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Abstract

High throughput RNA Sequencing is a powerful tool for studying gene expression. Here, we
elucidate the details of the EM algorithm as it is used to align RNA Sequencing reads to a
reference with the overarching goal to estimate expression.
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Chapter 1

Introduction

Measuring the expression levels of genes is a useful tool in biological research. One application
is analysis of the heat shock response. Most organisms exhibit a heat shock response involving
the synthesis of heat shock proteins under conditions of elevated temperatures. As global
temperatures rise year after year, many organisms such as corals are dying because their
environment is exceeding their maximum tolerable temperatures. Thus, it is important to
study heat shock response and the ways that organisms respond to stressors. One approach
is to analyze the expression of genes when organisms are under heat shock, and compare
expression to control conditions. Identifying over- and under- expressed genes will provide a
stronger understanding of the mechanisms behind the heat shock response. RNA-sequencing
technology is a novel tool that can be employed to estimate the expression of genes and
isoforms. The steps in RNA-sequencing are:

1. RNA is isolated from a sample

2. RNA is converted to cDNA fragments through reverse transcription and fragmentation

3. A high-throughput sequencer generates reads (sequence of A, C, T, G nucleotides)
from the fragments

4. Reads are aligned (or mapped) to a reference or de novo transcriptome with an align-
ment tool

5. Counts of reads mapped to each transcript are used to estimate expression levels (Li,
Ruotti, et al. 2010)

Prior to the development of RNA-sequencing, the main technology available to study
RNA expression was microarrays. In microarrays, a plate is set up with a different probe in
each well, where each probe is specific to an RNA sequence. RNA is extracted from a sample
and converted to cDNA (as in RNA-sequencing) but with the inclusion of tracker nucleotides.
The cDNA from the sample is applied to the microarray and RNA expression is quantified
by the amount of probes that are attached to corresponding fragments from the cDNA that
was applied (Pereira et al. 2015). RNA-sequencing has proven to be reproducible and more
accurate, in addition to other advantages such as large dynamic range, low background
noise, and the ability to discover new genes (Li, Ruotti, et al. 2010). The large amount of
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data produced by RNA-sequencing, though, requires the development of new computational
methods. One aspect of RNA-sequencing that requires computation is read mapping. When
mapping reads to a transcriptome, there are often multireads defined as reads which map to
more than one position in the transcriptome. There are several reasons why multireads exist.
First, due to alternative splicing, there are several different possible forms one transcript can
take on after introns (portions of RNA that do not code for proteins) are removed and exons
(portions of RNA that do code for proteins) are spliced back together (Figure 1.1).

Figure 1.1: Types of Alternative Splicing (Wang et al. 2015)

Second, many organisms have paralogous genes, which are similar genes with the same
origin but have evolved to serve different purposes. These genes have conserved region of high
similarity. Lastly, low complexity sequences are repeats of short sequence motifs that are
common in some genes (Li, Ruotti, et al. 2010). All three play a role in mapping uncertainty.

There have been several methods developed to process multireads. The first approach
was to discard and ignore multireads. This introduces biases against genes with several
isoforms, paralogous genes, and genes with low sequence complexity by underestimating the
expression of these genes. Another approach allocated fractions of multireads to genes in
the same proportions as the uniquely mapping genes, which improved upon the first model
and gave estimates that more closely match results from cDNA microarrays. The most
recent model uses statistics to estimate expression while incorporating multireads using the
Expectation-Maximization (EM) algorithm with the goal to estimate the relative number of
transcripts of each isoform present in the sample, given the reads and known isoforms (Li,
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Ruotti, et al. 2010).
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Chapter 2

The EM Algorithm

The Expectation Maximization algorithm is a widely used and general procedure that itera-
tively finds the values of an unknown parameter θ that maximizes the likelihood P (r|θ) of the
observed data {r1, r2, ..., rn} using unobserved latent variables z. It involves two sequential
steps after initializing the starting estimates of the parameter. The first step (expectation)
finds the values of the missing information under the current estimate of the parameter and
the data by using expected values. The second step (maximization) finds the maximum like-
lihood estimate values of the parameter given the missing information. It has been proven
that each successive iteration of the algorithm never decreases the likelihood of the data
under the estimated parameters, so that the algorithm will converge to a local optimum
(Dempster, Laird, and Rubin 1977).

E Step: Compute values of missing information z given an estimate of θ at time t.

qt(z) = P (z|r, θ(t))

M Step: Update the estimates of θ based on new z values that maximize the data
likelihood.

Q(θ|θ(t)) =
∑
z

qt(z) log[P (r, ẑ|θ)]

θ̂(t+1) = argmaxθQ(θ|θ(t))

2.1 Derivation of the EM algorithm

The log data likelihood is log(P (r|θ)). Using the law of total probability, z is introduced
into the data likelihood. We will define q as a distribution over z such that

∑
z q(z) = 1 and

q(z) ≥ 0. This is introduced into the data likelihood by multiplying and dividing by the
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same value (Andrew 2018).

log[P (r|θ)] = log

(∑
z

P (r, z|θ)

)

= log

[∑
z

q(z) · P (r, z|θ)
q(z)

]
= log

[
EqZ

(
P (r, z|θ)
q(z)

)]
(2.1)

≥
∑
z

q(z) log

[
P (r, z|θ)
q(z)

]
= EqZ

[
log

(
P (r, z|θ)
q(z)

)]
(2.2)

The penultimate step (from Equation 2.1 to 2.2) uses Jensen’s inequality to get a lower
bound on the log data likelihood, which is the quantity we want to maximize.

Definition 2.1 (Jenson’s Inequality) Given a convex function f and random variable
X,

E[f(X)] ≥ f(EX).

If f is strictly convex, then

E[f(X)] = f(EX) ⇐⇒ X is constant.

Jensen’s inequality also holds for concave function f with the inequality reversed:

f(EX) ≥ E[f(X)]

(Andrew 2018).

A strictly concave function is a function f where f ′′(x) ≤ 0. In the terms of the EM

algorithm, we conclude that log

[
EqZ

(
P (r,z|θ)
q(z)

)]
≥ EqZ

[
log(P (r|θ)

q(z)
)

]
from Equations 2.1

and 2.2. Here, f(x) = log(x), where x = P (r,z|θ)
q(z)

, is a strictly concave function because

f ′′(x) = −x−2 ≤ 0. Thus, f(EX) ≥ E[f(X)]. Note that the inequality becomes an equality

when P (r,z|θ)
q(z)

is equal to a constant.

c =
P (r, z|θ)
q(z)

q(z) =
P (r, z|θ)

c

=
P (r, z|θ)∑
z P (r, z|θ)

because
∑
z

q(z) = 1

=
P (r, z|θ)
P (r|θ)

= P (z|r, θ)
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By setting q(z) = P (z|r, θ) (the posterior distribution of z over the data r and the current
estimate of θ), we get an equality for the the log likelihood of the data, log(P (r|θ)). For the
true value of θ (unknown), we can say:

log(P (r|θ)) =
∑
z

q(z) log

(
P (r, z|θ)
q(z)

)
=
∑
z

P (z|r, θ) log

(
P (r, z|θ)
P (z|r, θ)

)
For the given estimate of θ at time t (θt), and the associated qt(z) = P (z|r, θt) we can

say:

log(P (r|θt)) =
∑
z

qt(z) log

(
P (r, z|θt)
qt(z)

)
=
∑
z

P (z|r, θt) log

(
P (r, z|θt)
P (z|r, θt)

)
Here, we can get the parameter θ(t+1) by maximizing the likelihood involving the previous

estimate of the parameter. Because in this specific case, qt(z) is not defined as P (z|r, θ), but
rather P (z|r, θt), the following is true due to Jenson’s inequality (note there is no equality
due to q(z) 6= qt(z)):

log(P (r|θ)) ≥
∑
z

qt(z) log

(
P (r, z|θt)
qt(zt)

)
=
∑
z

P (z|r, θt) log

(
P (r, z|θt)
P (z|r, θt)

)
Further simplifying the log likelihood at a given estimate at time t gives us:

log(P (r|θt)) =
∑
z

qt(z) log

(
P (r, z|θt)
qt(z)

)
=

∑
z

qt(z) log[P (r, z|θt)]−
∑
z

qt(z) log(qt(z))

Note that the second term is independent of θ. Because we want to maximize the likeli-
hood with respect to θ, we only need to maximize

Q(θ|θ(t)) = Eqt
(Z)

[log(P (r, z|θt)] =
∑
z

qt(z) log(P (r, z|θt)

where θ(t) is the current estimate of θ. We now iterate between the following two steps
of the algorithm, where each iteration never decreases the likelihood of the data under the
estimated parameters (Dempster, Laird, and Rubin 1977).

1. E step: Q(θ|θ(t)) is the expected value of the log likelihood function of θ with respect
to the current conditional distribution of z given an estimate of θ and data r.

q(z) = P (z|r, θ(t))

Q(θ|θ(t)) =
∑
z

q(z) log(P (r, z|θ)

Q(θ|θ(t)) =
∑
z

P (z|r, θ(t)) log(P (r, z|θ)
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2. M-step: Update the estimates of θ based on new z values that maximize the data
likelihood.

θ̂(t+1) = argmaxθQ(θ|θ(t))

2.2 Example of an Application of the EM Algorithm

Suppose there are two coins, coin 0 and coin 1, with different probabilities of landing on
heads (θ). The parameters we want to estimate are θ0 and θ1. We run an experiment by
selecting a coin at random, flipping it ten times, and recording the number of heads to get
one observation. Repeat this process 5 times for 5 sets of total observations and record
data in the vector r. We could estimate these values by setting θ to the number of heads
over all flips for each coin, but we do not know which coin was flipped in each observation.
The missing information is contained in the latent variable zn ∈ {0, 1}, which represents the
identity of the coin from observation rn. The EM algorithm will be used to estimate θ using
the missing information (Do and Batzoglou 2008).

First, we will get equations for the data likelihood. The observed data follow a binomial
distribution.

P (r|θ, z) =

(
10

r

)
(θz)

r(1− θz)10−r (2.3)

In this example, it is a priori equally likely to pick either coin, so

P (z|θ) =
1

2
(2.4)

By conditional probability and the law of total probability,

P (r, z|θ) = P (z|θ)P (r|z, θ)

=
1

2

(
10

r

)
(θz)

r(1− θz)10−r (2.5)

P (r|θ) =
1

2

(
10

r

)
(θ1)

r(1− θ1)10−r +
1

2

(
10

r

)
(θ0)

r(1− θ0)10−r (2.6)

We want to maximize the probability of the observed data, given that qt(z) = P (z|r, θt),
so the inequality from Jenson’s Inequality holds as an equality:
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P (r|θt) =
∏
n

P (rn|θt)

P (r, z|θt) =
∏
n

∑
zn∈{0,1}

P (rn, zn|θt)

=
∏
n

∑
zn∈{0,1}

qt(zn) · P (rn, zn|θt)
qt(zn)

logP (r, z|θt) = log

(∏
n

∑
zn∈{0,1}

qt(zn) · P (rn, zn|θt)
qt(zn)

)

=
∑
n

log

( ∑
zn∈{0,1}

qt(zn) · P (rn, zn|θt)
qt(zn)

)

=
∑
n

log

(
EqZ

P (rn, zn|θt)
qt(zn)

)

≥
∑
n

(
EqZ log(

P (rn, zn|θt)
qt(zn)

)

)
(by Jenson’s)

=
∑
n

∑
zn∈{0,1}

qt(zn) · log

(
P (rn, zn|θt)
qt(zn)

)
=
∑
n

∑
zn∈{0,1}

qt(zn) · logP (rn, zn|θt)−
∑
n

∑
zn∈{0,1}

qt(zn) · log qt(zn)

We want to maximize the data likelihood with respect to θ, so we can maximize Q(θ|θ(t))
to get an estimate of θ(t+1), and each iteration converges closer to θ

Q(θ|θ(t)) =
∑
n

∑
zn∈{0,1}

qt(zn) · logP (xn, zn|θ(t))

Q(θ|θ(t)) =
∑
n

∑
zn∈{0,1}

P (zn|xn, θ(t)) · logP (xn, zn|θ(t))

Now, we summarize the use of the EM algorithm:

1. E step: find missing information z given the current estimates of θ. ẑtn = qt(z) will be
a value between 0 and 1 that represents the probability that the observation is from
coin 1. Here, the expected value of z is the likelihood of the data with coin 1, over the
likelihood of the data with coin 1 plus the likelihood of the data with coin 0.
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ẑtn = P (zn = 1|rn, θ(t))

=
P (rn|zn = 1, θ(t)) · P (zn = 1|θ(t))

P (rn|θ(t))

=

(
10
rn

)
(θ

(t)
1 )rn(1− θ(t)1 )10−rn · 1

2

1
2

(
10
rn

)
(θ

(t)
1 )rn(1− θ(t)1 )10−rn + 1

2

(
10
rn

)
(θ

(t)
0 )rn(1− θ(t)0 )10−rn

(Eqns 2.3, 2.4, 2.6)

=
(θ1)

rn(1− θ(t)1 )10−rn

(θ
(t)
1 )rn(1− θ(t)1 )10−rn + (θ

(t)
0 )rn(1− θ(t)0 )10−rn

Note that the probability that the observation is from coin 0 is 1 − ẑtn = P (zn =
0|rn, θ(t)).

2. M step: find the estimates of θ that maximize the data, r and the newly estimated ẑtn

Q(θ|θ(t)) =
∑
n

∑
zn∈{0,1}

P (zn|rn, θ(t)) · logP (rn, zn|θ(t))

=
∑
n

∑
zn∈{0,1}

P (zn|rn, θ(t)) · log
1

2

(
10

rn

)
(θzn)rn(1− θzn)10−rn (Eqn 2.5)

=
∑
n

P (zn = 0|rn, θ(t)) · [log
1

2

(
10

rn

)
(θ0)

rn(1− θ0)10−rn ]

+
∑
n

P (zn = 1|rn, θ(t)) · [log
1

2

(
10

rn

)
(θ1)

rn(1− θ1)10−rn ]

=
∑
n

ẑtn · [log
1

2

(
10

rn

)
(θ0)

rn(1− θ0)10−rn ]

+
∑
n

(1− ẑtn) · [log
1

2

(
10

rn

)
(θ1)

rn(1− θ1)10−rn ]

To find the MLE of θ0, take the partial derivative with respect to θ0 and set it equal
to 0.
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∂

∂θ0
Q(θ|θ(t)) =

∂

∂θ0

(∑
n

ẑtn · [log
1

2

(
10

rn

)
(θ0)

rn(1− θ0)10−rn ]

)

0 =
∑
n

∂

∂θ0

(
ẑtnrn log(θ0) + ẑtn(10− rn) log(1− θ0)

)

0 =
∑
n

(
ẑtnrn
θ0
− ẑtn(10− rn)

1− θ0

)
∑
n

ẑtnrn
θ0

=
∑
n

ẑtn(10− rn)

1− θ0

(1− θ0)
∑
n

ẑtnrn = θ0
∑
n

ẑtn(10− rn)∑
n

ẑtnrn = θ0
∑
n

ẑtn(10− rn) + θ0
∑
n

ẑtnrn∑
n

ẑtnrn = θ0
∑
n

ẑtn10

θ̂
(t+1)
0 =

∑
n ẑ

t
nrn∑

n ẑ
t
n10

To find the MLE of θ1, take the partial derivative with respect to θ1 and set it equal
to 0. By a similar process,

∂

∂θ1
Q(θ|θ(t)) =

∂

∂θ1

(∑
n

(1− ẑtn) · [log
1

2

(
10

rn

)
(θ1)

rn(1− θ1)10−rn ]

)

0 =
∑
n

∂

∂θ1

(
(1− ẑtn)rn log(θ1) + (1− ẑtn)(10− rn) log(1− θ1)

)

0 =
∑
n

(
(1− ẑtn)rn

θ1
− (1− ẑtn)(10− rn)

1− θ1

)
∑
n

(1− ẑtn)rn
θ1

=
∑
n

(1− ẑtn)(10− rn)

1− θ1

(1− θ1)
∑
n

(1− ẑtn)rn = θ1
∑
n

(1− ẑtn)(10− rn)∑
n

(1− ẑtn)rn = θ1
∑
n

(1− ẑtn)(10)

θ̂
(t+1)
1 =

∑
n(1− ẑn)rn∑
n 10(1− ẑn)

Based on the z values, these estimators of θ are calculated by allocating portions of
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each observation to coin 0 and coin 1. If zn is large, a larger portion of rn is used in
the calculation of the estimator of coin 1’s bias.

We will now iterate through the initial iteration of the EM algorithm, with starting values
of θ̂00 = 0.5 and θ̂01 = 0.6 (arbitrarily chosen to be different). Suppose we have 5 data points
and r = {5, 9, 8, 4, 7}.

1. E step: ẑt =
(θ1)rn (1−θ(t)1 )10−rn

(θ
(t)
1 )rn (1−θ(t)1 )10−rn+(θ

(t)
0 )rn (1−θ(t)0 )10−rn

ẑ11 = (0.6)5(0.4)5

(0.6)5(0.4)5(0.5)5(0.5)5
= 0.449

ẑ12 = (0.6)9(0.4)1

(0.6)9(0.4)1(0.5)9(0.5)1
= 0.805

ẑ13 = (0.6)8(0.4)2

(0.6)8(0.4)2(0.5)8(0.5)2
= 0.733

ẑ14 = (0.6)4(0.4)6

(0.6)4(0.4)6(0.5)4(0.5)6
= 0.352

ẑ15 = (0.6)4(0.4)6

(0.6)4(0.4)6(0.5)4(0.5)6
= 0.647

2. M step: θ̂
(t+1)
0 =

∑
n ẑ

t
nrn∑

n ẑ
t
n10

θ̂11 = .449·5+.806·9+.733·8+.352·4+.647·7
10(.449+.805+.733+.352+.647

= 0.713

θ̂10 = .551·5+.195·9+.267·8+.648·4+.353·7
10(.551+.195+.267+.648+.353

= 0.581
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Chapter 3

RNA Sequencing and Read Mapping

3.1 Notation and Variables

Variable Definition
L read length
N total number of reads (library size)
M number of known isoforms
li length of isoform i ∈ {1, ...,M}

Rn sequence of read n ∈ {1, ..., N}
Sn ∈ [1, li] start position of read n
On ∈ {1, 0} orientation of read n
Gn ∈ [1,M ] isoform mapped to read n

τi fraction of all transcripts from isoform i = νi
li

(
∑li

j=1
νj
lj

)

νi fraction of all nucleotides from isoform i = τili∑li
j=1 τj lj

θi prior probability that a read is from isoform i = [P (Gn = i)]

3.2 Motivation Behind EM Algorithm in RNA-Sequencing

RNA-sequencing data is able to provide the relative abundances of transcripts within one
sample. Many algorithms have been developed to achieve the same outcome. TIGAR2, for
example utilizes Baysian inference, while others (RSEM, Cufflinks, eXpress) utilize variations
of the EM algorithm (Zhang et al. 2017). We will focus on RSEM and delineate its application
of the EM algorithm to RNA-Sequencing, as originally reported by the developers Li and
Dewey (Li, Ruotti, et al. 2010; Li and Dewey 2011).

There are two ways to measure relative expression for isoform i: τi (fraction of all tran-
scripts in a biological sample from isoform i) or νi (fraction of all nucleotides in a biological
sample from isoform i). We want to use RNA-sequencing data to estimate τ and ν, and
we assume the number of reads from any isoform is a function of its length. We introduce
another measure of expression, θi (the probability that a read is from isoform i). Because
longer isoforms are assumed to produce more reads, there is a proportional relationship be-
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tween τi and νi. There is also a relationship between νi and θi where νi is equal to the
probability that isoform i produces a read scaled to consider only the reads that do align (θ0
is defined as the proportion of reads that do not map to any isoform):

νi =
θi

1− θ0

νi =
τi · li∑M
k=1 τk · lk

τi =
νi
li∑M
k=1

νk
lk

We need to create a data likelihood for the RNA-Sequencing process to estimate these
measures of expression, motivating the construction of a mathematical model.

3.3 Building a Model of the Sequencing Process

Figure 3.1: Bayesian network (graphical model) of RNA-sequencing process built to generate
N reads of length L. The parameter is θ. The latent random variables are G, S, O. The
data are R, and will be referred to as r because they are observed. (Li, Ruotti, et al. 2010)

.

The graphical model (Bayesian network) of the RNA sequencing process is shown in
Figure 3.1. This model generates N reads of length L with parameter θ (the probability
that an isoform produces a read) which corresponds to expression levels (Li, Ruotti, et al.
2010). This graph displays the relationship between variables, where each node in the graph
represents a random variable. Within Bayesian networks, certain independence assumptions
hold that determine what information is required to specify the probability distribution
among the variables. By formalizing independence assumptions, we can simplify the joint
data likelihood, which requires a prior on the roots (θ) and conditionals on the non-roots
(G,S,O,R). This requires more information regarding theory on networks and graphs.

In defining any network, there are three types of connections from a to c through a node
b. If we have a path from a to c through b (the path does not have to be directed), then b
can be referred to as linear, converging, or diverging with respect to its location in the path
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Figure 3.2: Connection types (Charniak 1991)

from a to c (Figure 3.2) (Charniak 1991).

Definition 3.1 (d-connecting) A path from node a to node c is d-connecting with respect
to evidence E = {e1, ..., em} if every interior node b in the path has one of the following
properties:

1. b is linear or diverging and not in E

2. b is converging and either b or one of its descendants (node that is a child of n or is
recursively a descendent of a child of b) is in E

If there is no d-connecting path, then a and c are d-separated (Charniak 1991).

Theorem 3.2 (Probabilistic Implications of d-Separation) If Variable A is d-separated
from Variable B given some evidence E in a directed acyclic graph, then A is independent
of B given E. (Pearl 2009).

We will use Definition 3.1 and Theorem 3.2 to determine which variables in our Bayesian
network are independent in the complete data likelihood.

In order to compute the complete data likelihood based on the model, we need to use the
definition of conditional probability to derive a simplification of a probability of the form
P (x1, x2, x3, x4, x5).

Definition 3.3 (Conditional Probability) P (B|A) is the probability of B occurring, con-
ditional on the fact that A has occurred.

P (x1, x2)

P (x2)
= P (x1|x2)

P (x1, x2) = P (x1|x2)P (x2)
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Using the definition of conditional probability, we can expand to the joint distribution
on all variables of interest:

P (r, S,O,G, θ) = P (r|S,O,G, θ)P (S,O,G, θ)

= P (r|S,O,G, θ)P (S|O,G, θ)P (O,G, θ)

= P (r|S,O,G, θ)P (S|O,G, θ)P (O|G, θ)P (r, θ)

= P (r|S,O,G, θ)P (S|O,G, θ)P (O|G, θ)P (G|θ)P (θ) (3.1)

Based on the model (Figure 3.1), the complete data likelihood for the RNA Sequencing
data is:

P (G,S,O, r|θ) =
P (G,S,O, r, θ)

P (θ)

=
P (r, S,O,G, θ)

P (θ)

=
P (r|S,O,G, θ) · P (S|O,G, θ) · P (O|G, θ) · P (G|θ) · P (θ)

P (θ)
(Eqn 3.1)

= P (r|S,O,G, θ) · P (S|O,G, θ) · P (O|G, θ) · P (G|θ)
= ΠN

n=1P (rn|Sn, On, Gn, θn) · P (Sn|On, Gn, θn) · P (On|Gn, θn) · P (Gn|θn)
(3.2)

We will make several simplifications to the likelihood in Equation 3.2 by applying our
knowledge of Bayesian networks and independence due to d-separation to our RNA-sequencing
model (Figure 3.1) as it is a Bayesian network:

1. r is independent of θ given S,O,G
G is a linear interior node in the paths (θ → G→ R), (θ → G→ S → r) (Figure 3.3),
and (θ → G → O → r) and is part of E = {S,O,G}. There is no d-connecting path
between r and θ with respect to evidence E.

2. S is independent of O given G
G is a diverging node in the path (O → G→ S) (Figure 3.4) and is part of E = {G}
so this is not a d-connecting path between G and O. r is a converging node on the
path (S → r → O) and is not in E so this is not a d-connecting path between G and
O. Neither of the two paths between G and O are d-connecting.

3. S is independent of θ given G
Any path from S to θ includes G (linear) which is part of E = {G}. There is no
d-connecting path between S and θ.

4. O is independent of θ given G
Any path from O to θ includes G (linear) which is part of E = {G}. There is no
d-connecting path between O and θ.

The data likelihood can be simplified to:

P (G,S,O, r|θ) = ΠN
n=1P (rn|Sn, On, Gn) · P (Sn|Gn) · P (On|Gn) · P (Gn|θn) (3.3)
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Figure 3.3: Path θ → G → S → r (green) is d-separated with respect to evidence E =
{S,O,G} (red) because interior nodes G,O are both linear and in E.

Figure 3.4: Path O → G→ S (green) is d-separated with respect to evidence E = {G} (red)
because interior node G is diverging and in E.
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3.4 Conditional Probabilities from the Model

We will assume we are given all M isoforms, and will assume a uniform distribution read
start position along the length of the isoform. To generate reads following the model:

1. Draw Gn : [0,M ], where G0 represents the noise isoform (reads that do not map to
any of the known isoforms).

(a) P (Gn = i|θ) = θi

2. Given that the nth read comes from the ith isoform, choose where on an isoform a read
starts: Sn : [1, li] (with poly-A tailing) or Sn : [1, li − L+ 1] (without poly-A tailing).

(a) P (Sn = j|Gn = i) = 1
li

(with poly-A tailing)

(b) P (Sn = j|Gn = i) = 1
li−L+1

(without poly-A tailing)

3. Choose the orientation of the read: On : {0, 1} where 0 represent a read in the same
orientation as the parent isoform, and 1 represents a read in the same direction as the
parent reverse complement.

(a) P (On = 0|Gn 6= 0) = 0.5

(b) P (On = 1|Gn 6= 0) = 0.5

4. Rn is generated by sequencing Gn from position Sn in the orientation of On.

In order to determine the conditional probability of Rn, we need to define a new indicator
variable that summarizes the hidden random variables.

znijk = 1 if (Gn, Sn, On) = (i, j, k)

Then, the conditional probability of Rn is

P (Rn = ρ|znijk = 1) =

{
ΠL
t=1wt(ρt, γ

i
j+t−1) k = 0

ΠL
t=1wt(ρt, γ

−i
j+t−1) k = 1

(3.4)

where ρt is the tth base of a particular sequence ρ of length L, γi is the sequence of isoform
i, γ−i is the sequence of the reverse complement of isoform i, and wt(a, b) is a matrix whose
values are the probability of seeing an a at position t given that b is present in the reference
at position t. Thus, wt models a read position and base-dependent substitution process. Due
to the nature of RNA-sequencing technology, the further a base is from the start of a read,
the more likely there will be a sequencing error. Thus, we expect wL(a, a) to be smaller than
w1(a, a).

Using the conditional probabilities in Equation 3.3, we get (with poly-A tailing):

P (G,S,O, r|θ) = ΠN
n=1P (rn|znijk = 1) · θi

2 · li
(3.5)
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The mathematical model of RNA sequencing (Figure 3.1 and Equation 3.5) do pose some
potential inaccuracies. One, it assumes the fragment size is constant and is equal to read
length. Two, the RNA-sequencing model starts with an isoform to generate a fragment to
generate read, while in reality RNA-sequencing starts with a read to generate a fragment to
generate an isoform. Despite this, Equation 3.5 will be used to help determine the values of
θ (Li, Ruotti, et al. 2010; Cheplyaka 2017).

3.5 Setting a Prior Distribution on θ

θ represents the probability that any single read is from a given isoform. If θ has a uniform
distribution, there is equal probability that a read comes from any isoform. This assumes that
short isoforms produce more reads because for two isoforms with equal expression, we expect
fewer reads to be produced by a shorter isoform. τ is the proportion of transcripts from a
given isoform. If τ has a uniform distribution, there are equal proportions of transcripts
coming from all isoforms, meaning that there is equal expression of all isoforms (Cheplyaka
2017). The relationship between θ and τ is as follows (assuming that all reads align so
θ0 = 0):

νi =
τi · li∑M
k=1 τk · lk

νi =
θi

1− θ0
= θi

τi =
νi
li∑M
i=1

νk
lk

=
θi
li∑M
k=1

θk
lk

When formulating a prior probability density of θ, we assume that there is no information
on isoform expression levels. So, we formulate our prior based on the assumption that all
isoforms are expressed equally, namely that τ is uniform under the constraint that

∑M
i=1 τi =

1 (i.e. τ is uniformly distributed on the unit M-simplex).

Definition 3.4 (Unit K-simplex) A set of points x ∈ RK+1 such that for 0 ≤ k ≤ K,
xk ≥ 0 and

∑K
k=0 xk = 1 (Malygin and Postnikov 2011). The unit K-simplex is k dimensional

in RK+1.

The unit 1-simplex is a 1 dimensional line segment in R2 with extreme points (0, 1) and
(1, 0). Some other points in this unit 1-simplex are (0.3, 0.7) since x1 + x2 = 0.3 + 0.7 = 1,
and (0.94, 0.06) since x1 + x2 = 0.94 + 0.06 = 1. The unit 2-simplex (in R3) is a triangle
with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1). To define a pdf f on τ1, ..., τM , we will use the fact
that the volume of a unit simplex in RM is 1

M !
, and that the distribution is uniform.
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f(τ1, ..., τM) = c∫
f(τ1, ..., τM)dτ1...dτM = 1∫

cdτ1...dτM = 1

c
1

M !
= 1

c = M !

Thus, the pdf f(τ1, ..., τM) = M !.

Theorem 3.5 (Multivariate Transformation) τ has a continuous distribution and a
pdf. Define θ1, ..., θM as:

θi = ri(τ1, ..., τM) =
τi · li∑M
k=1 τk · lk

where ri is a one-to-one differentiable function from the unit simplex where τ is uniform,
into a different space. si is the inverse

τi = si(θ1, ..., θM) =
θi
li∑M
k=1

θk
lk

Then, the joint pdf of θ is:

fθ(θ1, ..., θn) = fs(s1, ..., sn)|J |

where |J | = ∂s
∂θ

is the Jacobian determinant.

The pdf fθ(θ1, ..., θM) is obtained by starting with the pdf f(τ1, ..., τM) with τi expressed as
si(θ1, ..., θM) (we know this to be f(τ1, ..., τM) = M !) and multiplying by the determinant.
Thus,

fθ(θ1, ..., θM) = M !|J |

The intuition behind this transformation relies on the relation between τ = s(θ). As
measures of expression, the change in one must be the same as the change in the other. We
can equate changes in dF (τ) and dF (θ) as:

dF (θ) = dF (τ)

f(θ)dθ = f(τ)dτ

f(θ) = f(τ)
dτ

dθ

where dτ
dθ

is the Jacobian determinant (DeGroot and M.J. 2011).

19



0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

τ1

τ 2

Figure 3.5: Uniform distribution on the unit 1-simplex

Starting with a simple example, suppose we only have two isoforms. θ1 represents the
probability a read is from isoform 1, and θ2 represents the probability a read is from isoform
2. τ1 represents the proportion of isoform 1 in the sample, and θ2 represents the proportion
of isoform 2 in the sample. Below is a visual of the possible values of (τ1, τ2) (the 1-unit
simplex in R2).

The joint probability density function f(τ1, τ2) = 2! = 2. We want to do a change of
variable from (τ1, τ2) to (θ1, θ2).
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τ1 = s1(θ1, ..., θM) =
θ1
l1

θ1
l1

+ θ2
l2

τ2 = s2(θ1, ..., θM) =
θ2
l2

θ1
l1

+ θ2
l2

dτ1
dθ1

=
1
l1
· ( θ1

l1
+ θ2

l2
− θ1

l1
)

θ1
l1

+ θ2
l2

dτ1
dθ2

=
1
l2
· ( θ1

l1
+ θ2

l2
− θ1

l1
)

θ1
l1

+ θ2
l2

dτ2
dθ1

=
1
l1
· ( θ1

l1
+ θ2

l2
− θ2

l2
)

θ1
l1

+ θ2
l2

dτ2
dθ2

=
1
l2
· ( θ1

l1
+ θ2

l2
− θ2

l2
)

θ1
l1

+ θ2
l2

J =

[∂τ1
∂θ1

∂τ1
∂θ2

∂τ2
∂θ1

∂τ2
∂θ2

]

Then, P (θ) = f(θ1, θ2) = f(τ1, τ2)|J |, where |J | is defined above. Generalizing (parame-
terizing on M-1 isoforms because we view θM = 1−

∑M−1
k=0 θk),

P (θ) = (M − 1)!|J |

3.6 Application of the EM Algorithm to Read Map-

ping

To estimate the expression of genes and isoforms in a sample, we seek to estimate the values
of θ, which correspond to expression levels as such:

νi =
θi

1− θ0

τi =
νi
li∑M
i=1

νk
lk

We will use the EM algorithm to find values of θ that maximize the likelihood of the
observed data. The complete log data likelihood is:
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log[P (r|θ)] = log[
N∏
n=1

P (rn|θ)]

=
∑
n

log[P (rn|θ)]

=
∑
n

log

[∑
i

P (rn, Gn = i|θ)

]

=
∑
n

log

[∑
i

P (rn|Gn = i, θ) · P (Gn = i|θ)

]

=
∑
n

log

[∑
i

P (rn|Gn = i, θ) · θi

]
(3.6)

znijk was previously defined as an indicator variable for read n that equals 1 if Gn =
i, Sn = j, On = k. To simplify the problem, we will assume a strand-specific protocol and a
uniform read start position distribution. The new indicator is znij equals 1 if Gn = i, Sn = j.
Thus,

P (rn|znij = 1) = P (rn|Gn = i, Sn = j)

P (rn|Gn = i) =
∑
j

P (rn|Gn = i, Sn = j) · P (Sn = j) (by conditional probability)

=
1

li

∑
j

P (rn|znij = 1) (since P (Sn = j) =
1

li
with poly-A tailing) (3.7)

By conditional probability, and using the fact that for a given read n, znij = 1 for one
value of i, j and 0 for all others for the step in Equation 3.8,

P (r|znij = 1) = P (rn|znij = 1, Gn = i, Sn = j)

=
P (rn, znij = 1|Gn = i, Sn = j)

P (znij = 1|Gn = i, Sn = j)

= P (rn, znij = 1|Gn = i, Sn = j)

= znij · P (rn|Gn = i, Sn = j) (3.8)

= znij · P (rn|znij = 1) (3.9)

Combining Equations 3.7 and 3.9,

P (rn|Gn = i) =
1

li

∑
j

znij · P (rn|znij = 1)

Using this result and the data likelihood in Equation 3.6:

22



log[P (r|θ)] =
∑
n

log

[∑
i

P (rn|Gn = i, θ) · θi

]

log[P (r, z|θ)] =
∑
n

log

[∑
i

∑
j

znij ·
θi
li
P (rn|znij = 1)

]

=
∑
n

log

[∏
i

∏
j

[
θi
li
P (rn|znij = 1)]znij

]
(znij binary and is 1 for only one n, i, j)

=
∑
n,i,j

znij · log[
θi
li
P (rn|znij = 1)]

We now iterate between the E and M steps of the algorithm. In the E step, we compute
the probabilities of z given an estimate of θ and the data r.

ẑnij = q(znij) = P (znij|r, θ(t))

ẑnij = P (znij|rn, θ(t))

=
P (rn|znij, θ(t)) · P (znij = 1|θ(t))

P (rn|θ(t))

=
1 · P (rn, Gn = i, Sn = j|θ(t))

P (rn|θ(t))
(since P (rn|znij, θ(t)) = P (rn|rn, sn, gn, θ(t)) = 1)

=
P (rn|Sn = j,Gn = i) · P (Sn = j|Gn = i) · P (Gn = i|θ(t))

P (rn|θ(t))
from Eqn 3.3

=
P (rn|znij) · θili
P (rn|θ(t))

from Section 3.4

=
P (rn|znij) · θili∑

i′,j′ P (rn, Gn = i′, Sn = j′|θ(t))
law of total probability

=
P (rn|znij) · θili∑
i′,j′ P (rn|zni′j′) · θ

′
i

l′i

from Eqn 3.3 and Section 3.4

where P (rn|znij) is given in Equation 3.4.

In the M step, we update the estimates of θ to increase the data likelihood based on new
z values.
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Q(θ|θ(t)) =
∑
n,i,j

[
q(znij) · log(P (r, znij|θ(t))

]

=
∑
n,i,j

[
ẑnij · log[

θi
li
P (rn|znij = 1)]

]

We need to maximize Q(θ|θ(t)) under the constraint that
∑

i θi = 1 (the probability
that any isoform produces a read is 1). This requires the use of The Method of Lagrange
Multipliers (Trench 2013). The Method of Lagrange Multipliers is a technique to solve for the
maximum/minimum of a multivariate function f(θ1, θ2, ...) under some constraint function
g(θ1, θ2, ...) = c. In our application of the method to the EM algorithm in RNA sequencing,
the multivariate function f(θ1, θ2, ...) is Q(θ|θ(t)) and the constraint g(θ1, θ2, ...) = c is

∑
i θi =

1. Using the Method of Lagrange Multipliers,

∇Q(θ|θ(t)) = λ∇g(θ)

and we solve for the values of θi in terms of λ. These values are used in the constraint
function to solve for the value of the Lagrange Multiplier λ. The values of θ that maximize
Q(θ|θ(t)) can be found using the value of λ in the L(θ, λ), an equation that represents the
likelihood of the data. Take the derivative and set it to 0:

L(θ, λ) = Q(θ|θ(t))− λg(θ) = 0

First, we solve for θ in terms of λ.

∂

∂θi
Q(θ|θ(t)) = λ

∂

∂θi
g(θ)

∂

∂θi

∑
n,i,j

[
ẑnij · log[

θi
li
P (rn|znij = 1)]

]
= λ

∂

∂θi

∑
i

θi

∑
n,j

∂

∂θi

[
ẑnij · log(θi)

]
= λ

∑
n,j

[
(ẑnij ·

1

θi
)

]
= λ

1

θi

∑
n,j

ẑnij = λ

θi =

∑
n,j ẑnij

λ
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Using these values in the constraint g(θ) =
∑

i θi = 1:∑
i

θi = 1∑
n,i,j ẑnij

λ
= 1

λ =
∑
n,i,j

ẑnij

Now we can solve

∂L(θ, λ)

∂θi
=

∂

∂θi

(
Q(θ|θ(t))− λg(θ)

)
0 =

1

θi

∑
n,j

ẑnij −
∑
n,i,j

ẑnij · 1

θi =

∑
n,j ẑnij∑
n,i,j ẑnij

θ̂t+1
i =

∑
n,j ẑnij

N

Given the nth read,
∑

i,j ẑnij = 1 because each read must come from some start position
within the isoforms with probability 1. Thus, given all n reads ∈ {1, ..., N},

∑
n

∑
i,j ẑnij =∑

n 1 = N .
To summarize:

E Step: Compute values of missing information z given an estimate of θ at time t.

ẑnij =
P (rn|znij) · θili∑
i′,j′ P (rn|zni′j′) · θ

′
i

l′i

with poly-A tails

ẑnij =
P (rn|znij) · θi

li−L+1∑
i′,j′ P (rn|zni′j′) · θ′i

l′i−L+1

without poly-A tails

M Step: Update the estimates of θ based on new z values that maximize the data
likelihood.

Q(θ|θ(t)) =
∑
n,i,j

[
ẑnij · log[

θi
li
P (rn|znij = 1)]

]

θ̂t+1
i =

∑
n,j ẑnij

N
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Chapter 4

Simulations of the EM Algorithm in
RNA Sequencing

Simulations were run using the derived EM Algorithm for RNA Sequencing:

E Step: Compute values of missing information z given an estimate of θ at time t.

ẑnij =
P (rn|znij) · θili∑
i′,j′ P (rn|zni′j′) · θ

′
i

l′i

with poly-A tails

ẑnij =
P (rn|znij) · θi

li−L+1∑
i′,j′ P (rn|zni′j′) · θ′i

l′i−L+1

without poly-A tails

M Step: Update the estimates of θ based on new z values that maximize the data
likelihood.

Q(θ|θ(t)) =
∑
n,i,j

[
ẑnij · log[

θi
li
P (rn|znij = 1)]

]

θ̂t+1
i =

∑
n,j ẑnij

N

A few simplifying assumptions were made in the simulation.

1. Sequencing is strand specific.

2. There is no poly-A tailing.

3. The error rate in sequencing as given in Equation 3.4 is constant (i.e. the probability
of an error is independent of the position within the read and the identity of the
nucleotide).

4. The initial estimates of θ were set to values that correspond to equal expression of all
isoforms. In Li, Ruotti, et al. 2010, initial estimates were set to the values of θ obtained
from looking at the uniquely mapping reads.
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5. Convergence is defined as having happened when the maximum change between θt and
θt−1 is less than 0.0001.

Example 4.1 (RSEM with 10 reads) In a simple simulation, suppose we have the fol-
lowing isoforms and values of θ to produce a set of 10 reads of length 3.

Name θ Sequence Generated Reads
isoform 1 0.5 BBBBBBBBB BBB, BBB, BBB, BBB, BBB
isoform 2 0.4 AAAAAAAAA AAA, AAA, AAA, AAA
isoform 3 0.1 BBAAABB BBA

Notice that the reads AAA are multireads: they could have originated from isoform 2
and isoform 3. Because we generated the reads, we know that they are from isoform 2 but
in real RNA sequencing, in such circumstances we do not know which isoform originally
produced the read. This is the reason why we need to implement the EM algorithm to align
reads and estimate expression.

First, we initiate values of θ̂0 that represent equal expression. This means that

τi =
1

3
=

θi
li∑3
k=1

θk
lk

θ̂01 = 0.384...

θ̂02 = 0.384...

θ̂03 = 0.263...

Next, we start iterating through the EM algorithm until convergence. This process is
illustrated in Figure 4.1. We start with the initial values of θ̂0. We calculate the ẑ values next
in the E step. Figure 4.1 displays the results from this step for r1 = AAA. For example, the
probability that r1 came from a given start position in isoform 1 is z1,1,j = 0.000000000125 be-
cause all start positions in isoform 1 would result in the same BBB read sequence. The prob-
ability that r1 came from isoform 1 is then

∑
j z1,1,j = 7 · 0.000000000125 = 0.000000000877.

We update the estimates of θ̂ in the M step. Iterations between the E step and M step
continue until convergence.

In Example 4.1, we stop after 6 iterations and have final estimates of θ̂1 = 0.502, θ̂2 =
0.375, and θ̂3 = 0.122. Notice that in each successive iteration, θ̂ tends to get closer and
closer to θ (Figure 4.2).

Iteration θ̂1 θ̂2 θ̂3
0 0.3684 0.3684 0.2632
1 0.5006 0.3499 0.1495
2 0.5017 0.3684 0.1300
3 0.5018 0.3735 0.1246
4 0.5019 0.3749 0.1231
5 0.5019 0.3753 0.1227
6 0.5019 0.3754 0.1226

27



Figure 4.1: Parameter estimation for RNA Sequencing with the EM Algorithm
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Figure 4.2: Theta estimates from the EM Algorithm as a function of the iteration number.
The dotted lines represent the true values of theta, and in this specific instance, the sample
values of theta as well.
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Example 4.2 (RSEM with variable number of reads) In a simple simulation, suppose
we have the following isoforms and values of θ to produce sets of reads of length 3, with the
number of reads in each set ranging from 5 to 1000.

Name θ Sequence
isoform 1 0.5 BBBBBBBBB
isoform 2 0.4 AAAAAAAAA
isoform 3 0.1 BBAAABB

Example 4.2 follows the same process as Example 4.1 but extends it beyond 10 reads.
From Example 4.2, we see that as the number of reads increases, there is a decrease in the
error compared to both the true values of θ and the values of θ in our simulated samples
(known due to the method of simulating reads) (Figure 4.3). When multireads exist, the
θ̂ error for the isoforms that can produce multireads is higher than for those that don’t.
Isoform 1 produces unique reads while isoforms 2 and 3 can produce multireads. In Figure
4.3, the error for isoform 1 (θ̂1 compared to true and sample θ) is lower than that for isoforms
2 and 3, especially when the number of reads is less than 200.

30



Figure 4.3: Estimates from the EM Algorithm as a function of the number of reads. The
dashed line represents the sample values of θ, and the dotted line represents the true values
of θ
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Chapter 5

Conclusion

The RSEM program developed by Li and Dewey provides a method of aligning reads pro-
duced by RNA Sequencing in order to estimate gene expression. In this paper, each step
in RSEM is detailed to provide a better understanding of the mathematical foundations
of RSEM. Through simple simulations, we have shown that the use of the EM algorithm
does provide expression estimates that converge to the true values, the accuracy tends to
improve with larger numbers of reads, and estimates are more accurate for isoforms that
cannot produce multireads.

In practice, many other factors such as variable read length, sequencing quality scores,
and pair-end versus single-end reads are included into RSEM. The inclusion of more factors
increases its versatility and accuracy of expression estimates (Li and Dewey 2011). The
oversimplified model presented here, while not used in practice, is the base upon which the
current RSEM program is built.
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