’s ability to
predict observations in different feature spaces could be immensely different.

We will illustrate our point with an example. Suppose our data consists
of two clusters, with one mixed and one homogeneous classes. Our learning
models will perform poorly on the mixed group, resulting in around 50%
accuracy. However, the model will predict almost perfectly on the homoge-
neous cluster. Therefore, although the overall accuracy is 75%, that number
itself is not representative of the true prediction accuracy of the individual
samples in either of the two different clusters.

Figure 4.1: An example of when an overall accuracy metric falls short

Therefore, we are motivated to find a prediction confidence metric of
individual new data, drawing parallels to the idea of constructing prediction
intervals in linear regression.

Interestingly, the aggregate nature of random forests allows us to obtain
a confidence estimation of individual observations.

4.4 Class Probabilities

Since random forests are an ensemble learner, a common approach to estimate
the prediction confidence of a new observation is to use the proportion of trees
that voted the final prediction class. This proportion is also interpreted as
the the probability of the prediction being in the predicted class.

14

Definition 4.4.1 Let ϕ be a Random Forests with B trees T1, ..., TB and
our data has a categorical response of K levels. For a new observation zh,
if the predicted response is k ∈ {1,, K}, then the probability that zh has a
response of k is

ph =
1

B

B∑
b=1

1(ŷb = k) (4.4)

where ŷb is the predicted response from the bth tree. We also refer to this
probability as class probability.

The class probability ph is 1 if the predicted responses by all trees are
k, meaning that the model is very confident in its prediction of zh. By the
majority vote rule and pigeonhole principle, ph must not be smaller than 1

k
.

The smaller ph is, the less confident we are about the prediction.
However, in calculating class probability, we are considering all trees in-

cluding those built on bootstrap samples that are irrelevant or distracting
to the new observation to be predicted. Having predictions from those trees
could add noise to our estimate of prediction confidence.

To conclude, all the metrics examined in this chapter use a global ap-
proach to estimate the prediction confidence of a new observation. That is,
the metrics indiscriminately use the model’s ability to predict all observa-
tions to estimate the confidence of one new observation. We argue that a
global metric is not necessary, and if we only look at observations locally, we
can have a direct improvement on our confidence metric.

15

Chapter 5

Local Prediction Confidence

Following the previous chapter, we propose a local prediction confidence met-
ric for individual observations. We define local prediction confidence in a
frequentist fashion, as the percentage of the random forests models, among
repeated samples, that predict the response class correctly given a specific
feature space. We approximate the local prediction confidence of a new obser-
vation with the model’s prediction accuracy on other training observations,
weighted by the similarity between the training observations and the new
observation . This locally weighted approach has been adopted in optimizing
forests building in the context of generalized random forests (Athey et al.,
2016). It is theoretically reasonable to use the same approach to estimate
prediction confidence to filter noises irrelevant to individual observations.

5.1 Define Local Confidence

In Lu and Hardin (2018), a prediction confidence interval is constructed with
locally weighted error. We will adopt a similar idea in our construction of a
local confidence metric.

Definition 5.1.1 A training observation is an out-of-bag cohabitant with
the new observation in a tree if

• the training observation is out-of-bag in this tree

• the training observation ends up in the same terminal node with the
new observation

16

The oob-cohabitance frequency can be used as a relevance measure of a
training observation to the prediction of the new observation (Athey et al.,
2016). We believe that the more frequent the training observation out-of-
bag-cohabits with the new observation, the more likely they come from the
same class label. Therefore, more weights should be given to random forests’
predictive accuracy on the more relevant training observations.

Now let’s define our local confidence score.

Definition 5.1.2 Let z1, ...zn be the training observations. Let zh be the
new observation we want to predict. Let wi be the number of times a training
observation zi out-of-bag-cohabits with zh.

Let ŷ−i be the out of bag prediction for zi. Then

local confidence(zh) =
1∑
wi

n∑
i=1

wiI(ŷ(−i) = yi) (5.1)

The intuition behind our construction is that we will estimate the pre-
diction confidence of a new observation with the oob prediction accuracy of
local training samples. If a training observation, when it is out-of-bag, never
falls in the same terminal node with the new observation, then its out-of-bag
prediction accuracy will not be considered in the local confidence score. In
this way, our metric is able to exclude the predictive performance of training
observations that come from a different class. On the other hand, the more
frequent a training observation out-of-bag cohabits with the new observation,
the more likely they come from the same class.

A local confidence metric has an advantage over a global metric when
data exhibits significant heterogeneity, or the model’s predictive power varies
greatly in different feature space. The following chapter will create multiple
scenarios and use simulations to compare different metrics.

17

Chapter 6

Evaluation

This chapter will introduce simulation methods to compare different pre-
diction confidence metrics. We will create scenarios where some metrics
outperforms the others and the other way around.

6.1 Approximate True Prediction Confidence

The first step in comparing metrics is creating a benchmark. In other words,
how can we know the “true” prediction confidence of a new observation?

We begin with simulating a population with designed characteristics, and
repeatedly drawing smaller sub-samples to make predictions on the new ob-
servation. The approximated “true” prediction confidence will be the pro-
portion of correct predictions among the repeated samples.

In real-life research, scientists most likely get only one data sample. A
confidence metric is obtained from that one particular sample, and there
is no way to verify if it is biased or not. However, through simulating a
population and repeatedly taking sub-samples, our method is able to assess
the random forests’ ability to predict the new observation based on different
training samples. Ideally, if we have the ability to collect all possible samples
from the population, then the prediction accuracy of the models trained
by all samples represents the random forests’ confidence of predicting the
new observation. This construction is extremely similar to the definition of
confidence intervals in linear regression.

We define the proportion of correct predictions among all possible train-
ing data the “true” prediction confidence, and claim that the result generated

18

by our algorithm well approximates the true confidence.

Algorithm 2 Simulate True Prediction Confidence

procedure trueConfidence(A population of size N, sample size n, new
observation zh)

Simulate a population of size N and initialize count = 0

for j in 1,2,...num iterations do

Take a sample of size n from the population without replacement.

Train a random forest on the sample.

Use the random forest to make a prediction on zh. count + 1 if the
prediction is correct.

end for

Return true confidednce = count/num iterations

end procedure

We used Ranger (Wright and Ziegler, 2017), an R package for fast imple-
mentation of Random Forests, to train the models. All the random forests are
tuned with default values specified by Ranger, so that the model parameters
are controlled across all training samples.

We empirically evaluated the number of iterations needed for the algo-
rithm to converge by comparing the differences of absolute prediction confi-
dence scores between the current iteration and previous iteration. We simu-
lated a population with two Gaussian clusters, 20 features, N = 10,000 and
n = 1000, and a test set of size 500.

n features \num iteration 50 100 500 1000
10 0.05 0.0269 0.0178 0.008
20 0.0689 0.0332 0.0215 0.0111
50 0.0864 0.0384 0.0279 0.0129

Table 6.1: Average absolute differences of confidence scores compared to the
previous iteration. 50 iterations is compared to 10 iterations.

19

From Table 6.1, we can observe that starting from 100 iterations and
above, the scores returned by the algorithm differ much less than scores from
the previous iterations. Therefore, we use 100 iterations to achieve fast and
accurate implementation of true confidence approximation.

6.2 Simulations

In this section, we will create multiple data scenarios to test the metrics
discussed in Chapter 4 and 5. The goal is to give concrete evidence of which
confidence metrics most accurately describe population structures. We will
also discuss the scenarios when local confidence does not have a substantial
advantage.

We used Python’s sklearn package to simulate datasets for classification
(Pedregosa et al., 2011). Each population consists of clusters of points nor-
mally distributed (std=1) about vertices of a hyper-cube or polytope whose
dimension and size are based on the number of informative features and the
extent of class separation. In this thesis, we only focus on binary classifica-
tion.

There are multiple parameters that we can control:

• n features: the number of features.

• n informative: the number of informative features.

• n redundant: the number of redundant features.

• n repeated: the number of repeated features, which are randomly gen-
erated as a linear combination of informative features.

• n classes and n clusters per class: the number of classes and number
of clusters per class. A class can have multiple clusters each with a
different spread in feature space. In this thesis, n classes = 2.

• flip y: the proportion of class labels that are randomly switched. A
large value introduces more noise.

• class sep: the factor multiplying the hyper-cube size. A larger values
spreads out the clusters and make the classification task easier.

20

• hypercube: true if the clusters are put on the vertices of a hypercube
or put on the vertices of a random polytope.

We designed populations using different combinations of the above pa-
rameters. They key questions to investigate are:

• How good are the confidence metrics when the classes are homogeneous
versus heterogeneous?

• How do confidence metrics change when data is high-dimensional?

• What happens with noisy or highly correlated features?

The simulation procedure consists of three parts: creating a population
based on the question we want to investigate, approximating the true predic-
tion confidence, and calculating prediction confidence on a random training
sample from the population.

Algorithm 3 Create a Population

procedure makePopulation(population sizeN , n features, n informative,
n redundant and other data parameters to be evaluated, heterogeneity pa-
rameter p1,...,pn cluster)

Use sklearn.datasets.make classification to generate a dataset with the set
of parameters we specify in each data scenario.

Within each cluster i, randomly flip pi of the observations to the other
class.

end procedure

Algorithm 4 Simulation Procedure

procedure simulation(The set of parameters for population generation,training
sample size n, test sample size m)

run makePopulation to create a population.

Take m random observations from the population as the test set. We treat
this test set as ”new” data.

Take n random observations from the population as a real-life training
sample.

21

Use the rest of the population to find true prediction confidence of the new
data with trueConfidence.

Use the training sample to calculate the confidence metrics and compare
them with the true confidence.

Return Accoob, Acctest, local confidence(test), true confidence(test)

end procedure

6.3 Simulation Results

Example 6.3.1 We begin with a simple example to visually understand the
confidence machinery. Simulate a population of 10,000 observations, two
classes with one cluster per class, and two informative features. Randomly
switch the class label of half of the observations to the other class in the yellow
cluster and the blue cluster remains unchanged.

simulation(N = 10, 000, n = 1000, m = 500, n clusters per class = 1,
and n features=n informative= 2, p yellow= 0.5, p blue= 0.

Figure 6.1: Visualization of the population in Example 6.3.1

22

The random forests are built with n tree= 50. We pruned the trees by
specifying the minimum node size. The most optimal node size was selected
by oob-error. In this example, the minimum node size is 20. We can observe
that the random forests can perfectly predict the homogeneous cluster but
not the heterogeneous one because both yellow and blue classes share the
same feature space in this cluster.

We take three observations from the test set for comparisons. One blue
point from the heterogeneous cluster on the left, one blue from the homoge-
neous cluster on the right, and one yellow point. The three test observations
and their cohabitants are in the following figure.

(a) The three benchmark test observations highlighted in triangles (b) Cohabitants of the yellow observation

(c) Cohabitants of the blue observation from the left cluster (d) Cohabitants of the blue observation from the right cluster

Figure 6.2: A visualization of the cohabitants. All cohabitants are of the
“+” shape. The size are determined by the frequency of the cohabitance. A
random half of the cohabitants are plotted to avoid over-crowding the plots.

23

The confidence metrics of the three observations are summarized in Table
6.2 and 6.3.

blue from heterogeneous blue from homogeneous yellow
Accoob (4.3) 0.842 0.842 0.842
Acctest (4.2) 0.856 0.856 0.856
ph (4.4) 1 0.56 0.74
local confidence (6.1) 0.727 0.996 0.833
true confidence (5.1) 0.08 1 0.85

Table 6.2: A summary of confidence metrics on Example 6.3.1

Actual Yellow Actual Blue
Predicted Yellow 183 61
Predicted Blue 11 245
Yellow Accuracy 0.943 -
Blue Accuracy - 0.801

Table 6.3: Confusion matrix of test data

The overall metrics, Accoob and Acctest fail to differentiate between a blue
point from the homogeneous cluster and a blue point from the heterogeneous
cluster. Even though the overall accuracy on the entire test set is more than
80%, the model performs badly on the heterogeneous cluster, which is not
reflected in the overall metric’s score. Even if we break down the overall
accuracy by class, the test accuracy of the blue class is still inflated by the
homogeneous cluster (by Table 6.3), thus not accurately showing the model’s
predictive capacity on observations living in the heterogeneous space.

To further compare local confidence and class probability, we plot con-
fidence score versus class probability over the entire test set in Figure 6.3.
Between the class probability and the proposed local confidence score, it
appears that local confidence is closer to the true prediction confidence espe-
cially in not perfectly confident predictions. In Figure 6.3, for observations
with true confidence lower than 0.5, the local confidence scores gives much
lower estimates than class probability scores. For observations with true con-
fidence greater than 0.5, both scores do fairly well. It is also worthy to note
that local confidence score in general has less variance than class probability,
making it a potentially better estimator.

24

Figure 6.3: Comparisons between local confidence score and class probability
on Example 6.3.1. All test observations are plotted. The dashed line is the
line of y=x, therefore the closer each test observation’s metric is to the dashed
line, the better the metric is.

Even though this is too small of an example to justify why local confidence
metric is better in wider applications, we do gain a high level intuition of the
local confidence machinery. We can also make the initial hypothesis that local
confidence does offer a better alternative to overall out-of-bag accuracy to
capture the heterogeneity of the feature space, and in some situations perform
better than class probability. We will explore more cases and repeated large-
scale simulations to further that hypothesis.

Example 6.3.2 In this example, we seek to investigate the performance of
the confidence metrics when the data is high-dimensional. The same basic
set-up from the previous example is used with in an increased number of
features to 50. The random forests have n tree = 100 and min.node.size =
30.

25

simulation(N = 10, 000, n = 1000, m = 500, n clusters per class = 1,
and n features=n informative= 50, p yellow= 0.5, p blue= 0.

Figure 6.4: Comparisons between local confidence score and class probability
on Example 6.3.2. All test observations are plotted.

The out-of-bag accuracy for all training data is 0.855 and test accuracy
is 0.864. We see a slight improvement in overall accuracy because the high
dimension enables the model to draw more separable boundaries. The local
confidence score, class probability and true confidence are plotted in Figure
6.4. However, the result on high-dimensional data is not entirely consistent
with the low-dimensional case since local confidence is not much better than
the class probability. For a more rigorous argument, we will soon define
metrics to quantify the differences between confidence metrics.

Example 6.3.3 With a high dimensional data we are now concerned with
noisy or correlated features. We will begin with noisy feature only. With

26

other parameters in the previous example controlled, we run simulations with
30 informative features and 20 noisy features.

simulation(N = 10, 000, n = 1000, m = 500, n clusters per class = 1,
and n features= 50, n informative= 30, n repeated = 20, p yellow= 0.5,
p blue= 0.

Figure 6.5: Comparisons between local confidence score and class probability
on Example 6.3.3 with noisy features. All test observations are plotted.

We observe from Figure 6.5 that the relationship between class probability
and local confidence score is not substantially affected by noisy features.

Example 6.3.4 We next proceed with 30 informative features and 20 corre-
lated features.

simulation(N = 10, 000, n = 1000, m = 500, n clusters per class = 1,
and n features= 50, n informative= 30, n redundant= 20, p yellow= 0.5,
p blue= 0.

27

Figure 6.6: Comparisons between local confidence score and class probability
on Example 6.3.4 with correlated features. All test observations are plotted.

Figure 6.6 shows that the class probability metric suffers from great vari-
ance with the presence of correlated features. In general, local confidence
metric has much less variability than class probability. We can infer that
this is because cohabitants are mutual: test observations that share a similar
group of cohabitants mostly have very similar local confidence score. Small
variance is another great property of local confidence score.

With high-dimensional data, local confidence score outperforms class
probability when the true confidence is either greater than 0.5 or smaller
than 0.1.

28

Example 6.3.5 After exploring dimensionality, we will take another step to
simulate more interesting data with different levels of heterogeneity in the
feature space. Use total number of 50 features, with 20 informative, 20 noise
and 10 correlated. Simulate two clusters per class and the clusters have 50%
and 20 % homogeneity respectively.

simulation(N = 10, 000, n = 1000, m = 500, n clusters per class = 1,
and n features= 50, n informative= 20, n repeated= 20, n redundant= 10,
p yellow= 0.5, p blue= 0.2.

Figure 6.7: Visualization the population in Example 6.3.5

Figure 6.8 shows that in this data scenario local confidence score is a
closer approximation of individual prediction confidence than class probabil-
ity, especially for observations with less than 100% true confidence. We can
also see that local confidence is conservative for observations with very high
true confidence, in other words, observations in very homogeneous feature
space. This can be explained by our definition of local confidence: a new ob-
servation has a local confidence of 100% if and only if all its oob-cohabitants

29

Figure 6.8: Comparisons between local confidence score and class probability
on Example 6.3.5 with different level of heterogeneity.

are predicted correctly by the model, which is an impossible criteria to meet
since we don’t perfectly fit the training data.

In the next section, we will strengthen the claim that local confidence is a
better estimator of individual prediction confidence by quantifying the differ-
ences between the confidence metrics and running comparisons on numerous
simulated data.

6.4 Root Mean Square Error

To quantify how well the confidence metrics estimate confidence, we use root
mean squared error:

30

√√√√ 1

n

n∑
i

(pi − p̂i)2

where n is the number of test observations, p is the approximated true con-
fidence, and p̂ is either local confidence score or class probability.

Using this error metric, we will compare all the previous examples.

example1 example2 example3 example4 example5
local confidence 0.250 0.304 0.293 0.284 0.351
ph 0.265 0.306 0.294 0.291 0.355
Accoob 0.291 0.326 0.317 0.306 0.352

Table 6.4: The root mean square error between the confidence metrics and
approximated true confidence for the examples in the previous section.

From the table, we can conclude that for our simulations, out-of-bag
accuracy is the worst method to estimate individual prediction confidence
compared with local confidence and class probability. Local confidence has
smaller root mean square error than class probability in all examples, but the
margin is not substantial. We believe that local confidence is a very promising
estimator, but we need more empirical simulations to fully support the claim.

6.5 Theoretical Justification

In addition to empirical evaluation, we also seek a theoretic grounding for our
proposed local confidence using a probabilistic estimation framework. The
probability calibration in this section is based on Olson and Wyner (2018).

Prediction confidence can be interpreted as the probability that the model
predicts the response correctly given its feature space. To put it formally, let
z1, ...zn be the set of training observations, and zi = (xi1 , ...xip) ∀i ∈ 1, ...n..
Let y1, ...yn be the categorical response variable. Let zh be a new observation
and xh be its feature space. Then we can define the prediction confidence of
zh as

P (ŷh = yh|xh)

31

Using Bayes’ Rule, we can further write this probability as

P (ŷh = yh|xh) =
P (ŷh = yh)P (xh|ŷh = yh)

P (xh)

≈ P̂ (ŷh = yh)P̂ (xh|ŷh = yh)

P̂ (xh)

(6.1)

We can interpret the cohabitance frequency as a proximity function, that
is w(zh, zi), the number of times a training observation zi out-of-bag cohabs
with zh, is large if zi and zh are similar to each other and small vice versa.
Then

P̂ (xh) ≡
1

n

n∑
i=1

w(zi, zh) (6.2)

Furthermore

P̂ (xh|ŷh = yh) ≡
1

n1

n∑
i=1

w(zh, zi)I(ŷi = yi) (6.3)

where n1 is the number of oob training samples that are predicted correctly.
Let

P̂ (ŷh = yh) =
n1

n
= Accoob (6.4)

the oob prediction accuracy. Then

P (ŷh = yh|xh) ≈
P̂ (ŷh = yh)P̂ (xh|ŷh = yh)

P̂ (xh)

=

∑n
i=1w(zh, zi)I(ŷi = yi)∑n

i=1w(zi, zh)

= local confidence

(6.5)

Together with empirical evaluation, we made a convincing case that our
proposed local confidence improves current estimation of individual predic-
tion confidence.

32

Chapter 7

Applications and Future
Directions

After empirically and theoretically evaluating our proposed local confidence
and the other currently existing confidence metrics, the next pressing ques-
tion to ask is, to whom is our proposed method useful? What are limitations
of the local confidence score in wider applications?

Recall that local confidence represents the prediction confidence of an in-
dividual new observations, and that it better captures the heterogeneity in
the feature space. Our result will be helpful to researchers whose work em-
phasizes individual predictions. Estimating individual outcome probabilities
has applications in medicine, particularly diagnosis, decision on therapy or
prognosis (Dankowski and Ziegler, 2016).

Local confidence does fall short when we have minorities sharing feature
space with observations from predominately the opposite class. If the co-
habitants are from the other class and are predicted almost perfectly, the
minority will always be predicted as the majority and local confidence score
will never reflect the true prediction accuracy. However, no other known
methods can overcome such shortcoming.

Since the scope of the empirical evaluation in this thesis focuses only on
binary classification, looking into the future, more simulations can be done
in multiclass classification. In addition, our proposed local confidence can
be further tested on real-world data, such as the UCI Machine Learning
Datasets, to obtain a universal benchmark for comparisons of confidence
metrics in other literature and ours.

The random forests we trained are the very first one created by Breiman

33

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php

(2001). Yet we should not forget that there have been substantial research
advancements in optimizing random forests in recent years. In Wager et al.
(2014), a local estimation is proposed to assign more weights to training
samples that are similar to the test observations when building the forests.
It would be very interesting to see the performance of the local confidence
metrics on random forests that are further optimized.

34

Chapter 8

Conclusion

Despite many literature in prediction intervals in regression, prediction con-
fidence in classification random forests are predominately global metrics. Al-
though class probability provides a probability estimation, very little is dis-
cussed on how that probability is related to the true prediction confidence.
In this paper, we define local prediction confidence in a similar fashion as fre-
quentist confidence intervals, as the prediction accuracy of one observation
over repeated training samples.

We developed local prediction confidence directly using the random forests
structure. The local prediction confidence of a new observation is approx-
imated by the prediction accuracy of out-of-bag training observations that
frequently oob-cohab with the new observation. We then simulated data sets
of different dimensionality and homogeneity and evaluated local confidence
along with class probability and out-of-bag accuracy.

We have empirically shown that local confidence better captures the het-
erogeneity of the feature space than other global metrics. We also observe
that local confidence score gives a more accurate estimate of the true pre-
diction confidence than class probability, and the estimator itself has smaller
variance. In addition to empirical evaluation, we also showed theoretic jus-
tification using probability estimation.

The results offer a promising first step, yet additional work remains to be
done. More simulations can be conducted to provide more concrete evidence,
and real data set can be used to further test the differences of the metrics.

35

Chapter 9

Appendix

The R script that calculates local confidence is attached.

#####

A function that calculates the local prediction confidence of a test dataset

parameters:

inbag_counts: the number of times each training observation is

in bag in all trees

trainNodes: train nodes returned by ranger

testNodes: the test nodes returned by ranger

train_response: the response of the training observations

train_pred: training predictions

test_response: the response of test observations

test_pred: test predictions

library(ranger)

return a frequest list of all training observations

each element stores the number of times each training observation

is oob-cohab with x

getFreq<- function(inbag_counts,trainNodes,testNodes,x){

freq_lst<-rep(0,nrow(trainNodes))

for (b in 1:ncol(trainNodes)){

node_x<-testNodes[x,b] # the terminal node ID of x

oob_cohab<-which(trainNodes[,b]==node_x & inbag_counts[[b]]==0)

36

freq_lst[oob_cohab]=freq_lst[oob_cohab]+1

}

return(freq_lst)

}

get the cohabitant of test observation x

getCohabitant <- function(inbag_counts,trainNodes,testNodes,x){

freq_lst <- getFreq(inbag_counts,trainNodes,testNodes,x)

return(which(freq_lst>0))

}

return a list of lists of each test observation’s cohabitant.

getAllCohabitant <- function(inbag_counts,trainNodes,testNodes){

all_cohabs <- list()

for (i in 1:nrow(testNodes)){

cohabs <- getCohabitant(inbag_counts,trainNodes,testNodes,i)

all_cohabs[[i]]<-cohabs

}

return(all_cohabs)

}

return the confidence score of x

confidence<-function(inbag_counts,trainNodes,testNodes,

train_pred,train_response,x){

accuracy<-allAccuracy(inbag_counts,train_pred,train_response)

weight<-getFreq(inbag_counts,trainNodes,testNodes,x)

score<-sum(accuracy*weight)/sum(weight)

return(score)

}

return the confidence score of all test responses

allConfidence<-function(inbag_counts,trainNodes,testNodes,

train_pred,train_response){

lst<-rep(0,nrow(testNodes))

for (x in 1:nrow(testNodes)){

conf<-confidence(inbag_counts,trainNodes,testNodes,train_pred,

train_response,x)

lst[x] = conf

37

}

return(lst)

}

get out of bag prediction accuracy for training sample m

oobAccuracy <- function(m,inbag_counts,train_pred,train_response){

oob_pred <- rep(0,ncol(train_pred))

for(b in 1:ncol(train_pred)){

if(inbag_counts[[b]][m]==0){

oob_pred[b] <- train_pred[m,b]

}

}

oob_pred <- oob_pred[oob_pred>0]

final_pred <-as.numeric(names(which.max(table(oob_pred))))

return(final_pred==train_response[m])

}

get out of bag training accuracy for all training observations

allAccuracy<-function(inbag_counts,train_pred,train_response){

allAcc<-rep(0,nrow(train_pred))

for (m in 1:nrow(train_pred)){

acc<-oobAccuracy(m,inbag_counts,train_pred,train_response)

allAcc[m]=acc

}

return(allAcc)

}

38

Bibliography

Athey, S., Tibshirani, J., and Wager, S. (2016). Generalized random forests.
arXiv:1610.01271.

Bhattacharyya, S. (2013). Confidence in predictions from random tree en-
sembles. Knowledge and Information Systems, 35(2):391–410.

Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5–32.

Dankowski, T. and Ziegler, A. (2016). Calibrating random forests for prob-
ability estimation. Stat Med, 35:3949–3960.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The elements of
statistical learning: data mining, inference, and prediction, 2nd Edition.
Springer series in statistics. Springer.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2014). An Introduction
to Statistical Learning: with Applications in R. Springer Texts in Statistics.
Springer New York.

Lu, B. and Hardin, J. (2018). Prediction intervals for random forests.

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996).
Applied Linear Statistical Models. Irwin, Chicago.

Olson, M. and Wyner, A. (2018). Making sense of random forest probabilities:
a kernel perspective.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,
J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay,
E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830.

39

Shafer, G. and Vovk, V. (2008). A tutorial on conformal prediction. Journal
of Machine Learning Research, 9:371–421.

Wager, S., Hastie, T., and Efron, B. (2014). Confidence intervals for random
forests: The jackknife and the infinitesimal jackknife. J. Mach. Learn.
Res., 15(1):1625–1651.

Wright, M. N. and Ziegler, A. (2017). ranger: A fast implementation of ran-
dom forests for high dimensional data in C++ and R. Journal of Statistical
Software, 77(1):1–17.

40

	Introduction
	Confidence and Prediction Intervals
	Example: Linear Regression
	Simple Linear Regression
	Interval Estimation for E[Yh]
	Interval Estimation for a New Response

	Random Forests
	Decision Tree
	Tree Growth
	Tree Prediction

	Random Forests
	Bootstrapping and Bagging

	Constructing Random Forests
	Out-of-Bag Estimation

	Prediction Confidence in Machine Learning Models
	Overall Training Accuracy
	Test Accuracy
	Out-of-bag Training Accuracy
	Class Probabilities

	Local Prediction Confidence
	Define Local Confidence

	Evaluation
	Approximate True Prediction Confidence
	Simulations
	Simulation Results
	Root Mean Square Error
	Theoretical Justification

	Applications and Future Directions
	Conclusion
	Appendix

