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ABSTRACT OF THE DISSERTATION

THE DISTRIBUTION OF BETWEENNESS CENTRALITY
IN EXPONENTIAL RANDOM GRAPH MODELS

by

CHRISTINA DURÓN

Doctor of Philosophy in Mathematics
Claremont Graduate University, 2019

Although network centrality measures have been employed in the analysis of biological

networks to obtain rankings of influential nodes, the statistical interpretation of the cen-

trality measures and their distributions in a random network remain an open question. A

framework that utilizes the generalized exponential random graph model is proposed as an

approach to determine the distribution of the finite stable betweenness centrality measure.

The theoretical underpinnings of generalized exponential random graph models are detailed,

with particular attention towards the derivation of the probability model and parameter es-

timation process. Finally, several different distributions on graphs with 20 nodes and a fixed

topology are considered, and the resulting distributions of the finite stable betweenness are

compared.
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INTRODUCTION

Understanding the function of biological networks heavily depends upon understanding

the network’s underlying structure. As a result, centrality measures have been utilized in

the analysis of biological networks, as they provide rankings of influential nodes within the

network and thus, a better idea of the properties, features, and sub-networks that contribute

to the network’s biological complexity (Breitkreutz et al., 2012; Mistry et al., 2017; Ramadan

et al., 2016; Zhang et al., 2013). While there exist many centrality measures to identify

influential nodes within the network, a statistical interpretation of the centrality values

associated with each measure (e.g., is a betweenness value of 100 statistically significant?)

and their distributions in a random network remain an open question.

Although formally defined in Chapter 1 along with other notations and definitions, a

biological network is a collection of nodes representing biological molecules (e.g., genes or

proteins) that are joined by edges representing tissue-specific functional associations between

nodes (Greene et al., 2015; Wang et al., 2018). In regards to biological applications, genes

whose role significantly changes as tissue transitions from a healthy to diseased state may

potentially play a role in the development of a disease. Because nodes in biological networks

can be characterized by a set of centrality measures, these measures may be used to iden-

tify structural differences between biological networks representing two different states of a

particular tissue.

To that end, Chapter 2 details a methodology to identify genes that are essential to

the structure of diseased tissue. In particular, the framework utilizes gene expression data

to construct two weighted networks, one from a group of healthy tissue samples (i.e., the

1



Normal network) and the other from a group of diseased samples (i.e., the Tumor network).

The betweenness centrality measure, which quantifies the involvement of a node in shortest

paths within the network, is applied to each weighted network to identify genes that comprise

a regulatory network unique to low-grade brain tumors arising in the optic nerves of NF1

mutant mice. Using datasets from both sets of tissue samples simultaneously, the Etv5

network is identified as a defining feature of the diseased state in mouse and human low-

grade glioma tumors.

If different tissue samples had been collected, thus altering the edge-weights of both

the Normal and Tumor networks, and the aforementioned approach repeated, an important

question to consider is whether the betweenness centrality would have identified Etv5 as a

gene essential to the structure of low-grade brain tumors. To address this question, Chapter

3 examines the variability of the betweenness centrality measure to identify genes whose role

is different in tissues from a healthy as compared to a diseased state. Using a previously

constructed regulatory network, gene expression data from pediatric brain tumors are used

to create two separately weighted networks, one based upon each of the healthy and diseased

sets of samples. Following the methodology detailed in Chapter 2 to obtain a set of genes

essential to the topology of the Tumor network, the variability of the betweenness measure

is analyzed using two edge-weight perturbation methods. The results of the perturbation

methods indicate a robustness of the betweenness centrality in the identification of genes

essential to the structure of diseased tissue.

Although the betweenness measure can be utilized in the identification of structurally

important genes, the large range of betweenness values that result from edge-weight per-

turbations is concerning and suggests an instability of the measure. While formally proven

2



in Chapter 4, the betweenness measure is unstable in the sense that an arbitrarily small

change to edge-weights can cause large fluctuations in its value. Motivated by the sensitiv-

ity of this measure to edge-weight perturbations, Chapter 4 defines an alternative, stable,

centrality measure, the finite stable betweenness, whose distribution will be explored in gen-

eralized exponential random graph models (GERGMs). The theoretical underpinnings of

both exponential and generalized exponential random graph models, which specify the prob-

ability distribution of a set of unweighted and weighted networks, respectively, are discussed

in Chapter 5, with particular attention given to the derivation of the GERGM probability

model and coefficient estimation process.

The utilization of GERGMs as a model for the distribution of the finite stable between-

ness measure is highlighted in Chapter 6. In particular, the proposed framework to determine

a distribution rests upon the assumption inherent in the GERGM probability model, that

the structure of the observed network may be explained by network configurations. Because

the betweenness centrality captures some global structural properties of a network (Abbasi

et al., 2012; Alahakoon et al., 2011), the proposed framework to determine a distribution of

finite stable betweenness focuses on incorporating the measure into a GERGM probability

model as a network configuration. Various models to determine the distribution of the mea-

sure are proposed and compared to the distribution of finite stable betweenness of a small

20-node network constructed from a known structure. Finally, conclusions, future work, and

supplementary material are highlighted in Chapter 7.
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CHAPTER 1

NETWORK DEFINITIONS

A biological network is formally defined as an abstract, undirected, and weighted graph

G = (V,E) where V is the set of nodes representing biological molecules (e.g., genes or

proteins), and E is the set of edges representing the functional, causal, or physical interactions

between nodes that is associated with a weight function w : E → Rn ≥ 0. Denote the set of

edges E = {ej,k|vj, vk ∈ V } by the set of connections between nodes vj and vk of strength

w(ej,k) = wj,k.

Any two nodes connected by an edge are considered adjacent, and a path P (vj, vk)

between nodes vj and vk is defined as a sequence of edges that connect adjacent nodes:

P (vj, vk) = {ej=j0,j1 , ej1,j2 , ..., ejn−1,jn=k}

where edge eji,ji+1
connects adjacent nodes vji and vji+1

for 0 ≤ i ≤ n− 1.

Define the length of a path P (vj, vk) as the sum of the edge-weights of the edges in

P (vj, vk):

len (P (vj, vk)) =
n−1∑
i=0

w
(
eji,ji+1

)
, with j0 = j and jn = k

Let P(vj, vk) be the set of all paths between nodes vj and vk. Define Ps(vj, vk) ∈

P(vj, vk) as a shortest path between nodes vj and vk to be a path of minimum length such
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that

len (Ps(vj, vk)) ≤ len (P (vj, vk)) ,∀P ∈ P

Finally, define s(vj, vk) as the length of the shortest path Ps(vj, vk) between nodes vj

and vk:

s(vj, vk) = len (Ps(vj, vk))

An example of a weighted network can be seen in Figure 1.1. Although a path from

node 1 to node 4 may be defined as P (v1, v4) = {e1,2, e2,3, e3,4}, a shortest path between the

node pair is Ps(v1, v4) = {e1,3, e3,4}.

Figure 1.1. A weighted sample network with nodes V = {1, 2, 3, 4, 5}
and edges E = {e1,2, e1,3, e2,3, e2,5, e3,4, e3,5, e4,5} with corresponding
edge-weights {0.2, 0.2, 0.1, 0.1, 0.2, 0.2, 0.1}.

5



1.0.1 Network Centrality Measures

Network nodes can be characterized by several centrality measures, all of which evaluate

the importance of each node through a partial ranking based upon the network’s topological

features and edge-weights. In a biological context, a gene (i.e., a node) that lies on a large

fraction of shortest paths between other genes may indicate the extent of the gene’s influence

and ability to control the flow of information within the network (Breitkreutz et al., 2012).

To identify the gene(s) that lie on these communication pathways, the betweenness centrality

measure may be utilized in the analysis of the biological network. A thorough discussion of

centrality measures is provided by Boccaletti et al. (2006); Newman (2003).

Betweenness Centrality

The betweenness centrality measure quantifies the involvement of a node vi in the

shortest paths within a network by calculating the sum of the fractions of shortest paths

that pass through vi (Freeman, 1977). The betweenness centrality of node vi, CB(vi), in a

network is formally defined in Equation 1.1 and can be computed using Algorithm 1. Note

that for every pair of nodes in a connected network, there exists at least one shortest path.

Definition. The betweenness centrality of node vi ∈ V is given by:

CB(vi) =
∑

j 6=k 6=i
σvj,vk (vi)

σvj,vk
(1.1)

where vj, vk ∈ V , σvj ,vk is the total number of shortest paths from node vj to node vk, and

σvj ,vk(vi) is the number of those paths that pass through vi.
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Algorithm 1 Calculating CB(vi): the betweenness centrality of node vi

1: For each node pair (vj, vk), calculate the shortest paths between them.

2: For the fixed node vi, for each j 6= k 6= i, determine the fraction of shortest paths between
the node pair (vj, vk) that pass through node vi.

3: Sum these fractions over all node pairs (vj, vk).

Consider the weighted network in Figure 1.1. Nodes 2 and 5 have the largest between-

ness centrality of the node set, as they both lie on the largest fraction of shortest paths

within the network. The shortest paths of each node pair in the weighted network are listed

in Table 1.1, while the subsequent betweenness centrality values of each node in the weighted

network are listed in Table 1.2.
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Table 1.1. The shortest paths calculated for each node pair in the
weighted network given in Figure 1.1.

Node pair (vj, vk) Shortest Path(s) Node(s) vi on Shortest Path(s)

(1,2) e1,2 None

(1,3) e1,3 None

(1,4) e1,3, e3,4 and e1,2, e2,5, e5,4 2, 3, 5

(1,5) e1,2, e2,5 2

(2,3) e2,3 None

(2,4) e2,5, e5,4 5

(2,5) e2,5 None

(3,4) e3,4 None

(3,5) e3,5 None

(4,5) e4,5 None

Table 1.2. The betweenness centrality of each node in the weighted
sample network given in Figure 1.1.

Node vi Node Pair (vj, vk)
Fraction of Shortest

Paths through Node vi

CB(vi)

1 (2,3), (2,4), (2,5), (3,4), (3,5), (4,5) 0
1
, 0

1
, 0

1
, 0

1
, 0

1
, 0

1
0

2 (1,3), (1,4), (1,5) (3,4), (3,5), (4,5) 0
1
, 1

2
, 1

1
, 0

1
, 0

1
, 0

1
1.5

3 (1,2), (1,4), (1,5) (2,4), (2,5), (4,5) 0
1
, 1

2
, 0

1
, 0

1
, 0

1
, 0

1
0.5

4 (1,2), (1,3), (1,5) (2,3), (2,5), (3,5) 0
1
, 0

1
, 0

1
, 0

1
, 0

1
, 0

1
0

5 (1, 2), (1,3), (1,4) (2,3), (2,4), (3,4) 0
1
, 0

1
, 1

2
, 0

1
, 1

1
, 0

1
1.5
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CHAPTER 2

NETWORK ANALYSIS USING BETWEENNESS CENTRALITY

2.1 INTRODUCTION

As with other ecological systems, mammalian tissues can be considered as complex

biological systems made up of a multitude of elements that each contribute to the overall

biological function. In this regard, both healthy and diseased tissues contain distinct, yet

interacting, cell types and molecular components that establish distinctive functional states

for diseased tissue relative to their healthy counterparts. Therefore, a natural implication

of this conceptualization is the idea that healthy and diseased tissues can be defined in an

objective manner using computational approaches. Some examples include algorithms that

have been used to classify diseased states, to assess risk as a function of specific factors such

as gender, age, and environmental exposures (Bajenaru et al., 2003, 2005; Kaul et al., 2014),

and to identify individualized treatments based on gene expression profiles (Daginakatte and

Gutmann, 2007; Daginakatte et al., 2008; Hegedus et al., 2008).

But computational modeling can also be utilized to identify interactions that exist

within the tissue. As discussed in Chapter 1, one example of this modeling consists of clas-

sifying the interactions and relationships as a biological network, where the nodes represent

proteins, transcription factors, or genes, and the edges connecting nodes represent com-

munication pathways. Networks that highlight distinct differences between these healthy

and diseased tissues may serve as a way to identify unexpected relationships critical to the

maintenance of a disease, such as a tumor.

To investigate these potential networks and relationships, an authenticated murine
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model of a brain tumor (optic glioma) that arises in children with the neurofibromatosis type

1 (NF1 ) cancer predisposition syndrome is analyzed (Bajenaru et al., 2003, 2005). The optic

glioma tumors (World Health Organization grade I pilocytic astrocytomas) are low grade

neoplasms that develop in early childhood (Listernick et al., 2007). Because the tumors

are not removed or biopsied in children with NF1, the NF1 genetically-engineered mouse

low-grade glioma model system best embodies many of the features present in the human

condition and has been successfully utilized to evaluate promising targeted therapies now in

clinical trials for children with the tumors (Daginakatte and Gutmann, 2007; Daginakatte

et al., 2008; Hegedus et al., 2008; Kaul et al., 2014) (http://clinicaltrials.org; NCT01089101,

NCT01158651 and NCT01734512).

Although applications of network analysis to understand cancer biology are relatively

new, its analysis can be divided into three methodological types: (1) enrichment of fixed gene

sets, (2) de novo subnetwork construction and clustering, and (3) network-based modeling

(Creixell et al., 2015). Although all three methods can be applied to characterize murine

NF1 optic gliomas, only the network-based approach (i.e., the third type) is able to use

relational network information to define specific regulator (i.e., nodal) connections.

2.2 NETWORK CONSTRUCTION

A gene regulatory network (GRN) depicts how some genes that encode regulatory

molecules, such as transcription factors or microRNAs, control the expression of other genes

(Narang et al., 2015). The glioma regulatory network, which is used as the base network in

the following analysis, was inferred from the Rembrandt microarray data set available from

GEO GSE68848 by Madhavan et al. (2009) and constructed by Margolin et al. (2006). The
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regulatory network was derived from a transcription (RNA) dataset (i.e., the human dataset)

representing a variety of different gliomas to capture the regulatory interactions. Four hun-

dred twenty-seven human glioma gene expression profiles were obtained from the Rembrandt

data repository (Madhavan et al., 2009), and were combined to create the glioma regula-

tory network according to the ARACNe-AP algorithm (Lachmann et al., 2016; Margolin

et al., 2006). Note that the Rembrandt data were generated through the Glioma Molecular

Diagnostic Initiative and include 874 glioma specimens.

The ARACNe-AP (Algorithm for the Reconstruction of Accurate Cellular Networks)

algorithm reconstructs gene regulatory networks from large-scale gene expression data (Lach-

mann et al., 2016). Although the steps of the ARACNe-AP algorithm are summarized in

Algorithm 2, additional details are discussed in Madhavan et al. (2009).

Algorithm 2 The ARACNe-AP algorithm

1: The input to the algorithm is a list of transcription factors and gene expression profile
data.

2: The gene expression data is pre-processed in order to determine a mutual information
(MI) threshold. Specifically, all pairwise MI scores between gene expression profiles are
estimated, and then their significance is assessed by comparing them to a null dataset.
Note that the significance level depends on the sample size of the input.

3: A random sample is selected from the input gene expression profiles.

4: The gene expression profiles are rank-transformed, and then the MI for each transcription
factor/target pair is calculated.

5: The MI threshold from Step 2 is used to remove any connections that are not statistically
significant.

6: Indirect interactions are removed using the Data Processing Inequality tolerance filter,
as described by Margolin et al. (2006).
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Using the glioma regulatory network as a base network, previously generated RNA

expression data (i.e., the murine dataset) from the optic nerves of NF1flox/flox (N , healthy

control group, n = 4) and NF1flox/mut; GFAP-Cre (OPG-1, tumor diseased group, n =

11) (Pan et al., 2017) were used to create two separately weighted networks: Normal (i.e.,

healthy) and Tumor (i.e., diseased). Because the glioma regulatory network (generated ac-

cording to the ARACNe-AP algorithm) provided the topology used in their construction, the

Normal and Tumor networks maintained an identical topological structure. Furthermore,

genes that were not expressed in one of the two groups were removed from both networks. Al-

though structurally identical, the Normal and Tumor networks differ in the weights assigned

to each edge, as each weight is calculated based upon the distance between two nodes (i.e.,

between two genes) vj and vk. This distance is calculated as 1−|ρ(xj, xk)|, where ρ(xj, xk) is

the minimum of the Pearson and Spearman correlations between the RNA expression levels

of gene vj and gene vk. Additional details concerning correlation measures are provided in

Section 3.3.2.

2.3 NETWORK CENTRALITY MEASURES

Network centrality measures are commonly employed to identify nodes that may poten-

tially play important roles in weighted networks (Zhang and Horvath, 2005). Some commonly

used measures include closeness, betweenness, and entropy; for example West et al. (2012)

employ differential entropy between diseased and healthy tissue to detect relevant genes.

Recall the betweenness centrality of gene vi (i.e., node vi), CB(vi), is a measure derived
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from the fraction of shortest paths in the network that pass through gene vi:

CB(vi) =
∑

j 6=k 6=i
σvj,vk (vi)

σvj,vk

where vj, vk ∈ V , σvj ,vk is the total number of shortest paths connecting genes vj and vk,

and σvj ,vk(vi) is the number of shortest paths that pass through gene vi. For a closer look at

betweenness, along with a concrete example of how to calculate the value of each node in a

weighted network, refer to Chapter 1.

In both the Normal and Tumor networks, the length of the path between any two genes

is provided by the sum of the distances, or the weights, of its edges. Because the edge-weights

(i.e., distances) are based upon the RNA expression data, the betweenness measures differ

between the Normal and Tumor networks, and may be utilized to identify genes essential

to the structure of the diseased tissue. Although other centrality measures could have been

employed, such as CC(vi), the closeness centrality for node vi, defined as

CC(vi) = 1∑
k d(vi,vk)

, where d(vi, vk) = the distance between nodes vi and vk

the large range of the betweenness values led to a clear discrimination between the Normal

and Tumor networks.

Figures 2.1 and 2.2 show the comparison of using the betweenness and closeness mea-

sures to differentiate the Normal and Tumor networks. As is evident from both figures, the

betweenness measure identifies genes that are substantially different across the two networks,

while the closeness measure does not identify any such stand-out genes.
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Figure 2.1. A comparison of betweenness measures in the Normal and
Tumor networks. Filled (red) circles indicate genes whose betweenness
measure is both at least 1.1 times as large in the Tumor network as in the
Normal network, and whose Tumor betweenness value is greater than
1e6. These genes are listed in Table 2.1, and are shown in pink in Fig 2.3.
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Figure 2.2. Filled (red) circles indicate genes whose betweenness
measure is both at least 1.1 times as large in the Tumor network
as in the Normal network, and whose Tumor betweenness value is
greater than 1e6. These genes are listed in Table 1, and shown in pink
in Figure 2.3. Note that the closeness measure does not differenti-
ate the Tumor and Normal networks as well as betweenness (see Fig 2.1).
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2.4 BIOINFORMATIC APPROACH

In order to identify genes that may play a role in disease evolution, it is critical to iden-

tify the changes in the biological networks that describe cellular processes. Genes whose role

significantly changes across healthy versus diseased tissue states are classified as “potential

genes of interest” and are identified through network centrality analysis. In this work, the

betweenness centrality measure is used to identify genes of potential interest

Using the murine dataset, twenty-three genes are identified as having betweenness val-

ues at least 1.1 times as large in the Tumor network as in the Normal network, along with

Tumor betweenness values greater than 1e6. These genes are shown as filled, red circles

in Fig 2.1, are listed in Table 2.1, and are denoted as “essential” to the glioma regulatory

network.

Table 2.1. The “essential genes” are the transcription factors that have
been identified as having betweenness values at least 1.1 times as large
in the Tumor network as in the Normal network, and along with Tumor
betweenness values greater than 1e6.

Cebpz Etv5 Spen Zcchc14 Camta1 Chd5 Cers2

Hnrnpab Ilf2 Zcchc17 Zc3h15 Tulp4 Purb Rpl7

Tcf3 Tead1 Cnbp Prdm2 Sarnp Zranb2 Gcsh

Ift74 Myl12B

Using the four healthy samples and eleven diseased samples, differential expression

analysis was employed to test the null hypothesis that the expected count of a given gene is

the same for all samples, where each gene of the twenty-three essential genes and their targets
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were considered. Note that count denotes the number of sequence fragments that have been

assigned to each gene in each sample. Differential expression calculates the coefficients β of

a generalized linear model that best fit the observed count K:

Kij ∼ NB(sjµij, ai)

with expected gene expression strength,

log µij = βi0 + xjβiT

More specifically, the counts Kij for gene i in sample j are modeled using a negative binomial

distribution with fitted mean sjµij and a gene-specific dispersion parameter ai (Love et al.,

2014). The fitted mean is the product of a parameter µij (the expectation value of the

observed counts for gene i in sample j) and a sample-specific size factor sj (the sequencing

depth of each sample j), where the purpose of the size factor is to make the counts from

different samples, which may have been sequenced to different depths, comparable (Anders

and Huber, 2010). Note that the coefficients βiT represent the fold-changes for gene i, while

xj equals 0 or 1, if j is a healthy or diseased treatment sample, respectively. Given that the

null hypothesis is βiT = 0, if the value of βiT is significantly different from zero, then the

alternative model that there is a difference in fold-change is accepted. (Love et al., 2014).

From the results of the differential expression analysis, one gene, Etv5, emerged as

having a significant differential effect across the two expression datasets on the murine dataset

(Table 2.2). Furthmore, Etv5 was found to have the highest percentage of differentially
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expressed targets of all of the twenty-three essential genes (Table 2.3).

A list of the thirty-one differentially expressed target genes of Etv5 are listed in Table

2.4. The network consisting of the essential regulators (i.e., a gene involved in controlling

the expression of one or more genes), along with the differentially expressed targets of Etv5,

is shown in Figure 2.3. The combination of the different computational techniques utilized

in the analysis that identified Etv5 as an essential regulator is listed in Algorithm 3.

Algorithm 3 A computational and bioinformatic approach: Identifying the Etv5 network

1: A reference network is identified for all transcription factors. In this analysis, the regu-
latory network was created with the ARACNe-AP algorithm and is used as the reference
network.

2: Weights are added to the edges of the reference network using one minus the minimum
of the Pearson or Spearman correlation of independently generated samples of RNA-
Seq data. Two different weighted networks are created - one with diseased RNA-Seq
data (i.e., the Tumor network), and one with healthy RNA-Seq data (i.e., the Normal
network).

3: From each weighted network, the betweenness value for each gene is calculated.

4: Genes with betweenness values at least 1.1 times as large in the Tumor network relative
to the Normal network, along with Tumor betweenness values greater than 1e6, are
identified. These genes are considered “essential” in the Tumor network (Table 2.1).

5: Of the “essential” genes, the most differentially expressed gene is identified (Etv5 ).

6: Genes which represent targets of the Etv5 transcription factor and are differentially
expressed across the two treatments (i.e., diseased and healthy) are identified (Table
2.4).
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2.5 CONCLUSION

Using the betweenness network analysis and the murine dataset, Etv5 and its associ-

ated genes are discovered as a differentially regulated transcriptional network in low-grade

brain tumors relative to healthy brain tissue. This type of network analysis is extremely use-

ful in identifying potential network regulators essential to the diseased state. Taken together,

the methodology discussed in Algorithm 3 is a valuable tool for identifying genes essential

to the tumor ecosystem, and it nicely illustrates the value of combining both computational

and bioinformatic approaches to characterize the diseased state relative to its healthy coun-

terpart. The official publication of the work detailed in this chapter may be found in Pan

et al. (2018).
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Figure 2.3. The Etv5 network is comprised of Etv5 (in lavender in
the center), and its differentially expressed targets (shown in yellow).
The remaining twenty-two essential genes, identified by their high
betweenness measures in the Tumor network relative to the Normal
network, are shown on the periphery in pink.
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Table 2.2. The results of the differential expression analysis to
identify which of the twenty-three essential genes identified using the
betweenness measure are significantly different between the diseased
and healthy tissue samples. Note that fold-change is a measure of the
change in the expression level of a gene.

Gene p-value log2 Fold-Change

Etv5 1.34E-09 1.4474
Myl12B 6.81E-04 -0.5850
Zc3h15 4.03E-03 -0.5603
Camta1 4.22E-03 -0.4705
Spen 4.61E-03 0.5714
Tulp4 6.11E-03 0.4845
Sarnp 7.36E-03 0.7022
Zcchc17 9.34E-03 -0.6699
Ift74 9.66E-03 -0.5475
Tcf3 1.29E-02 0.4928

Zcchc14 3.82E-02 0.3660
Rpl7 3.83E-02 -0.5100
Cnbp 4.16E-02 -0.3724
Zranb2 6.71E-02 -0.3515
Tead1 1.40E-01 0.2794
Ilf2 1.51E-01 -0.3077

Cebpz 1.60E-01 -0.3255
Gcsh 3.92E-01 -0.1581
Cers2 5.36E-01 -0.0923

Hnrnpab 6.23E-01 0.0784
Purb 6.80E-01 0.0573
Prdm2 8.75E-01 0.0207
Chd5 8.98E-01 -0.0334
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Table 2.3. The percent of target genes from the regulatory network that
are differentially expressed (i.e., that are significantly different between
the diseased and healthy tissue samples) by each of the essential genes
that are identified using the betweenness measure.

Gene # Significant Total Targets % Significant

Etv5 31 449 0.0690
Cers2 32 496 0.0645
Sarnp 15 255 0.0588
Zcchc14 16 361 0.0433
Tcf3 28 640 0.0437
Tead1 19 443 0.0429
Zc3h15 27 652 0.0414
Tulp4 17 412 0.0413
Rpl7 10 247 0.0405
Purb 27 678 0.0398
All 529 14926 0.0354

Hnrnpab 19 543 0.0350
Cnbp 15 458 0.0328

Camta1 35 1093 0.0320
Chd5 27 852 0.0317

Zcchc17 8 257 0.0311
Prdm2 20 652 0.0307
Spen 12 392 0.0306
Cebpz 10 379 0.0264
Ilf2 13 555 0.0234

Zranb2 11 486 0.0226
Gcsh 0 0 0
Ift74 0 0 0

Myl12B 0 0 0
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Table 2.4. The thirty-one targets of Etv5 that are identified as
differentially expressed in the murine dataset.

Gene p-value log2 Fold-Change

Spry2 1.13E-08 0.916
Dnajb4 2.63E-05 -0.457
Col2a1 1.07E-04 1.235
Spred1 1.04E-05 0.800
Dusp6 1.50E-04 0.637
S1pr1 6.84E-17 1.358
Ak4 5.38E-05 0.959
Fabp5 1.39E-09 1.087
Fabp7 6.22E-05 0.956
Rsbn1 2.16E-04 -0.428
Btbd3 7.12E-09 0.755
Gap43 1.94E-05 -0.797
Gja1 3.64E-10 0.600
Gldc 6.60E-06 1.161

Kcnip1 3.06E-04 -0.797
Igfbp6 3.07E-04 -0.942
Lrp4 5.38E-05 0.671

Mmp15 2.11E-04 1.003
Nt5e 1.18E-04 -0.744

Pcdhgc3 2.12E-06 0.932
Tppp3 6.01E-05 -0.912
Shc3 2.71E-04 0.903
Nlgn3 1.82E-05 0.705
Spata6 1.62E-04 -0.552
Elovl2 1.62E-11 1.908
Spry4 5.77E-05 1.104
Socs2 1.77E-04 -0.814

Slc9a3r1 1.41E-06 0.722
Chst2 2.28E-11 1.163
Cxcl14 4.88E-17 1.425
Dock4 2.88E-05 0.642
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CHAPTER 3

THE VARIABILITY OF BETWEENNESS CENTRALITY IN THE

IDENTIFICATION OF ESSENTIAL GENES

3.1 INTRODUCTION

Current technology provides clinicians with high-dimensional measurements that de-

scribe features of a particular tissue, or cellular environment. An example of high-

dimensional measurements include gene expression data for samples of cells that can be

divided into “healthy” (i.e., Normal) and “diseased” (i.e., Tumor) groups. Figure 3.1 shows

a heat map of gene expression data from thirty tissue samples (i.e., the glioma dataset) which

are publicly available from GEO GSE42656. Of the thirty tissue samples, sixteen samples

are of healthy tissue, while fourteen are of diseased samples of low-grade gliomas.

Using the glioma dataset in Figure 3.1, one question of interest to address is: “What

is the difference between the healthy and the diseased groups?”. Chapter 2 highlighted the

use of a computational and bioinformatic approach that involved the analysis of both the

betweenness centrality and differential expression on the murine dataset (defined in Section

2.2) to identify Etv5 as an essential gene in the development of optic glioma. In that con-

text, the term essential was defined as a way to identify genes that met two threshold criteria

based on the betweenness centrality measure. In particular,

Definition. Let M and M ′ be two networks with identical topology (i.e., with the same

nodes and edges connecting the nodes), but different edge-weights, and let T1 and T2 be two
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pre-determined threshold values. A node vi is defined as essentially different if:

CM
B (vi)

CM ′
B (vi)

> T1, and CM
B (vi) > T2 (3.1)

where CM
B (vi) and CM ′

B (vi) are the betweenness centrality values of node vi in networks M

and M ′, respectively.

A discussion on how the threshold values T1 and T2 can be determined is provided in

Section 3.4. Additional details are provided by Pan et al. (2018).

Although Etv5 was experimentally validated as a regulator (i.e., a gene involved in

controlling the expression of one or more genes) essential to the structure of diseased tissue

in the murine dataset (Chapter 2 and Pan et al. (2018)), an important question to consider

is: “Would the same gene have been identified had a different sample of healthy and dis-

eased tissues been collected?” Thus, the motivation of this chapter is to develop an analytic

framework to gauge the robustness of the betweenness centrality as a method for identifying

key regulators and provide computational validation when experimental validation is not

possible. The glioma dataset is used to assess the variability of the procedure.
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Figure 3.1. A heat map showing the gene expression from the glioma
dataset. Each horizontal row represents one gene, while each column
represents a distinct sample. The sixteen samples on the left are from
healthy tissues, while the fourteen samples on the right are from diseased
tissues. The colors indicate gene expression levels.

3.2 VARIABILITY IN BETWEENNESS CENTRALITY

Because an experiment can be thought of as a sample of observations from a larger

population, a network constructed from the RNA expression data is an estimate of the

population network, defined as a theoretical construct given by gene expression data on all

possible samples in a population of interest.
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Figure 3.2. Two structurally identical weighted networks, true
(left) and observed (right), with nodes V = {1, 2, 3, 4, 5} and edges
E = {e1,2, e1,3, e2,3, e2,5, e3,4, e3,5, e4,5}, but differing edge-weights. The
betweenness values for the nodes in the true network are provided in the
table at left, while the betweenness values for the nodes in the observed
network are provided in the table at right.

Node vi CB(vi) Parameter

1 0

2 1.5

3 .5

4 0

5 1.5

Node vi CB(vi) Statistic

1 0.25

2 0

3 3

4 0

5 0

Figure 3.2 (left) provides an example of the betweenness centrality values of a small,

hypothetical population network. Recall the definition of the betweenness centrality of node

vi ∈ V :

CB(vi) =
∑

j 6=k 6=i
σvj,vk (vi)

σvj,vk

where vj, vk ∈ V , σvj ,vk is the total number of shortest paths from node vj to node vk, and
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σvj ,vk(vi) is the number of those paths that pass through vi.

Using the partial ranking provided by the betweenness centrality, nodes 2 and 5 lie

on an equally large fraction of shortest paths in the network. Yet, consider Figure 3.2

(right), which is a perturbation of the population network representing the observed network

based on sample data. Although both networks have identical topology, their difference in

edge-weights results in different betweenness centrality values. This example motivates the

following question: “How robust is betweenness centrality to sampling variability?”

A variety of network centrality measures, some in combination with other biological

information, have been used to identify genes that are important in the development of

a disease, where examples of such studies include Breitkreutz et al. (2012); Mistry et al.

(2017); Ramadan et al. (2016); Zhang et al. (2013). The potential impact of the work in

this chapter, coupled with the previously posed questions, point to a need for a theoretical

framework to understand the variability of centrality measures in biological networks. Some

work has already been done in this direction.

In Segarra and Ribeiro (2016), the authors provide formal definitions of stability and

continuity for centrality measures in weighted networks. They show that betweenness cen-

trality is unstable according to their definition, and propose an alternative stable definition

of betweenness. Additional details of the stable betweenness centrality measure (Segarra

and Ribeiro, 2016) is provided in Chapter 4.

Epskamp et al. (2017) take a statistical approach, discussing the stability of centrality

rankings in terms of how the rankings can change with fewer observations. They also describe

how to test whether differences in centrality measures between groups are significant by

introducing a bootstrapped difference test for centrality measures. The proposed methods
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are applied to a psychological network.

3.3 ANALYTIC FRAMEWORK

3.3.1 Notations and Definitions

To put the discussion in a statistical context, the betweenness network centrality mea-

sure will be considered as a parameter describing a ‘population network’ derived from the

entire population of, for example, tumor patients of interest.

Definition. A parameter is a numerical summary value of the population from which data

are obtained.

As in Chapter 2, recall that the topology, or structure of the network, is fixed: all

of the networks in the collection have the same nodes and edges connecting the nodes. A

particular weighted network from a collection, say, of tumor patients, can be characterized

by the centrality measures of its set of nodes. In other words, the centrality measure of each

node is a parameter of this family of networks. Given the theoretical assumption that one

weighted network represents all possible “healthy” tissue, and another represents all possible

“diseased” tissue, the value of the parameter representing the centrality of a particular node

might distinguish between healthy and diseased tissue.

The weights on the network edges are assigned using correlations between expression

levels of each gene represented as a node, where additional details on the construction of

the edge-weights are provided in Section 3.3.2. The theoretical networks have edge-weights

determined by the “true” correlations between the genes (i.e., the correlations determined
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using all possible instances of “healthy” or “diseased” tissue). Because, in practice, the edge-

weights are assigned using correlations between relatively few samples, only an estimate of

the true centrality measure of each node can be obtained. In other words, the estimated

centrality is a statistic that is the best estimate of the true centrality parameter.

Definition. A statistic is a numerical summary value of a sample from the population.

In what follows in Section 3.3.3, a confidence interval methodology is proposed to

analyze the variability of the betweenness statistic to identify genes that are essentially

different (refer to Equation (3.1)) in diseased tissue. In particular, two methods to perturb

edge-weights are used to analyze the measure’s variability.

3.3.2 Correlation Measures

As mentioned in Chapter 2, the edge-weight wj,k between nodes vj and vk in a biological

network can be defined using correlation,

wj,k = 1− |ρ(vj, vk)| (3.2)

where ρ(vj, vk) is the correlation between the measurements of the expression of genes vj

and vk. Since ρ(vj, vk) is in [-1,1], the edge-weight wj,k is in [0,1]. When a pair of genes or

proteins are perfectly correlated, the edge-weight between the corresponding nodes is 0. If

two measurements are highly correlated, the weight on the edge between the corresponding

nodes is small, increasing the possibility of the pair of nodes lying on a shortest path.

30



For the networks utilized in the confidence interval methodology (Section 3.3.3), the

edge-weights are defined using Equation (3.2), where ρ(vj, vk) is the minimum of the Pearson

and Spearman-rank correlations between the RNA expression levels of gene vj and gene vk.

The Pearson correlation measures the extent of the linear association between the

data on two nodes vj and vk, and is defined as

ρP (vj, vk) =
∑n

i=1(xij−x̄j)(xik−x̄k)√∑n
i=1(xij−x̄j)2

√∑n
i=1(xik−x̄k)2

where xij and xik are the ith observation of the expression level on genes or nodes vj and vk,

respectively.

The Spearman-rank correlation measures the extent of monotonicity between the

ranked data on two nodes vj and vk, and is defined as the Pearson correlation coefficient of

the ranked (i.e., sorted from largest to smallest) observations for each node.

3.3.3 Confidence Interval Methodology

Suppose two weighted networks are constructed, one from a group of healthy tissue

samples (i.e., the Normal network) and the other from a group of diseased tissue samples (i.e.,

the Tumor network). Assume that the structure of the networks describe the interactions

between genes or proteins, represented as nodes, as their topology is based upon knowledge

of the particular tissue being sampled. Furthermore, although both the Normal and Tu-

mor networks are structurally identical, their edge-weights differ as they are determined by

calculating correlations from data using Equation (3.2).

After identifying genes whose roles are substantially different by comparing healthy
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and diseased states, and those that are essential to the Tumor network, the variability of

the betweenness values of these genes is analyzed by perturbing the edge-weights of the

original Normal and Tumor networks. In particular, two separate perturbation methods,

non-parametric bootstrapping and the addition random noise to the gene-gene pair correla-

tion values, are used in the analysis of the variability of the betweenness difference statistic

around the betweenness difference parameter. Refer to Section 3.3.4 for additional details

on each perturbation method.

Definition. The betweenness difference parameter of gene vi is defined as the difference

in Tumor and Normal log betweenness values of gene vi from the population network:

DCB(vi) = log(CBTumor
(vi))− log(CBNormal

(vi)) (3.3)

Algorithm 4 details the procedure for analyzing the variability of the betweenness dif-

ference statistic through confidence intervals. Recall that genes are considered “essentially

different” if they meet two threshold criteria based on the betweenness centrality measure

(refer to Equation (3.1)). Genes are defined as “significantly different” if they possess sta-

tistically significant betweenness confidence interval(s).

Although the methodology detailed in Algorithm 4 may be applied to other centrality

measures, the betweenness measure is selected in this context as the best for distinguishing

between the Normal and Tumor networks, as its large range of values leads to a clear distinc-

tion between the two networks. Refer to Figures 2.1 and 2.2 for an example of a comparison
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Algorithm 4 Confidence interval method

1. Obtain the pre-determined list of essentially different genes identified using thresholds
on betweenness values for both Tumor and Normal networks. Refer to Equation (3.1) for
the formal definition of “essentially different”.

2. Define the betweenness difference statistic of an essentially different gene vi for the
original Tumor and Normal networks as

D̂CB(vi) = log
(
ĈBTumor

(vi)
)
− log

(
ĈBNormal

(vi)
)

for each of the essentially different genes.

3. Generate 100 simulated Tumor networks and 100 simulated Normal networks.

4. Define the betweenness difference statistic of an essentially different gene vi from each
of the 100 simulated networks as

D̃CB(vi) = log
(
C̃BTumor

(vi)
)
− log

(
C̃BNormal

(vi)
)

for each of the essentially different genes.

5. Construct 95% confidence intervals (CI) for the betweenness difference parameter of
an essentially different gene vi, DCB(vi), where

CI = D̂CB(vi)± 2σD̃CB(vi)

such that σD̃CB(vi)
is the standard error of D̃CB(vi).

6. Classify an essentially different gene as significantly different if its confidence interval
excludes 0.
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of the betweenness and closeness measures applied to two identically structured networks

generated from the murine dataset.

For Steps 2 and 4 in Algorithm 4, the log transformation is applied to the betweenness

difference statistic in order to reduce the variability of the betweenness measure. Figure 2.1

highlights the variability of the betweenness measure.

Additionally, if an essentially different gene’s confidence interval includes zero, no con-

clusions can be made about the value of the true betweenness ratio. However, essentially

different genes whose confidence intervals exclude zero, as specified in Step 6 of Algorithm

4, are considered statistically different in the Tumor network as compared to the Normal

network among the genes previously identified as essentially different from Step 1. Note

that intervals which do not contain zero necessarily have only positive values due to the

thresholds, which define essential genes.

3.3.4 Edge-Weight Perturbation Methods

Two perturbation methods, which produce variability in the edge-weights of the net-

work differently, are used to simulate the distribution of the betweenness difference statistic.

The two perturbation methods are discussed below.

Non-parametric Bootstrapping

Non-parametric bootstrapping is a general resampling technique that constructs a sam-

pling distribution for a bootstrap statistic by resampling the data with replacement, thereby

allowing duplicate selections in each sample. Bootstrapping generally follows three steps of

(1) resampling a dataset with replacement, (2) calculating the statistic for each of the boot-
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strapped samples, and (3) estimating the standard error for the bootstrap statistic using the

standard deviation of the bootstrapped statistics.

Random Noise Using the Standard Error of Correlation

Given a bivariate normal distribution of samples, the standard error of the Pearson

correlation SE(ρ) is:

SE(ρ) =
√

1−ρ2
Ns−2

(3.4)

where ρ is the correlation between two nodes (i.e., genes) in a biological network, and Ns is

the number of samples in the dataset used to calculate the correlation.

Using Equation (3.4), the theoretical standard error of the correlation for each gene-

gene pair is calculated and used to generate the noise added to the correlation values. In

general, adding noise using the theoretical standard error allows for network perturbations to

remain within the typical theoretical sampling variation given by the estimated correlations.

As the simulated noise must be both consistent with the data and constrain the correlations

in [-1,1], the noise is generated from a truncated normal distribution centered at the original

correlation value with standard deviation equal to standard error of correlation provided in

Equation (3.4).

3.4 APPLICATION

Although the methodology detailed in Algorithm 4 may be generalized to a variety of

networks and centrality measures, the variability of betweenness on a specific gene regulatory

network is illustrated in the following application. As was utilized in the application in
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Chapter 2, a previously constructed glioma regulatory network inferred from the human

dataset was used as the base network. While the glioma network is publicly available as a

supplement to Pan et al. (2018), refer to Section 2.2 for a more detailed discussion on its

construction by Margolin et al. (2006).

Using the glioma regulatory network as a base network, the glioma dataset is used to

create two separate weighted networks, one based on each of the healthy (i.e., the Normal

network) and diseased (i.e., the Tumor network) sets of samples. The diseased group consists

of fourteen pilocytic astrocytoma samples, a type of low-grade glioma. The healthy group

consists of sixteen samples from healthy brain tissue. These two datasets were chosen because

they contain healthy (non-neoplastic) tissue for comparison, and allow for comparisons to

previously generated low-grade mouse glioma (Pan et al., 2018). Figure 3.1 illustrates the

two datasets as side-by-side heat maps. While the networks corresponding to both groups

have a fixed and identical structure (i.e., the same nodes and edges connecting the nodes),

the weights on their edges differ. As was done in Chapter 2, genes that were not identified

in one of the groups were removed from both the Normal and Tumor networks.

Following the procedure detailed in Algorithm 3 in Section 2.4, the set of essentially

different genes is obtained based upon the Normal and Tumor networks constructed from the

glioma dataset and is listed in Table 3.1. The set of essentially different genes was obtained

using thresholds of a betweenness value at least 1.5 times as large in the Tumor network

relative to the Normal network, along with a Tumor betweenness value greater than 950,000.

The variability of the betweenness difference statistic to identify the set of essentially

different genes (see Table 3.1) is analyzed through the two perturbation approaches on the

edge-weights: non-parametric bootstrapping (Section 3.4.1) and the addition of noise to
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correlation values (Section 3.4.2). Using each perturbation method separately, 100 simulated

Normal and 100 simulated Tumor networks are generated. The betweenness value of each of

the essentially different genes listed in Table 3.1 is calculated from each of the 100 simulated

Normal and Tumor networks generated by each perturbation method, and the collection

of the betweenness values is used to generate a distribution of the betweenness difference

statistic for each essentially different gene.

To justify the threshold values used to identify the set of essentially different genes,

consider Figures 3.3 and 3.4, along with the formal definition of “accuracy”:

accuracy =
# significantly different and essentially different

# essentially different
(3.5)

The plots in Figure 3.3 and 3.4 are generated as follows: Algorithm 4 is applied using each

threshold value on the xy-plane: (C̃BTumor
/C̃BNormal

, C̃BTumor
/100000). For each perturbation

method, 100 simulated Normal and Tumor networks are generated. The results of Algorithm

4 are two sets of genes: a set of essentially different genes and a set of significantly different

genes. Using these two sets of genes, the accuracy at each threshold value is calculated

according to Equation (3.5). The accuracy value is multiplied by 100 to give the percent ac-

curate, which determines the height of the graph at the given point (i.e., the pair of threshold

values) on the xy-plane. Additional justification for the particular threshold values used to

determine the sets of essentially different genes is provided in Durón et al. (2018).
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Figure 3.3. The identification accuracy of essential different genes (see
Equation (3.5)) associated with non-parametric bootstrapping.

Figure 3.4. The identification accuracy of essential different genes
(see Equation (3.5)) associated with the addition of random noise to
the correlation values. In particular, noise from a truncated normal
distribution centered at ρ with standard deviation given by Equation
(3.4) is added to each initial correlation value, ρ.
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Furthermore, in order to measure the consistency of the method for identifying essen-

tially different genes as compared to the significance obtained through confidence intervals,

the list of genes identified as essentially different is compared to the list of those identified

as significantly different. Particular interest lies in the genes which are originally identified

by their high betweenness centrality (i.e., the essentially different genes listed in Table 3.1),

which are then also identified as significantly different across the simulated Normal and Tu-

mor networks using the confidence interval method.

Table 3.1. The set of essentially different genes vi identified using
only thresholds on betweenness centrality. Recall that ĈBTumor

(vi) and

ĈBNormal
(vi) are the Tumor and Normal betweenness value, respectively,

of the genes in the original Normal and Tumor networks.

Essentially Different Gene vi ĈBNormal
(vi) ĈBTumor

(vi) ĈBTumor
(vi)/ĈBNormal

(vi)

Cebpb 170000 1130000 6.65

Olig1 101000 1380000 13.7

Sox8 203000 1250000 6.16

Sp100 18700 1120000 59.9

Thra 80600 1550000 19.2

3.4.1 Perturbation with Non-Parametric Bootstrapping

By resampling with replacement of fourteen and sixteen samples from the diseased

and healthy datasets, 100 bootstrapped Normal and 100 bootstrapped Tumor networks are

generated. By applying the confidence interval procedure in Algorithm 4 to samples gener-

ated by non-parametric bootstrapping, the highest achievable level of accuracy is 80%, as
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supported by Figure 3.3. The results of the bootstrapping perturbation method are listed

in Table 3.2. Of the five essentially different genes listed in Table 3.1, only four genes have

confidence intervals that exclude zero.

Table 3.2. The set of statistically different genes vi identified
through the proposed confidence interval method in Algorithm 4
using non-parametric bootstrapping. Recall that D̂CB(vi) is the
difference in Tumor and Normal log betweenness values of gene

vi from the original networks, and ¯̃DCB(vi) and σD̃CB(vi)
are the

mean and standard deviation of the difference in Tumor and Normal
log betweenness values of gene vi of the simulated networks, respectively.

Statistically Different Gene vi D̂CB(vi)
¯̃DCB(vi) σD̃CB(vi)

95% Confidence Interval

Olig1 2.61471 1.9240 0.811 (0.993, 4.2367)

Sox8 1.81769 1.5084 0.861 (0.095, 3.5404)

Sp100 4.09251 2.9666 1.326 (1.440, 6.7451)

Thra 2.95650 2.1650 1.140 (0.676, 5.2370)

The sampling distribution of betweenness for the set of statistically different genes

identified through Algorithm 4 using non-parametric bootstrapping are depicted in Figure

3.5. Although an obvious distinction between the Normal (left) and Tumor (right) between-

ness distributions is their shape, note that the mean of the betweenness distributions in the

Tumor network is larger than those of the Normal network. Additionally, the large scale of

the Tumor betweenness, as compared to the Normal betweenness, should not be surprising,

as the genes of interest were the ones which possessed a larger Tumor than Normal between-

ness.
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Figure 3.5. The sampling distribution of betweenness of the four
statistically different genes in both the Normal (left) and Tumor (right)
networks generated by non-parametric bootstrapping.

3.4.2 Perturbation with Random Noise Using the Standard Error of Correlation

By adding noise from a truncated normal distribution to the correlation value of each

gene-gene pair, 100 simulated Normal and 100 simulated Tumor networks are generated. By

applying the confidence interval procedure in Algorithm 4 to samples generated by adding

noise to the correlation values, the highest achievable level of accuracy is 100%, as supported

by Figure 3.4. The results of the random noise perturbation method are listed in Table 3.3.

In particular, all of the five essentially different genes listed in Table 3.1 have confidence

intervals that exclude zero.
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Table 3.3. The set of statistically different genes identified through
the proposed confidence interval method in Algorithm 4 by adding ran-
dom noise from a truncated normal distribution to the correlation values.

Statistically Different Gene vi D̂CB(vi)
¯̃DCB(vi) σD̃CB(vi)

95% Confidence Interval

Cebpb 1.89417 1.9276 0.791 (0.3114, 3.477)

Olig1 2.61471 2.2570 0.961 (0.6929, 4.537)

Sox8 1.81769 2.2344 0.680 (0.4567, 3.179)

Sp100 4.09251 3.2332 0.795 (2.5019, 5.683)

Thra 2.95650 2.4985 0.659 (1.6385, 4.274)

The sampling distribution of betweenness for the set of statistically different genes

identified through Algorithm 4 by adding random noise to the correlation values are de-

picted in Figure 3.6. The distinctions identified between the Normal and Tumor sampling

distributions in Figure 3.5 are also identified between the distributions depicted in Figure

3.6. But unlike the sampling distributions determined by bootstrapping, there exists more

variability in the distributions determined by adding random noise.
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Figure 3.6. The sampling distribution of betweenness of the five
statistically different genes in both the Normal (left) and Tumor (right)
networks generated by adding random noise to the correlation values.

3.5 CONCLUSION

In the application, two separate weighted networks are generated based upon the glioma

dataset, where the edge-weights are assigned using correlations between gene-gene measure-

ments. The glioma dataset was selected because: (1) the availability of non-tumor healthy

(i.e., normal) tissue samples, and (2) a previous study by Pan et al. (2018) which focused

on low-grade gliomas from the murine dataset.

As highlighted in Chapter 2, the betweenness centrality measure can be used to identify

a set of essentially different genes whose role substantially changes in the comparison of

healthy to diseased states. But if a different sample of tissues had been collected, and the
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methodology in Chapter 2 repeated, would the betweenness measure identify the same set of

genes? To address this question concerning the variability of the betweenness statistic in the

comparison of two networks, a theoretical framework was proposed to construct confidence

intervals on the estimated betweenness difference measures. If an essentially different gene

had a confidence interval that excluded zero, then the gene was determined to be statistically

different across the Tumor and Normal networks.

Two separate edge-weight perturbation methods, non-parametric bootstrapping and

the addition of random noise to correlation values, were used to simulate the distribution

of the betweenness difference measure. Although both perturbation methods confirmed four

of the five essentially different genes as statistically different, the fifth gene was identified

only through the addition of random noise. While it is important to note that the proposed

confidence interval procedure relies on a fixed structure of the given network, any relevant

base network can be used. In this application, the base network is a gene regulatory network

previously constructed by Margolin et al. (2006) from the human dataset. The results of the

proposed framework, assessed with two separate edge-weight perturbation methods, suggest

a general robustness of betweenness centrality when used as a method for identifying genes

essential to the structure of diseased tissue. Yet, a question that will be addressed in Chapter

6 is whether the variability in the betweenness sampling distributions depicted in Figures 3.5

and 3.6 is a result of the glioma dataset, or more suggestive of measure’s inherent variability.

In previous work, Pan et al. (2018) uses thresholding to find essential genes (i.e.,

genes that are essentially different in comparing networks derived from diseased samples

as compared to networks from healthy samples) which were then experimentally validated.

The proposed confidence interval procedure in Algorithm 4 provides an alternative way for
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validating the set of essentially different genes and allows for computational validation in

situations where experiments are not feasible. In particular, genes that are both essentially

different and significantly different across the two networks are identified using the aforemen-

tioned perturbation methods. Furthermore, the proposed confidence interval methodology

has applications to any fixed network structure with edge-weights that vary across condi-

tions. In some situations, the genes whose centrality is repressed in the diseased group may

need to be identified. This can be accomplished using the proposed methodology, with the

roles of CBTumor
and CBNormal

reversed. Finally, the official publication of the work detailed

in this chapter may be found in Durón et al. (2018).
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CHAPTER 4

THE STABLE BETWEENNESS CENTRALITY MEASURE

4.1 INTRODUCTION

As centrality measures are utilized in the analysis of biological networks to identify

genes critical to the functioning of diseases, with some examples including Breitkreutz et al.

(2012); Mistry et al. (2017); Ramadan et al. (2016); Zhang et al. (2013), it is important to

consider the natural variability of these measures associated with experimental data. Recall

the betweenness centrality of node vi ∈ V :

CB(vi) =
∑

j 6=k 6=i
σvj,vk (vi)

σvj,vk

where vj, vk ∈ V , σvj ,vk is the total number of shortest paths from node vj to node vk, and

σvj ,vk(vi) is the number of those paths that pass through vi.

A centrality measure is considered stable, according to Segarra and Ribeiro (2016),

based upon its ability “ to be robust to noise in the network data”. According to their

definition, how stable is the betweenness centrality? Would a small perturbation to the

edge-weights in a network result in a “large” change to the betweenness centrality of a node?

Although the variability of the betweenness measure was briefly discussed in Section

3.2, to begin a more detailed examination of the measure’s sensitivity to edge-weight pertur-

bations, consider the weighted and undirected network G = (V,E) in Figure 4.1 with nodes

V = {1, 2, 3, 4, 5, 6} and edges E = {e1,2, e1,3, e1,4, e1,5, e1,6, e2,3, e3,4, e4,5} with corresponding

edge-weights {1, 1 − ε, 1 − ε, 1, 1, 1, 1, 1} for ε = 0.0001. The betweenness centrality of each
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node in network G is listed in Table 4.1. Because node 1 is part of the unique shortest path

between node pairs {(2, 4), (2, 5), (2, 6), (3, 5), (3, 6), (4, 6), (5, 6)}, its betweenness centrality

is CG
B (1) = 7.

To highlight the variability of the betweenness measure, assign edges e1,3 and e1,4 to

have weights both equal to 1.0001. In this instance, instead of subtracting ε from 1 as in

network G, ε = 0.0001 is now added to 1. This perturbed network, G′, depicted in Figure

4.2, is identical in structure to network G with the exception of the two increased weights on

edges e1,3 and e1,4. The betweenness centrality of each node in network G′ is listed in Table

4.2. Because node 1 is no longer an intermediate node on the shortest path between node

pairs {(2, 4), (3, 5)}, its betweenness centrality decreases to CG′
B (1) = 5.

If the betweenness centrality measure is used in the analysis of networks to identify

drug-targets, the sensitivity of this centrality measure to small perturbations in edge-weights

is concerning. This motivates the need for an alternative definition of the betweenness

centrality to be a measure that is robust to edge-weight perturbations.
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Figure 4.1. Let G be a weighted and undirected network with nodes
V = {1, 2, 3, 4, 5, 6} and edges E = {e1,2, e1,3, e1,4, e1,5, e1,6, e2,3, e3,4, e4,5}
with corresponding edge-weights {1, 0.9999, 0.9999, 1, 1, 1, 1, 1}.

Table 4.1. The betweenness value of each node in the weighted and
undirected network G in Figure 4.1.

Node vi CG
B (vi)

1 7.0

2 0.0

3 0.0

4 0.0

5 0.0

6 0.0
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Figure 4.2. Let G′ be an weighted and undirected network with nodes
V = {1, 2, 3, 4, 5, 6} and edges E = {e1,2, e1,3, e1,4, e1,5, e1,6, e2,3, e3,4, e4,5}
with corresponding edge-weights {1, 1.0001, 1.0001, 1, 1, 1, 1, 1}.

Table 4.2. The betweenness value of each node in the weighted and
undirected network G′ in Figure 4.2.

Node vi CG′
B (vi)

1 5.0

2 0.0

3 1.0

4 1.0

5 0.0

6 0.0
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4.2 STABLE BETWEENNESS CENTRALITY MEASURE

4.2.1 Stability Definition

Define X as the space of networks on N nodes.

Definition. A centrality measure C : V → R is stable, as defined by Segarra and Ribeiro

(2016), if for every node set V and any two networks with N nodes, M,M ′ ∈ X , there exists

a finite, nonzero constant K such that for every node vi ∈ V

|CM(vi)− CM ′(vi)| ≤ Kd(M,M ′) (4.1)

where CM(vi) and CM ′(vi) are the centrality values of node vi in networks M and M ′,

respectively, and d : V 2 × V 2 → R+ is the distance metric defined as

d(M,M ′) =
∑
j,k∈|V |

|wM(ej,k)− wM ′(ej,k)| (4.2)

for weights wM and wM ′ on the edge ej,k between nodes vj and vk in networks M and M ′,

respectively.

The stability definition in Equation (4.1) states that a centrality measure is stable if

the difference in centrality values for a given node in two different networks is bounded by a

constant K times the distance between these networks.

Recall network G and G′ in Figures 4.1 and 4.2. The distance between networks G
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and G′ for node 1 equals 4ε:

d(G,G′) =
∑
j,k∈|V |

|wG(ej,k)− wG′(ej,k)|

= 0 + 0.0002 + 0.0002 + 0 + 0 + 0 + 0 + 0

= 0.0004

d(G,G′) = 4ε

whereas the difference in centrality values for node 1 equals 2:

|CG
B (1)− CG′

B (1)| = 7− 5 = 2

For any constant K in Equation (4.1), there will always exist a small enough ε > 0

such that the ratio

|CG
B (1)− CG′

B (1)|
d(G,G′)

=
2

4ε

will be larger than the proposed K. Therefore, a constant K does not exist and the be-

tweenness centrality CB, as defined in Equation (1.1), is not stable. This instability of CB

motivates the definition of the stable betweenness centrality measure, CSB, as constructed

by Segarra and Ribeiro (2016).

4.2.2 Definition of Stable Betweenness

Given an arbitrary network M of N nodes with weight function wM and a node vi ∈ V ,

define network M−i to be identical in structure to network M , with the exception that the
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edges containing node vi are eliminated. Refer to Chapter 1 for the definitions of a shortest

path Ps(vj, vk) and its length s(vj, vk).

Definition. The stable betweenness centrality of node vi ∈ V , as defined by Segarra and

Ribeiro (2016), is given by :

CSB(vi) =
∑

j 6=k 6=i sM−i(vj, vk)− sM(vj, vk) (4.3)

where vi, vj, vk ∈ V , and sM(vj, vk), sM−i(vj, vk) are the lengths of the shortest path(s)

between nodes vj and vk in networks M,M−i respectively.

While both the betweenness and stable betweenness centrality measures place im-

portance on whether shortest paths contain a node, the stable betweenness measure also

considers the impact of the node on the lengths of the shortest paths. In particular, the

stable betweenness definition states that, if the shortest path between nodes vj and vk pass

through node vi, then removing node vi would necessarily result in a longer “shortest” path

between nodes vj and vk. But the power of the definition of this centrality measure CSB is its

stability, as defined in Equation (4.1), where K can be shown to be at most 2(N−1)(N−2).

For a formal proof of the stability of CSB, refer to Segarra and Ribeiro (2016).

4.3 APPLICATION OF STABLE BETWEENNESS CENTRALITY MEA-

SURE

The length of all the shortest paths between each pair of nodes in the weighted and

undirected network G from Figure 4.1 is below, where the ij-th entry in the symmetric
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matrix corresponds to the length of the shortest path.

1 2 3 4 5 6



0.0000 1.0000 0.9999 0.9999 1.0000 1.0000 1

1.0000 0.0000 1.0000 1.9999 2.0000 2.0000 2

0.9999 1.0000 0.0000 1.0000 1.9999 1.9999 3

0.9999 1.9999 1.0000 0.0000 1.0000 1.9999 4

1.0000 2.0000 1.9999 1.0000 0.0000 2.0000 5

1.0000 2.0000 1.9999 1.9999 2.0000 0.0000 6

A new network G−1, constructed by removing the edges containing node 1 from network

G, is depicted in Figure 4.3. The length of all the shortest paths between each pair of nodes

in network G−1 is provided in the symmetric matrix below:

1 2 3 4 5 6



0 ∞ ∞ ∞ ∞ ∞ 1

∞ 0 1 2 3 ∞ 2

∞ 1 0 1 2 ∞ 3

∞ 2 1 0 1 ∞ 4

∞ 3 2 1 0 ∞ 5

∞ ∞ ∞ ∞ ∞ ∞ 6

The removal of the edges containing node 1 results in the disconnected network G−1,
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Figure 4.3. Let G−1 be the network with nodes V = {1, 2, 3, 4, 5, 6} and
edges E = {e2,3, e3,4, e4,5} with corresponding edge-weights {1, 1, 1}.

causing the lengths of shortest paths between certain node pairs to be infinitely long, an

assignment that follows what is typically done in practice with shortest path calculation

algorithms like Dijkstra (1959). The calculation of the stable betweenness centrality value

for node 1 cannot be computed according to Equation (4.3) due to these infinity long paths,

motivating a need to extend Segarra’s stable betweenness centrality measure to one that is

finitely defined for both connected and disconnected networks.

4.4 FINITE STABLE BETWEENNESS CENTRALITY MEASURE

Definition. The finite stable betweenness centrality of node vi ∈ V in a connected

network M is given by:

CFSB(vi) =
∑
j 6=i 6=k

sM−i(vj, vk)− sM(vj, vk) (4.4)
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where

sM−i(vj, vk) =


sM−i(vj, vk), if vj and vk are connected in M−i

∑
j,k∈|V |wM(ej,k), if vj and vk are disconnected in M−i

(4.5)

where vi, vj, vk ∈ V , and sM(vj, vk), sM−i(vj, vk) are the lengths of the shortest path(s)

between nodes vj and vk in networks M,M−i respectively.

The finite stable betweenness definition follows the same idea of the stable betweenness

definition (Segarra and Ribeiro, 2016) in that if the shortest path between nodes vj and vk

pass through node vi, then removing node vi results in a longer “shortest” path between

nodes vj and vk. But unlike the definition of Segarra and Ribeiro (2016), the finite stable

betweenness measure is now defined for networks that become disconnected in the process

of computing the stable betweenness. Provided that network M is connected, then following

the definition of finite stable betweenness, should a path between two nodes in network

M−i not exist, thereby implying that network M−i is disconnected, then the length of the

“shortest” path equals the sum of all the edge-weights in network M . Furthermore, the finite

stable betweenness centrality measure CFSB is stable as defined in Equation (4.1), where K

can be shown to be at most 2(N − 1)(N − 2).

4.5 PROOF OF STABILITY FOR FINITE STABLE BETWEENNESS CEN-

TRALITY MEASURE

Following the proof by Segarra and Ribeiro (2016), given a node set V with |V | = N

nodes, a finite, nonzero constant K must be found such that for any two connected networks
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A = (V,E) and B = (V,E) and weight functions wA and wB, respectively, for every node

vi ∈ V

|CA
FSB(vi)− CB

FSB(vi)| ≤ Kd(A,B) (4.6)

To begin, suppose networks A−i and B−i are created by eliminating the edges con-

taining node vi in networks A and B, respectively. From Equation (4.4) in the definition of

CFSB:

|CA
FSB(vi)− CB

FSB(vi)| =

|
∑
j 6=i 6=k

sA−i(vj, vk)− sA(vj, vk)−
∑
j 6=i 6=k

sB−i(vj, vk)− sB(vj, vk)|

(4.7)

Re-arranging the terms and applying the triangle inequality, Equation (4.7) can be simplified

as

|CA
FSB(vi)− CB

FSB(vi)| = |
∑
j 6=i 6=k

sA−i(vj, vk)− sB−i(vj, vk) +
∑
j 6=i 6=k

sB(vj, vk)− sA(vj, vk)|

≤ |
∑
j 6=i 6=k

sA−i(vj, vk)− sB−i(vj, vk)|+ |
∑
j 6=i 6=k

sB(vj, vk)− sA(vj, vk)|

|CA
FSB(vi)− CB

FSB(vi)| ≤
∑
j 6=i 6=k

|sA−i(vj, vk)− sB−i(vj, vk)|+ |sB(vj, vk)− sA(vj, vk)| (4.8)

Suppose that the shortest path between nodes vj and vk in network A is given by the

path PA
s (vj, vk) = {ej=j0,j1 , ej1,j2 , ..., ejn−1,jn=k}, while the shortest path between nodes vj and

vk in network B is given by the path PB
s (vj, vk) = {ej=k0,k1 , ek1,k2 , ..., ekm−1,km=k}.
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Without loss of generality, assume that the length of the shortest path in network A is

larger than that in network B such that sA(vj, vk) ≥ sB(vj, vk). From the definition of the

length of a shortest path provided in Chapter 1, consider the difference between the lengths

of the shortest paths in networks A and B:

|sA(vj, vk)− sB(vj, vk)| = |
n−1∑
i=0

wA(eji,ji+1
)−

m−1∑
i=0

wB(eki,ki+1
)|

Then the difference between the lengths of the shortest paths in networks A and B is bounded

by the distance between those networks:

|sA(vj, vk)− sB(vj, vk)| ≤ |
m−1∑
i=0

wA(eki,ki+1
)−

m−1∑
i=0

wB(eki,ki+1
)| (4.9)

Replacing the shortest path in network A with any other path, as is done in Equation (4.9),

causes the length of the path between nodes vj and vk in network A to become larger. With a

bit more algebra, the distance between the networks is shown to bound the distance between

the shortest paths:

|sA(vj, vk)− sB(vj, vk)| ≤ |
m−1∑
i=0

wA(eki,ki+1
)−

m−1∑
i=0

wB(eki,ki+1
)|

= |
m−1∑
i=0

wA(eki,ki+1
)− wB(eki,ki+1

)|

≤
m−1∑
i=0

|wA(eki,ki+1
)− wB(eki,ki+1

)|

≤
∑
j,k∈|V |

|wA(ej,k)− wB(ej,k)|

|sA(vj, vk)− sB(vj, vk)| ≤ d(A,B) (4.10)
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Now suppose that networks A−i and B−i are each connected networks such that a path

exists between nodes vj and vk. Applying the result in Equation (4.10) to these networks, it

must hold that

|sA−i(vj, vk)− sB−i(vj, vk)| ≤ d(A−i, B−i) (4.11)

Furthermore, by construction of networks A−i and B−i, then the distance between networks

A and B is necessarily greater than the distance between networks A−i and B−i. To see this,

consider the definition of the distance metric in Equation (4.2):

d(A,B) =
∑
j,k∈|V |

|wA(ej,k)− wB(ej,k)|

=
∑
j,k∈|V |
j 6=i 6=k

|wA(ej,k)− wB(ej,k)|+
∑
j,k∈|V |

i=j or i=k

|wA(ej,k)− wB(ej,k)|

d(A,B) = d(A−i, B−i) +
∑
j,k∈|V |

i=j or i=k

|wA(ej,k)− wB(ej,k)|

which implies that

d(A−i, B−i) ≤ d(A,B) (4.12)

Upon substitution of Equation (4.11) into Equation (4.12), then

|sA−i(vj, vk)− sB−i(vj, vk)| ≤ d(A,B)

Now suppose that nodes vj and vk are disconnected such that a path between the
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node pair does not exist in networks A−i and B−i, respectively. From Equation (4.5) in the

definition of CFSB, then

|sA−i(vj, vk)− sB−i(vj, vk)| = |
∑
j,k∈|V |

wA(ej,k)−
∑
j,k∈|V |

wB(ej,k)|

= |
∑
j,k∈|V |

wA(ej,k)− wB(ej,k)|

≤
∑
j,k∈|V |

|wA(ej,k)− wB(ej,k)|

|sA−i(vj, vk)− sB−i(vj, vk)| ≤ d(A,B)

Thus, regardless of whether networks nodes vj and vk are connected or disconnected

in networks A−i and B−i, it is always true that

|sA−i(vj, vk)− sB−i(vj, vk)| ≤ d(A,B) (4.13)

Upon substitution of Equations (4.10) and (4.13), Equation (4.8) can be simplified:

|CA
FSB(vi)− CB

FSB(vi)| ≤
∑
j 6=i 6=k

|sA−i(vj, vk)− sB−i(vj, vk)|+ |sB(vj, vk)− sA(vj, vk)|

≤
∑
j 6=i 6=k

d(A,B) + d(A,B)

= (N − 1)(N − 2) [d(A,B) + d(A,B)]

|CA
FSB(vi)− CB

FSB(vi)| ≤ 2(N − 1)(N − 2)d(A,B) (4.14)

Therefore, setting K = 2(N −1)(N −2) in Equation (4.14), the expression in Equation (4.1)

is obtained, proving the stability of the finite stable betweenness centrality measure, CFSB

as defined in Equations (4.4) and (4.5).
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4.6 APPLICATION OF FINITE STABLE BETWEENNESS CENTRALITY

MEASURE

Recall the weighted, undirected network G in Figure 4.1. For each node in network

G, the finite stable betweenness centrality value is calculated according to Equations (4.4)

and (4.5), and is listed in Table 4.3. Using CFSB, the finite stable betweenness of node 1 is

CG
FSB(1) = 49.9992.

Table 4.3. The finite stable betweenness value of each node in the
weighted and undirected network G in Figure 4.1.

Node vi CG
FSB(vi)

1 49.9992

2 0

3 0

4 0

5 0

6 0

Recall that network G′, depicted in Figure 4.2, is structurally identical to network G

with the exception of two perturbed edge-weights. The CFSB for each node in network G′ is

listed Table 4.4. In particular, note that CG′
FSB(1) = 50.0012.
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Table 4.4. The finite stable betweenness value of each node in the
weighted and undirected network G′ in Figure 4.2.

Node vi CG′
FSB(vi)

1 50.0012

2 0

3 0.0002

4 0.0002

5 0

6 0

Although perturbations of magnitude ε = 0.0001 are made to two edge-weights, node

1 maintains a centrality value in network G′ approximately equal to its value in network G.

This result suggests that the finite stable betweenness centrality is stable, and a more robust

measure to use in the network analysis and identification of essential nodes given the inherent

variability in data. Furthermore, with the definition of finite stable betweenness CFSB, a

finite centrality value is guaranteed for each node in a network, regardless of whether the

removal of edges containing a particular node results in a connected or disconnected network.
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CHAPTER 5

EXPONENTIAL RANDOM GRAPH MODELS

5.1 INTRODUCTION

An exponential-family random graph model (ERGM) is a general class of models based

in exponential family theory that specify the probability distribution that underlies a set of

random graphs or networks (Handcock et al., 2015). The ERGM models aim to understand

the structure of an observed network through the inclusion of a finite number of network

statistics that are selected to best capture the structural features of the network of interest.

Although Table 5.1 lists commonly used unweighted and weighted network statistics for

undirected networks, additional statistics for directed and undirected networks are specified

elsewhere (Denny et al., 2017; Morris et al., 2008).

Recall that the betweenness centrality captures some global structural properties of a

network. Although more details are provided in Chapter 6, the framework proposed to deter-

mine a distribution of finite stable betweenness (refer to Section 4.4) involves incorporating

the measure into the probability model as a network statistic. But in order to infuse the

measure into the model and properly interpret its distribution, the theoretical underpinnings

of exponential random graph models for unweighted and weighted networks are detailed in

the subsequent sections, with particular attention towards the derivation of each probability

model, and coefficient estimation process for weighted networks.
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Table 5.1. Example of ERGM unweighted and weighted network
statistics for undirected networks that may be included in probability
models.

Network Statistic Unweighted Description Weighted Description

Edges The number of edges The sum of the edge-weights
in the network in the network

Nodes The number of nodes Not currently implemented
in the network as a weighted statistic

Isolates The number of nodes Not currently implemented
in the network with no edges as a weighted statistic

Triangle The number of 3-cycles in the network The sum of the edge-weight product
defined as any edge set {ei,j, ej,k, ek,i} for edge set {ei,j, ej,k, ek,i}

2-Star The number of nodes The sum of the edge-weight product
in the network with 2 edges for nodes with 2 edges

k-Star The number of nodes Not currently implemented
in the network with k edges as a weighted statistic

k-Cycle The number of k-cycles Not currently implemented
in the network as a weighted statistic

k-Degree The number of nodes Not currently implemented
in the network with degree k as a weighted statistic

5.2 PROBABILITY MODEL FOR UNWEIGHTED NETWORK

Define the sample space X to be the set of all possible unweighted networks with N

nodes. Let X be a random variable representing an unweighted network with N nodes.

To estimate the probability model for random variable X as a function of the observed

network x, define ~S(x) = [S1(x), S2(x), ..., Sn(x)]T as a vector of network statistics, where

each statistic can be any function on the observed network. The network statistics vector

quantifies the number of local configurations within an unweighted network, as in Table 5.1.
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Assume that there exists a vector of coefficient estimates ~θ = [θ1, θ2, ..., θn]T ∈ Rn, such that

log
(
P (X = x; ~θ)

)
∝ θ1S1(x) + θ2S2(x) + ...+ θnSn(x) = ~θT ~S(x)

Exponentiating both sides and dividing by a normalizing constant κ(~θ) =∑
z∈X exp{~θT ~S(z)}, the probability model for an weighted network is derived as:

P (X = x; ~θ) =
exp{~θT ~S(x)}∑
z∈X exp{~θT ~S(z)}

, x ∈ {0, 1}(
N
2 ) (5.1)

Equation (5.1) is the general form of the ERGM and describes a probability distribution

on X , the space of all unweighted networks with N nodes. Because Equation (5.1) is based

upon a vector of network configurations, ~S(x), the likelihood of observing each particular

network depends upon the presence or absence of the particular network configurations.

5.3 PROBABILITY MODEL FOR WEIGHTED NETWORKS

The standard definition of an ERGM requires the edges of the observed network to be

unweighted, thereby denoting the presence or absence of an edge. As a result, ERGMs, in

the standard model definition, are unable to model weighted networks.

Two models have been proposed to model weighted networks of N nodes using the

ERGM framework. While each model extends the methodology of ERGMs to weighted net-

works, the method of Krivitsky (2012) concerns networks with integer-valued edge-weights,

while the networks in the approach taken by Desmarais and Cranmer (2012) have edge-

weights that are continuous-valued. Although an overview of the derivation of the probabil-

ity model proposed by Desmarais and Cranmer (2012) is provided, the estimation process
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and the sampling of networks with weights in [0,1] using the Metropolis-Hastings algorithm

are specifically detailed, as the framework proposed to determine a distribution of the be-

tweenness centrality (provided in Section 6.4) utilizes networks solely from this space.

Following the work of Desmarais and Cranmer (2012), the probability distribution

for GERGMs is specified by a joint probability density function fY (y; ~θ) that involves two

steps: (1) specifying a joint distribution that captures the network statistics of interest on a

restricted valued network X, and (2) transforming X onto the sample space of the observed

network Y . Requiring networks to have weights in [0,1] in the first step of the derivation is

needed in order to use the Gibbs sampling algorithm, which is one method for approximating

the normalizing constant. In order to sample networks using the Gibbs sampling algorithm,

networks are drawn from the conditional distribution through the inverse of the cumulative

distribution function method (i.e., the inverse CDF). Additional details of the Gibbs sampling

algorithm and its utilization in the estimation process for networks with continuous-valued

edges are provided by Desmarais and Cranmer (2012).

Define the space of networks as X ∈ {[0, 1]M} to be the set of all possible networks with

N nodes and M edges with weights in [0, 1]. Denote x as the restricted valued network which

has the same nodes as the observed weighted network y, but whose edge-weights are bounded

and continuous between zero and one, xj,k ∈ [0, 1]. Adapting the ERGM probability model

in Equation (5.1) to handle the continuous-valued edges, the probability density function for

the restricted valued network X becomes

fX(x; ~θ) =
exp{~θT ~S(x)}∫

z∈X exp{~θT ~S(z)}dz
, x ∈ [0, 1]M (5.2)
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where ~θ : Rn is the vector of coefficients, and ~S : [0, 1]M → Rn is the vector of network

statistics.

To transform the distribution of the restricted valued network X onto the sample

space of the continuous-valued network Y , a parameterized, one-to-one, monotonically non-

decreasing transformation T−1(·) is applied to the edge ej,k between each pair of distinct

nodes vj, vk ∈ V , such that

Yj,k = T−1
j,k (Xj,k;λj,k) (5.3)

for unknown transformation coefficient ~λ ∈ RM . Note that each edge ej,k of network y,

denoted yj,k, is now defined as a parameterized transformation of the same edge xj,k in the

restricted valued network x.

Since the transformation Yj,k = T−1
j,k (X;λ) is one-to-one for every node pair vj, vk ∈

V , the inverse function exists and is defined as Xj,k = Tj,k(Y ; ~β) for some transformation

coefficient ~β ∈ RM .

Denote J as the Jacobian of the inverse function, X = T (Y, ~β):

J =



∂X1,1
∂Y1,1

. . .
∂X1,1
∂Yj,j

. . .
∂X1,1
∂YN,N

∂X1,2
∂Y1,1

. . .
∂X1,2
∂Yj,j

. . .
∂X1,2
∂YN,N

.

.

.
.
.
.

.

.

. . . .

.

.

.

∂Xj,j
∂Y1,1

. . .
∂Xj,j
∂Yj,j

. . .
∂Xj,j
∂YN,N

.

.

. . . .

.

.

.
.
.
.

.

.

.

∂XN,N
∂Y1,1

. . .
∂XN,N
∂Yj,j

. . .
∂XN,N
∂YN,N


=



∂T1,1(Y ;~β)

∂Y1,1
. . .

∂T1,1(Y ;~β)

∂Yj,j
. . .

∂T1,1(Y ;~β)

∂YN,N

∂T1,2(Y ;~β)

∂Y1,1
. . .

∂T1,2(Y ;~β)

∂Yj,j
. . .

∂T1,2(Y ;~β)

∂YN,N

.

.

.
.
.
.

.

.

. . . .

.

.

.

∂Tj,j(Y ;~β)

∂Y1,1
. . .

∂Tj,j(Y ;~β)

∂Yj,j
. . .

∂Tj,j(Y ;~β)

∂YN,N

.

.

. . . .

.

.

.
.
.
.

.

.

.

∂TN,N (Y ;~β)

∂Y1,1
. . .

∂TN,N (Y ;~β)

∂Yj,j
. . .

∂TN,N (Y ;~β)

∂YN,N



Because T−1 is a monotone, non-decreasing, and one-to-one transformation, the joint
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probability density function of Y can be expressed as

fY (y; ~θ, ~β) = fX(x; ~θ) · |J | = fX

(
T (y; ~β); ~θ

)
· |J | (5.4)

where |J | is the absolute value of the determinant of J .

As the transformation is defined for each distinct node pair vj, vk ∈ V , the Jacobian J

can be simplified to a diagonal matrix,

J =



∂T1,1(Y ;~β)

∂Y1,1
. . . 0 . . . 0

0 . . . 0 . . . 0

...
. . .

... . . .
...

0 . . .
∂Tj,j(Y ;~β)

∂Yj,j
. . . 0

... . . .
...

. . .
...

0 . . . 0 . . .
∂TN,N (Y ;~β)

∂YN,N



(5.5)

so that its determinant is the product of its diagonal entries,

|J | =
N∏
j=1

∂Tj,j(y; ~β)

∂Yj,j
(5.6)

Therefore, using Equations (5.2), (5.4), and (5.6), the probability model for the

GERGM of a weighted network with continuous-valued edges can be written as

fY (y; ~θ, ~β) =
exp{~θT ~S(T (y; ~β))}∫
z∈X exp{~θT ~S(z)}dz

∏
j

tj(y; ~β) (5.7)
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where tj(y; ~β) =
∂Tj,j(y;~β)

∂yj,j
. The vector of network statistics ~S(·) in Equation (5.7) is now

specified on a transformation of the network, rather than on the observed network.

As the framework proposed to determine a distribution on finite stable betweenness

(discussed in Chapter 6) concerns the sample space of all networks of N nodes and M edges

with weights in the interval [0,1], the estimation process of the probability model

fX(x; ~θ) =
exp{~θT ~S(x)}∫

z∈X exp{~θT ~S(z)}dz
, x ∈ [0, 1]M

is discussed below.

5.3.1 Maximum Likelihood Estimation

Given the set of network statistics ~S(·) and an observed network xobs, the value of the

unknown coefficient ~̂θ that maximizes the likelihood of xobs can be determined. From the

probability model fX(xobs; ~θ) in Equation (5.2), define the likelihood function L(~θ|xobs) as

L(~θ|xobs) =
exp{~θT ~S(xobs)}∫

z∈X exp{~θT ~S(z)}dz

Since the logarithm is a monotonically-increasing function of its argument, the value of

the function that maximizes the log-likelihood is the same as the value that maximizes the

likelihood. To simplify the expression for L, it is preferable to estimate the coefficient that

maximizes the likelihood by maximizing the log-likelihood function,

`(~θ|xobs) = log(L(~θ|xobs)) = ~θT ~S(xobs)− log κ(~θ) (5.8)
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where κ(~θ) =
∫
z∈X exp{~θT ~S(z)}dz.

Direct maximization of `(~θ|xobs) provided in Equation (5.8) is computationally diffi-

cult due to the intractability of the normalizing constant κ(~θ). A way around the direct

maximization of `(~θ|xobs) is to, instead, fix an arbitrary coefficient ~̃θ ∈ Rn and maximize the

difference of log-likelihoods `(~θ|xobs)− `(~̃θ|xobs):

`(~θ|xobs)− `(~̃θ|xobs) =
(
~θ − ~̃θ

)T
~S(xobs)− log

(
κ(~θ)

κ(~̃θ)

)
(5.9)

Because the difference of log-likelihoods `(~θ|xobs)− `(~̃θ|xobs) is equivalent to the difference of

the log-likelihood `(~θ|xobs) minus a constant, the direct maximization of Equation (5.9) yields

the same maximum likelihood estimate of ~θ, denoted as ~̂θ, that results from the maximization

of Equation (5.8).

The ratio of normalizing constants may be re-expressed as an expected value,

κ(~θ)

κ(~̃θ)
=

∫
z∈X exp{~θT ~S(z)}dz

κ(~̃θ)

=

∫
z∈X exp{

(
~θ − ~̃θ

)T
~S(z)} exp{~̃θT ~S(z)}dz

κ(~̃θ)

=

∫
z∈X

exp{
(
~θ − ~̃θ

)T
~S(z)}

(
exp{~̃θT ~S(z)}

κ(~̃θ)

)
dz

κ(~θ)

κ(~̃θ)
= E~̃θ

[
exp{

(
~θ − ~̃θ

)T
~S(X)}

]
(5.10)

and substitution of Equation (5.10) into Equation (5.9) allows the difference of log-likelihoods
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`(~θ|xobs)− `(~̃θ|xobs) to be re-expressed:

`(~θ|xobs)− `(~̃θ|xobs) =
(
~θ − ~̃θ

)T
~S(xobs)− log

(
E~̃θ

[
exp{

(
~θ − ~̃θ

)T
~S(X)}

])
(5.11)

In order to maximize Equation (5.11), a Markov Chain Monte Carlo (MCMC) method

is used to approximate E~̃θ

[
exp{

(
~θ − ~̃θ

)T
~S(X)}

]
. A MCMC procedure, such as the

Metropolis-Hastings algorithm, generates a sample of K networks x1, x2, ..., xK from the

probability distribution fX(x; ~̃θ) such that

E~̃θ

[
exp{

(
~θ − ~̃θ

)T
~S(X)}

]
≈ 1

K

K∑
k=1

exp{
(
~θ − ~̃θ

)T
~S(xk)} (5.12)

Exploiting the Law of Large Numbers to approximate the expected value, the maximum

likelihood estimate ~̂θ can be determined from the maximization of `(~θ|xobs)− `(~̃θ|xobs),

~̂θ = argmax~θ

[(
~θ − ~̃θ

)T
~S(xobs)− log

(
1

K

K∑
k=1

exp{
(
~θ − ~̃θ

)T
~S(xk)}

)]
(5.13)

given an arbitrary coefficient ~̃θ.

Stepping Algorithm

To obtain an accurate approximation of the log-likelihood function, the MCMC sam-

pling algorithm must sample networks from a region where the probability mass is concen-

trated (Handcock et al., 2003). Because the mass is concentrated to a small region, the

MCMC sampling algorithm must begin with a coefficient very close to the MLE ~̂θ. In order

to find the best estimate for ~̂θ such that ~̃θ is “close” to ~̂θ (Geyer, 1992), Hummel (2012) intro-
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duces a systematic method for moving ~̃θ closer to ~̂θ to obtain a more accurate approximation

of the log-likelihood function.

In exponential random graph models, the MLE, if it exists, is the coefficient ~̂θ such

that E~θ

[
~S(X)

]
= ~S(xobs) (Hummel, 2012). As a result, the proposed algorithm of Hummel

(2012) suggests taking steps toward the vector of observed network statistics ~S(xobs) by

assigning an intermediate point ζ̂t the role of ~S(xobs), thereby allowing the search for ~̃θ

to reside in a region where the approximation of the log-likelihood function is reasonably

accurate.

The stepping algorithm proposed by Hummel (2012) is detailed in Algorithm 5.

If ζ̂t is in the interior of the convex hull of ~S(x1), ..., ~S(xK) for two consecutive iterations,

the “stepping” portion of Algorithm 5 has converged, and the coefficient ~̃θ is set to the

converged value, ~̃θ = ~θt+1.

Iterative MCMC-MLE Algorithm

Recall that the best estimate for ~̂θ occurs when ~̃θ is “close” to ~̂θ. The stepping algo-

rithm in Algorithm 5 provides the coefficient ~̃θ used to initialize the MCMC-MLE algorithm

that estimates the MLE ~̂θ. An estimate of ~θ(r+1) is obtained by iterating through two steps

in Algorithm 6, where a hill-climbing algorithm is used in the maximization of Step 4.

Metropolis-Hastings Algorithm

The Metropolis-Hastings sampling algorithm, a Markov Chain Monte Carlo method,

is used to generate a sample of networks required in Step 2 of Algorithm 5 and Step 3 of
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Algorithm 5 Estimation of ~̃θ by stepping algorithm

1: Set the iteration number t equal to 0 and select an initial coefficient ~θ0, which is often
taken to be the maximum pseudolikelihood estimate.

2: Use the Metropolis-Hastings in Algorithm 7 to generate a sample of K networks
x1, x2, ..., xK from probability density function fX(x; ~θt) defined as

fX(x; ~θt) =
exp{~θTt ~S(x)}∫

z∈X exp{~θTt ~S(z)}dz
, x ∈ [0, 1]M

3: Calculate the sample mean ζ̄t = 1
K

∑K
k=1

~S(xk).

4: For some γt ∈ (0, 1], define ζ̂t as

ζ̂t = γt~S(xobs) + (1− γt)ζ̄t

5: Update ~θt+1 via

~θt+1 = argmax~θ

[(
~θ − ~θt

)T
ζ̂t − log

(
1

K

K∑
k=1

exp{
(
~θ − ~θt

)T
~S(xk)}

)]

using a hill-climbing algorithm.

6: Increment t and return to Step 2.
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Algorithm 6 Estimation of ~̂θ by iterative MCMC-MLE.

1: Initialize ~θ(0)

2: while 4
(
~θ(r+1), ~θ(r)

)
< tolerance

do
3: Use the Metropolis-Hastings in Algorithm 7 to generate sample of networks

x1, x2, ..., xK from probability density function fX(x; ~θ(r)) defined as

fX(x; ~θ(r)) =
exp{~θT(r)~S(x)}∫

z∈X exp{~θT(r)~S(z)}dz
, x ∈ [0, 1]M

4: Update ~θ(r+1) via

~θ(r+1) = argmax~θ

((
~θ − ~θ(r)

)T
~S(y)− log

(
1

K

K∑
k=1

exp

((
~θ − ~θ(r)

)T
~S(xk)

)))

using a hill-climbing algorithm.
5: end while

Algorithm 6. To implement the sampling algorithm, three aspects need specification: the

target function, proposal function, and acceptance probability.

The target function is the desired stationary distribution for the Markov Chain, which

in this setting, is the GERGM distribution,

fX(x; ~θ) = exp{~θT ~S(x)}∫
z∈X exp{~θT ~S(z)}dz

, x ∈ [0, 1]M

The algorithm generates the next network, xp+1, in the Markov Chain by nominating a

proposal network, x∗p+1, based upon the previously accepted network xp. Formally, define the

proposal distribution as the truncated normal distribution with mean dependent upon the

jk-th edge-weight in network xp, denoted xj,k;p, and fixed variance σ2 as q
(
x∗j,k;p+1|xj,k;p

)
=

TN (xj,k;p, σ
2, 0, 1). A proposal network x∗p+1 is generated after a new weight has been

proposed for each edge. The algorithm produces an irreducible Markov Chain among all
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networks with N nodes and M edges with weights in [0,1], as each proposal network is

accessible with positive transition probability.

Once a proposal network x∗p+1 is generated, the Metropolis-Hastings algorithm will ei-

ther accept the proposal network into the sample, xp+1 = x∗p+1, with probability α
(
xp, x

∗
p+1

)
,

or reject it and re-accept the previously accepted network into the sample, xp+1 = xp. The

acceptance probability α
(
xp, x

∗
p+1

)
ensures proper sampling of the target distribution by

including the probability that transitions from the proposal function may not be symmetric.

The acceptance probability α
(
xp, x

∗
p+1

)
is defined as:

α(xp, x
∗
p+1) = min

(
1,
fX(x∗p+1; ~θ)q

(
xp|x∗p+1

)
fX(xp; ~θ)q

(
x∗p+1|xp

) )

In summary, the Metropolis-Hastings algorithm for GERGMs is listed in Algorithm 7.

74



Algorithm 7 The MCMC procedure of Metropolis-Hastings for GERGMs.

Require: Of K networks, p networks have already been accepted into the sample.

1: Generate a proposal network x∗p+1 by changing the weight xj,k;p, according to

q
(
x∗j,k;p+1|xj,k;p

)
= TN

(
xj,k;p, σ

2, 0, 1
)

independently across all edges.

2: Set the (p+ 1)-st sample

xp+1 =

{
x∗p+1 with probability α

(
xp, x

∗
p+1

)
xp with probability 1− α

(
xp, x

∗
p+1

)
where

α(u, v) = min

(
1,
fX(v; ~θ)

fX(u; ~θ)

∏
j,k

q (uj,k|vj,k)
q (vj,k|uj,k)

)

for probability density function fX(x; ~θ) defined as

fX(x; ~θ) =
exp{~θT ~S(x)}∫

z∈X exp{~θT ~S(z)}dz
, x ∈ [0, 1]M
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CHAPTER 6

PROBABILITY DISTRIBUTIONS

6.1 INTRODUCTION

While there exist many centrality measures to identify influential nodes within biologi-

cal networks, their distributions in a random network remain open-ended. As a step towards

developing a framework to determine the distribution of betweenness centrality, Chapter 2

highlighted the use of the centrality measure in the identification of Etv5 as an essential

gene when comparing networks constructed from diseased and healthy optic glioma sam-

ples. Motivated by the use of centrality measures to identify genes whose role changes as

tissue transitions from a healthy to diseased state, Chapter 3 investigated the variability of

betweenness to identify these essentially different genes through two separate edge-weight

perturbations. Yet, as suggested through the sampling distributions in Figures 3.5 and 3.6

and formally proven in Chapter 4, the betweenness measure, in its standard definition, is

sensitive to edge-weight perturbations, as an arbitrarily small change to its weights produces

large changes in its values. As a result, a finite stable betweenness measure was defined as a

measure robust to edge-weight perturbations and whose distribution will be investigated in

an effort to better understand its variability.

Recall that a parameter is defined as a numerical quantity that characterizes the popu-

lation from which data can be obtained, while a statistic is defined as a numerical quantity

that characterizes a sample from the population. Although more details are provided in

Section 6.3.2, the proposed framework to build a distribution of finite stable betweenness

involves the utilization of the generalized exponential random model (refer to Section 5.3) to
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generate a sample of networks from an underlying probability distribution. After calculating

the finite stable betweenness centrality of a particular node from each network in the sam-

ple, the resulting values are used to construct a sampling distribution for the finite stable

betweenness statistic.

6.2 SAMPLING DISTRIBUTION

A sampling distribution of a statistic is defined as the distribution of the values of the

statistic that are computed on all possible samples taken from the population. Knowing the

sampling distribution may provide information about the reproducibility and accuracy of

the statistic through standard errors (i.e., how much to expect estimates to vary between

experiments), bias (i.e., the expected difference between the estimate and true value) and

confidence intervals (i.e., how close the estimate is to the true value) (Kulesa et al., 2015).

As examples, consider Figures 3.5 and 3.6 which depict the sampling distribution of the

betweenness statistic for each statistically different gene identified in the glioma dataset

through two separate edge-weight perturbation methods.

Although the sampling distribution of a statistic may sometimes be calculated ana-

lytically, a theoretical framework to predict the sampling distribution may be difficult to

develop. In such cases, the bootstrap method builds the sampling distribution empirically

and approximates its shape by simulating replicated samples based upon the observed data

(Kulesa et al., 2015). In Durón et al. (2018), the bootstrap method was employed to generate

an empirical sampling distribution in order to analyze the variability of the betweenness cen-

trality measure in the identification of essential genes. The bootstrap method is summarized

in Section 3.3.4.

77



The generalized exponential random graph model (GERGM) provides a mathematical

model to approximate the sampling distribution of the finite stable betweenness statistic.

Yet, because the variability of the sampling distribution is driven by the variability within the

data, a brief overview of how the inherent variability of the data can influence the sampling

distribution is subsequently provided before detailing the proposed GERGM framework (refer

to Section 6.3.2) used to model one possible distribution of the finite stable betweenness

measure.

6.2.1 Variability in the Data

Inferences about a population are based upon an evaluation of repeated samples taken

from the population and are driven by the variability that exists within the dataset. Re-

call that the topological representation of a network is a collection of nodes and edges. As

discussed in Section 3.3.2, the edge-weights in a weighted network are functions of the corre-

lations between the measurements made on each gene, or node. While the use and analysis of

weighted, correlation-based networks is becoming increasingly prevalent in biological appli-

cations (Yates and Mukhopadhyay, 2013), different weighting schemes can result in different

analyses of the network (Ghosh et al., 2014). Therefore, although the inherent variability

in the dataset drives the variability present in the network, the variability in the data also

influences the variability of the distribution of the sample statistic.
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6.3 THE PROPOSED GERGM FRAMEWORK

6.3.1 Overview of GERGMs

As discussed in Section 5.3, the generalized exponential random graph model

(GERGM) represents a general class of models based in exponential-family theory that

specifies the probability distribution for a set of weighted networks. Within the GERGM

framework, a maximum-likelihood estimate for the coefficient vector ~θ of a specified model

is obtained for a given dataset, where additional networks can then be simulated from the

probability distribution implied by the specified model.

With the sample space of networks X ∈ {[0, 1]M} representing the set of all possible

weighted networks with N nodes and M edges with weights in [0, 1], recall the GERGM

probability density function of a weighted network x ∈ X :

fX(x; ~θ) = K exp{~θT ~S(x)}, x ∈ [0, 1]M (6.1)

where K =
∫
z∈X exp{~θT ~S(z)}dz is a normalizing constant, and ~S(x) is a vector of network

statistics computed on the network x with the same number of elements as the coefficient

vector ~θ (Desmarais and Cranmer, 2012).

Distribution of Networks

Once the coefficients of the GERGM model are estimated, the model is completely

specified and defines a probability distribution on a collection of networks of identical size.

In particular, because the maximum likelihood estimate provides the model with coefficient

specifications that create the highest likelihood of the observed network, the specified dis-
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tribution of networks is centered around the observed network statistics. Therefore, if the

model is a good fit to the network derived from the observed data, then networks drawn

from the GERGM distribution are likely to resemble the observed network.

As an example, consider two networks that are identical with respect to the values of

the network statistics vector ~S(x). The likelihoods of the two networks are identical because,

as specified by the GERGM model, every network that exhibits the same value of network

statistics that are included in the model specification is equally likely to be observed.

6.3.2 Proposed Distributions of the Finite Stable Betweenness Statistic

Because the betweenness centrality captures some global structural properties of a

network, the proposed framework to determine a distribution of finite stable betweenness

(whose definition is provided in Section 4.4) involves incorporating the measure into the

GERGM probability model as a network statistic. Examples of possible specifications for

the finite stable betweenness measure as a network statistic, and thus possible distributions

of the measure, are highlighted below.

To determine one possible model that explicitly specifies the distribution of the finite

stable betweenness centrality, define the network statistic S(x) to equal CFSB(vi), the finite

stable betweenness value of node vi using the definition provided in Equations (4.4) and

(4.5). By letting S(x) = CFSB(vi), the GERGM density function becomes

fX(x; θ) ∝ exp{θ · CFSB(vi)} (6.2)

Thus, the distribution of ĈFSB(vi), the finite stable betweenness statistic of node vi, follows
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an exponential distribution with rate equal to −θ, provided θ < 0.

As another example, let the network statistic S(x) be the square of the dif-

ference between the observed and target finite stable betweenness value of node vi,

(CFSB(vi)− CFSB(vi)
∗)2. Upon letting S(x) = (CFSB(vi)− CFSB(vi)

∗)2, the GERGM spec-

ification becomes

fX(x; θ) ∝ exp{θ (CFSB(vi)− CFSB(vi)
∗)2} (6.3)

In this construction, the statistic ĈFSB(vi) follows a normal distribution with mean and

variance equal to CFSB(vi)
∗ and − 1

2θ
, respectively, provided θ < 0.

Finally, let the network statistics vector ~S(x) be a combination of the finite stable

betweenness statistic and other weighted network statistics, such as two-stars and transitive

triads as depicted in Figure 6.1. Additional weighted network statistics that may be included

in the GERGM probability model are listed in Table 5.1.
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Figure 6.1. Two-stars (left) and transitive triads (right), also referred
to as triangles, are two possible weighted network configurations that
may be included in the network statistic vector ~S(x).

By letting ~S(x) = (CFSB(vi), 2Stars, T triad), the GERGM specification becomes

fX(x; ~θ) ∝ exp{~θT ~S(x)} (6.4)

from which the distribution of ĈFSB(vi) is derived. Note that the distribution of

ĈFSB(vi) depends upon the definition of the vector of network statistics ~S(x) =

(CFSB(vi), 2Stars, T triad) for ~θ = (θ1, θ2, θ3).

6.4 APPLICATION

The GERGM provides a description of the distribution of networks from which a dis-

tribution of finite stable betweenness can be determined. In particular, and as demonstrated

through the examples in Section 6.3.2, the GERGM model allows the distribution of the

finite stable betweenness statistic to be flexible, yet dependent on the definition of the vec-
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tor of network statistics ~S(x). Yet, the variability of the empirical sampling distributions in

Figures 3.5 and 3.6 motivate an important question: Given the variability in the data, is the

variability of finite stable betweenness explained by the GERGM model?

6.4.1 The Noisy Structure Model

To address the question above, the distribution of finite stable betweenness determined

by the GERGM model can be compared to the sampling distribution determined by a model

that generates variability in a realistic manner. One natural way to determine such a distri-

bution is to generate variability by perturbing the edge-weights of a network in a small, yet

intelligent, fashion. A similar approach was taken in Chapter 3 to examine the variability of

the betweenness measure in the identification of genes essential to the structure of a diseased

state.

Previous work by Hardin et al. (2013) provides an algorithm to produce variability in a

reasonable, yet controlled fashion. In particular, the proposed algorithm generates Σ̂, a sam-

ple network from the known-correlation structure of a population network Σ by perturbing

the known structure with noise. Using the sample of networks generated according to this

model, an empirical sampling distribution of the network statistic(s) can be determined and

used to assess the ability of the GERGM model to capture the variability of the distribution

of finite stable betweenness.

According to the algorithm of Hardin et al. (2013), a simulated N -node network Σ̂ is

defined as:

Σ̂ = Σ + ε
(
UTU − I

)
(6.5)
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where U = (~u1, ~u2, ..., ~uN) is a matrix of unit vectors generated from a high-dimensional

noise space, ε is the maximum entry-wise random noise, and I is the identity matrix. Note

ε is a function of ρ and τ , and is defined in the algorithm.

The Population Network

Utilizing the algorithm provided by Hardin et al. (2013) with correlation ρ = 0.9 and

step-size τ = 2
45

such that ε = 1
15

, the known-correlation structure of a 20-node network is

given below:

Σ =



1 α2 α3 α4 . . . α20

α2 1 α2 α3 . . . α19

α3 α2 1 α2 . . . α18

α4 α3 α2 1 . . . α17

...
...

...
...

. . .
...

α20 α19 α18 α17 . . . 1



(6.6)

where αi = ρ− τ(i− 2) for 2 ≤ i ≤ 20.

As weighted networks based upon gene expression data are often constructed by thresh-

olding correlation among the gene measurements (Langfelder and Horvath, 2008), a similar

approach is taken to generate a network from the known structure provided in Equation

(6.6). The “true” population network, as presented in Figure 6.2, is constructed by first

thresholding the node-pair correlation values, and then assigning edge-weights equal to one

minus the absolute value of the remaining node-pair correlations. Refer to Section 3.3.2 for

additional details on the construction of such edge-weights.

Thresholds are applied to the correlation values in order to reduce the density (i.e.,
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the actual number of edges in proportion to the maximum possible number of edges) of the

population network. As a result, nodes 10 and 11 in the population network in Figure 6.2

share the largest finite stable betweenness value of 1. The finite stable betweenness value of

each node in the population network is listed in Table 6.1.
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Figure 6.2. The population network: a 20-node weighted network with
54 edges generated with a known-correlation structure following the
work provided by Hardin et al. (2013).
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Table 6.1. The finite stable betweenness parameter value of each node
in the weighted and undirected population network in Figure 6.2.

Node vi CFSB(vi)

1 0.0

2 0.0

3 0.0

4 0.556

5 0.556

6 0.444

7 0.889

8 0.889

9 0.667

10 1.0

11 1.0

12 0.667

13 0.889

14 0.889

15 0.444

16 0.556

17 0.556

18 0.0

19 0.0

20 0.0
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6.4.2 The Proposed GERGM Models

To determine a distribution of finite stable betweenness of one of the essential nodes

in the population network, say node 10, two separate GERGM models are proposed based

upon different combinations of network statistics, and are specified as:

Model Network Statistics Metropolis-Hastings SD

1 Finite stable betweenness of node 10 0.005

2A Finite stable betweenness of node 10 and two-stars 0.005

2B Finite stable betweenness of node 10 and two-stars 0.01

where the finite stable betweenness statistic, denoted FSB(10), is defined as

FSB(10) = (CFSB(10)− 1)2

with CFSB(10)∗ = 1 as provided from the finite stable betweenness parameters given in

Table 6.1; and the two-stars statistic, denoted 2Stars, is defined the sum of the product

of all existing edge-weights wi,j, wj,k. The two-star configuration is depicted by the left

structure in Figure 6.1.

The GERGM Model 1 has the probability density function

fX(x; θ1) ∝ exp{θ1 · FSB(10)} (6.7)
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while GERGM Models 2A and 2B have the probability model

fX(x; θ1, θ2) ∝ exp{θ1 · FSB(10) + θ2 · 2Stars} (6.8)

where θ1 and θ2 are the corresponding coefficients to the network statistics FSB(10) and

2Stars, respectively. Although GERGM Model 2A and 2B have the same probability model,

the difference lies in how the sampling in the proposal distribution is generated by the

Metropolis-Hastings algorithm (refer to Algorithm 6).

6.4.3 The GERGM Estimation Results

The results in Table 6.2 detail the coefficient estimates that best describe the popula-

tion network in Figure 6.2 according to the specified GERGM model. Recall that FSB(10)

denotes the finite stable betweenness network statistic of node 10, while 2Stars denotes the

sum of the product of all existing edge-weights wi,j, wj,k.

Table 6.2. The coefficient estimates for each proposed GERGM model are detailed below.

Network Statistics Metropolis-Hastings SD θ̂1, θ̂2 Estimate Standard Error Estimate

FSB(10) 0.005 -2047.096, NA 2866.749, NA

FSB(10), 2Stars 0.005 -424.733, -17.639 654.158, 3.065

FSB(10), 2Stars 0.01 -186.981, -19.897 269.767, 4.381

Examination of the MLEs

To better understand the distribution of networks produced by the GERGM models,

and thus obtain a better understanding of the distribution of finite stable betweenness de-
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termined by each model, the maximum likelihood estimates ~̂θ should be considered. Recall

the estimates ~̂θ in Table 6.2 are produced by the MCMC estimation process detailed in Al-

gorithm 6. As an example, consider the probability density function of GERGM Model 2B

in Equation (6.8) where ~θ = (θ1, θ2).

Although more details are provided in Section 5.3.1, the maximum likelihood estimates

(MLE) ~̂θ are determined by maximizing the difference in log-likelihoods due to the computa-

tional intractability of the normalizing constant present in the log-likelihood function. Given

the probability model in Equation (6.8), the difference of log-likelihoods can be defined as:

`(~θ|xobs)− `(~̃θ|xobs) =
(
~θ − ~̃θ

)T
~S(xobs)− log

(
1

K

K∑
k=1

exp{
(
~θ − ~̃θ

)T
~S(xk)}

)
(6.9)

where ~̃θ = (θ̃1, θ̃2) is an initial coefficient vector, ~S(xobs) is the vector of statistics FSB(10)

and 2Stars for the observed network, and ~S(xk) is the network statistics vector corresponding

to the statistic values of the k-th network simulated from the distribution fX(x; ~̃θ).

To obtain an accurate approximation of the log-likelihood function, and thus accurate

MLEs ~̂θ = (θ̂1, θ̂2), the MCMC sampling algorithm must sample networks from a region where

the probability mass in Equation (6.8) is concentrated. Because the mass is concentrated to

a small region, the MCMC sampling algorithm must begin with a coefficient very close to

~̂θ. The stepping algorithm, as detailed in Section 5.3.1, is used to determine an appropriate

value of ~̃θ which is, in turn, used to initialize the sampling algorithm.

Setting ~S(xobs) = (0, 5.017) and ~̃θ = (−18.525,−17.973) as provided by the stepping

algorithm, and simulating a sample of 5000 networks from the distribution fX(x; ~̃θ) specified
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as

fX(x; ~̃θ) ∝ exp{−18.525 · FSB(10)− 17.973 · 2Stars} (6.10)

the difference of log-likelihoods for GERGM Model 2B in Equation (6.9) can be re-expressed

as

`(θ1, θ2|xobs) = (θ1 + 18.525) · 0 + (θ2 + 17.973) · 5.017

− log

(
1

5000

5000∑
k=1

exp{(θ1 + 18.525) · FSBk(10) + (θ2 + 17.973) · 2Starsk}

)

(6.11)

where FSBk(10) and 2Starsk are the FSB(10) and 2Stars values for network xk simulated

from the probability distribution fX(x; ~̃θ) provided in Equation (6.10).

In Figure 6.3, the difference in log-likelihoods in Equation (6.11) has its maximum

at (-200, -19.9, 1.298), suggesting that the highest likelihood of the observed network

occurs when θ1 = −200 and θ2 = −19.9. Recall the maximum likelihood estimates

~̂θ = (θ̂1, θ̂2) = (−186.981,−19.897) in Table 6.2. The maximum of the difference in log-

likelihoods in Equation (6.11) confirms the MLE for the 2Stars statistic and thus, the clear

existence of a maximum in the 2Stars direction. But the plot in Figure 6.3 suggests a flat

curvature of the difference in log-likelihoods in the direction of FSB(10), and thus, a lack

of precision in the estimate of the FSB(10) statistic.

As discussed in Section 6.3.2, the variability of the proposed distribution of ĈFSB(vi)

is dependent upon θ1, the coefficient of the FSB(10) statistic. The flat curvature in the
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Figure 6.3. The difference in log-likelihoods in Equation (6.11), where
a standard deviation of 0.01 was specified in the Metropolis-Hastings
sampling algorithm. The maximum occurs at (-200, -19.9, 1.298) and is
colored in green. A green arrow has been added to the plot to provide
assistance in its identification.
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direction of the FSB(10) statistic suggests that the GERGM model is flexible in creating

variability of the distribution of ĈFSB(vi), as multiple yet equivalent coefficients for the

FSB(10) statistic produce similar maximizations of the likelihood of observing the network.

6.4.4 The Sampling Distribution of Finite Stable Betweenness

Using the maximum likelihood estimates provided in Table 6.2, 5000 networks are sim-

ulated from the probability functions corresponding to each of the two proposed GERGM

models. The simulation is accomplished using the Metropolis-Hastings sampling algorithm

detailed in Algorithm 7, which constrains each simulated network to have a topology iden-

tical to the population network in Figure 6.2. Once a sample of networks is generated from

the corresponding probability density function defined by each GERGM model, the finite

stable betweenness value of node 10 is calculated in each of the 5000 simulated networks.

Figure 6.4 displays the sampling distribution of the finite stable betweenness as determined

by each GERGM model, generated from three separate samples of finite stable betweenness

values of node 10.

To assess whether the variability of finite stable betweenness is explained by the

GERGM model, the distribution of the centrality measure determined by the GERGM model

is compared to the sampling distribution generated by the model discussed in Section 6.4.1

that produces variability in a realistic yet intelligent manner. Using the framework provided

by Hardin et al. (2013), 5000 networks are simulated whose topology is identical to that

of the population network in Figure 6.2. The finite stable betweenness value of node 10

is calculated from each of the simulated networks, from which an empirical distribution is
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generated.

The sampling distributions of finite stable betweenness determined by the two GERGM

models and the noisy structure model (Section 6.4.1) are displayed in Figure 6.5. Addition-

ally, the mean and standard error of the sampling distributions of finite stable betweenness

determined by each GERGM model and the noisy structure model are detailed in Table 6.3.
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Table 6.3. The mean and standard error of the sampling distributions
of finite stable betweenness of node 10 generated by each model.

Model Mean Standard Error - 1
2θ̂1

FSB(10); sd = 0.005 0.999 0.0002 0.0002

FSB(10), 2Stars; sd = 0.005 0.997 0.001 0.001

FSB(10), 2Stars; sd = 0.01 0.997 0.002 0.002

noisy structure 1.006 0.003 NA

6.5 DISCUSSION

Consider the plots in Figure 6.5 (A - C) which depict the sampling distributions de-

termined by GERGM Models 2A and 2B. By construction of the statistic FSB(10), the

sampling distribution of finite stable betweenness is expected to follow a normal distribu-

tion, conditional on the value of the 2Stars statistic, with mean equal to the true finite

stable betweenness value of node 10 and variance equal to − 1
2θ1

, provided θ1 < 0. Upon sub-

stitution of the estimated value of θ1 from each GERGM model provided in Table 6.2 into

the proposed variance equation − 1
2θ1

, the estimated variance of each sampling distribution

determined by the GERGM model is confirmed by its proposed variance (last column in

Table 6.3). Yet although the mathematical model of the finite stable betweenness distribu-

tion determined by the GERGM model describes the variability evidenced in Figure 6.5, the

model is unable to capture the natural variability present within the data. This distinction

is apparent by comparing the distributions determined by the GERGM models (Figure 6.5

A - C) with the distribution (Figure 6.5 D) determined by the noisy structure model (refer
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to Section 6.4.1). But as suggestive of the curvature of the difference in log-likelihoods, a

particular value of θ1 can be set in the GERGM model to match the variability produced

by the realistic noise model without substantially decreasing the likelihood of observing the

network.

Yet, the discrepancy between the sampling distributions suggests the question: How

is the step size generated by the Metropolis-Hastings sampling in the derivation of each

GERGM model connected to the variability of the sampling distribution? To address this

question, consider the histograms of the noise generated by each GERGM model (A - C) and

the noisy structure model (D) in Figure 6.6, where noise is defined as the difference in edge-

weights of each simulated network in the sample with that of the population network. As

seen in Figure 6.6, more noise is generated by the Metropolis-Hastings sampling algorithm

in the GERGM models than is generated by the noisy structure model. Yet, recall the

Metropolis-Hastings algorithm detailed in Algorithm 7, in which each network in the sample

is produced by perturbing the edge-weights of the previously accepted network. As a result

of the sampling algorithm, as more networks are accepted into the sample, the difference in

edge-weights between each simulated network and the population network will increase. Put

another way, networks accepted towards the end of the sample will differ more in their edge-

weight comparison with the population network as opposed to the networks accepted earlier

in the sample. Therefore, the difference in edge-weights between each successive network

in the sample and the population network will propagate as more and more networks are

accepted into the sample.

Consider the histograms of noise in Figure 6.7, where noise is now defined as the differ-

ence in edge-weights of each successive, yet distinct network in the sample of 5000 networks,
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Figure 6.6. Histograms of the noise, defined as the difference in
edge-weights of each of the 5000 simulated networks and the population
network, generated by GERGM Model 2A with standard deviation
0.005 (A), GERGM Model 2B with standard deviation 0.005 and 0.01,
respectively (B - C), and the noisy structure model (D).
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for each proposed GERGM model. Because the proposal distribution is a truncated nor-

mal distribution in the Metropolis-Hastings algorithm, each noise distribution, as expected,

follows such a distribution. Although a sample of networks was generated according to the

distribution specified by each GERGM model, only 9.56%, 14.4%, and 5.84% of each of

the 5000 simulated networks are distinct networks. The small percentages suggest: (1) the

distribution of networks generated by each proposed GERGM model is restrictive, as only

a small proportion of possible networks exhibited network statistics similar to those of the

population network, and (2) the sampling algorithm may not be thoroughly exploring the

sample space, as implied by the jagged peaks in Figure 6.6 (A - C). The appearance of the

jagged peaks is a result of the sampling algorithm repeatedly rejecting the proposed network

and re-accepting the most recently accepted network, further indicating that networks are

being sampled in a region where the probability mass is not concentrated.
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CHAPTER 7

CONTRIBUTIONS

7.1 CONCLUSIONS

Centrality measures have been utilized in the analysis of biological networks, as the

measures provide rankings of influential nodes within the network and thus, a better idea of

the properties, features, and sub-networks that contribute to a network’s biological complex-

ity (Breitkreutz et al., 2012; Mistry et al., 2017; Ramadan et al., 2016; Zhang et al., 2013).

Yet not much thought has been published on the inherent variability of these measures. Put

another way, had different tissue samples been collected and the methodology repeated in

Chapter 2, would the betweenness centrality have identified the same set of essential genes?

To address this question, Chapter 3 examined the variability of the betweenness central-

ity measure to identify genes whose role changes as tissue transitions from a healthy to

diseased state through two separate edge-weight perturbation methods. Yet, although the

betweenness measure was shown to be robust in the identification of structurally important

genes, the large range of betweenness values that resulted from edge-weight perturbations

was suggestive of instability. After formally proving that the betweenness centrality is an

unstable measure, in the sense that an arbitrarily small change to edge-weights causes large

fluctuations in its value, the finite stable betweenness measure was defined in Chapter 4.

To determine a distribution of the finite stable betweenness measure, and thus ob-

tain a better understanding of its variability, a framework involving generalized exponential

random graph models (GERGM) was proposed in Chapter 6. In particular, the proposed

framework rests upon the assumption provided by the GERGM probability model in that
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the structure of the observed network may be explained by network configurations. Because

the betweenness centrality captures some global structural properties of a network (Abbasi

et al., 2012; Alahakoon et al., 2011), the proposed framework to determine a distribution

of finite stable betweenness focused on incorporating the measure into GERGM probability

model as a network configuration. Various models to determine the distribution of the mea-

sure were proposed and compared to the distribution of finite stable betweenness of a small

20-node network constructed from a known structure.

Based upon the results of the application presented in Section 6.4, GERGM models are

flexible in creating distributions of finite stable betweenness. However, the initial comparison

with one possible realistic noise mechanism (refer to Section 6.4.1) that adds noise to edge-

weights was not in line with the theoretical structure provided by the GERGM model.

Although none of the GERGM models determined distributions identical to that from the

realistic noise model in regards to shape, the proposed framework still may be useful. As

previously noted, the distribution of the finite stable betweenness is dependent upon the

definition of the statistic provided in the vector of network statistics ~S(x). If the statistic

S(x), for example, is modeled as the squared difference between a target and observed finite

stable betweenness value, then the finite stable betweenness follows a normal distribution.

Depending on the application, the statistic could be constructed in a variety of ways, and

the variance of the sampling algorithm specified, so as to model the sampling distribution

determined by other techniques, such as the bootstrap method.
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7.2 FUTURE WORK

A more comprehensive investigation into both the flexibility of the GERGM and dif-

ferent mechanisms, such as the standard deviation used in the sampling algorithm, that

might impact the finite stable betweenness sampling distribution are next steps in develop-

ing the GERGM framework to determine distributions of centrality measures. Additionally,

although some work has already been done in the context of exponential random graph mod-

els (Handcock et al., 2003; Kim et al., 2016), a thorough investigation into the degeneracy

of GERGMs, in which the estimation process fails to converge upon maximum likelihood

estimates, will also be conducted.

7.3 SUPPLEMENTARY MATERIAL

The code used to generate the distributions of the finite stable betweenness in gener-

alized exponential random graph models is provided by Durón (2019), and is based upon

the code written by Denny (2018). Additionally, all figures were produced using software

provided by RStudio Team (2016).
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