
Senior Thesis in Mathematics

Active Learning Experimental
Design of Bayesian Networks

Author:

Frances Hung

Advisor:

Dr. Jo Hardin

Submitted to Pomona College in Partial Fulfillment

of the Degree of Bachelor of Arts

May 4, 2019



Abstract

The importance and use of experimental design in biological applications

was one motivation for my thesis [Sverchkov and Craven, 2017]. We go over

a theory overview of Bayesian statistics, Bayesian networks, and experiments

in networks. We then test different edge-wise priors and explain their effect

on expected information gain of experiments.



Contents

1 Introduction 1

2 Bayesian Statistics 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Bayes’ Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Prior, Posterior, and Likelihood . . . . . . . . . . . . . 6

2.2.2 Marginal Probability . . . . . . . . . . . . . . . . . . . 8

2.3 Predicting Probability of New Data . . . . . . . . . . . . . . . 9

3 Bayesian Networks and Active Experimental Learning 13

3.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Representation . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Updating Network Probabilities . . . . . . . . . . . . . 15

3.1.3 Learning Network Structure . . . . . . . . . . . . . . . 17

3.2 Computationally Finding Structure Fits . . . . . . . . . . . . 18

3.2.1 Bayesian Scoring . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Bootstrapping to Find Good Structure Fits . . . . . . 19

i



3.2.3 Converting DAGs to PDAGs . . . . . . . . . . . . . . . 22

3.3 V-Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Experiments and Information Gain 26

4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 What is an Experiment? . . . . . . . . . . . . . . . . . 28

4.3 PDAGs in the Code . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Information Gain . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Testing Priors 34

5.1 The DREAM network . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Structure Probabilities . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Motivation for Exploring Priors . . . . . . . . . . . . . . . . . 36

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5.1 Results by Prior . . . . . . . . . . . . . . . . . . . . . . 38

5.5.2 Expected Information Gain and Degree . . . . . . . . . 42

6 Concluding Remarks 45

6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ii



Chapter 1

Introduction

Scientists are often interested in constructing cause-and-effect networks de-

scribing biological processes and models. From observed data, however, mul-

tiple potential causal networks can be proposed, so additional biological ex-

periments are usually needed to narrow the potential candidates down. To

cut down on cost and time expenses, researchers can determine what exper-

iments will narrow down the candidate field most by evaluating potential

experiments on the proposed networks. Each experiment in a network con-

sists of altering chosen nodes (variables) and seeing in real life how that

change propagates throughout the different networks [Pearl, 1995]. A score

is assigned to each experiment based on how much more precise the network

becomes due to that experiment, and the experiments with the highest scores

are the best candidates for real-life experiments.

I’ll be exploring the experiment-ranking process using Bayesian networks.

1



A Bayesian network consists of nodes representing uncertain variables and

directed edges representing cause-effect relationships, where each node has

multiple possible discrete values and each value’s probability is conditional

on parent node input. We can use the joint distribution of the variables to

update each node based on priors and new information [Heckerman, 2008].

Another way to look at Bayesian networks is to consider the local distribution

function of each node independently; the function is the probability of a

node being a certain discrete value given its parents and own probability

parameters. The most familiar form such a local distribution function takes

is that of a certain probabilistic distribution (binomial, multinomial, etc.).

However, the distribution functions can also be generalized linear models or

neural networks. A Bayesian network is an amalgation of the distribution

functions for each node.

This thesis will focus on refining networks which already are good repre-

sentations of the observed data they represent, so we first cover how to arrive

at good network representations in Chapters 2 and 3. In summary, we use a

hill-climbing algorithm to iteratively update potential networks until a max-

imum expected posterior is reached. In the hill-climbing algorithm, we use

the properties of Bayesian networks to calculate the posterior Bayesian scores

of each modified graph from the prior graph and data [Gamez et al., 2011].

In Chapter 4, we then study how to quantify the structural information we

gain from performing experiments [Ness et al., 2017] and in Chapter 5, we

test different priors and their effects on the expected information gain across

2



an example network’s nodes.

3



Chapter 2

Bayesian Statistics

2.1 Introduction

This chapter is a brief introduction to Bayesian statistics, a basis for Bayesian

networks. A Bayesian probability of an event is someone’s degree of belief

in the true value of the event. This is different from classical probability,

where probability is measured using a relative frequency approach. The

difference between the two schools of thought can be seen when we consider

Θ, the Bayesian equivalent of a frequentist random variable (which we call

an uncertain variable instead). We aim to find the probability distribution

representing our belief in the variable’s true value, while in classical statistics

we would try to find a probability distribution representing the observable

data on that variable, but not one of our belief in the variable’s true value

[Sarwan, 2016].

4



As an example of a Bayesian statistic scenario, we can use a six-sided die

where the possible true probability values of rolling each side are represented

by the six-dimensional vector Θ = (θ(1), . . . , θ(6)) where θ(1) + · · ·+ θ(6) = 1.

Each component of the vector, θ(i), itself has a probability distribution and

together, they form a multidimensional joint distribution [Heckerman, 2008].

Here, the probability of vector Θ can be represented by a Dirichlet distribu-

tion with six shape parameters, one for each possible side rolled. In other

words, each possible value of the die roll has a corresponding probability

distribution representing our belief in the probability of rolling that number.

The probability density function for a Dirichlet distribution is

f(θ(1), . . . , θ(N);α1, . . . , αN) = Γ(α)
ΠN
i=1Γ(αi)

ΠN
i=1(θ(i))αi−1 (2.1)

where αi is the shape parameter for the ith possible category, N is the num-

ber of categories, θ(i) is the probability of observing the ith category where∑N
i=1 θ

(i) = 1, and α is the sum of all αi [Heckerman, 2008]. In terms of our

example, θ(i) is the probability of rolling the ith side, and αi is the shape

parameter of the probability distribution of rolling the ith side. The aim of

Bayesian statistics in this example’s context would be to update the Dirichlet

probability density function to better reflect the data we see when we roll the

die. Using the updated probability density function, we can then find the ex-

pected value of the density function and describe how confident we are in the

expected value based on the distribution. One benefit of Bayesian statistics

5



is the ability to incorporate prior knowledge before updating the probability

density function (in contrast to classical statistics, which formalizes learning

from observed data only).

2.2 Bayes’ Rule

An integral part of being able to better estimate θ is Bayes’ Rule, the cor-

nerstone of Bayesian statistics. Bayes’ Rule says we can use prior knowledge

ε and observed data D to update our θ distribution:

p(θ|D, ε) = p(θ|ε)p(D|θ, ε)
p(D|ε)

.

In the die example, ε is represented as αi, the shape parameters of the

Dirichlet distribution which represents our beliefs in the value of θ [Heckerman, 2008].

2.2.1 Prior, Posterior, and Likelihood

The prior p(θ|ε) represents our previous belief in θ before we take into con-

sideration any new data, and the posterior p(θ|D, ε) represents our updated

belief in θ after we take into consideration the new data. The ability of

Bayesian statistics to draw from previous knowledge is one of the main con-

crete differences between it and classical statistics [Sarwan, 2016].

Definition 2.1 A prior distribution p(θ|ε) of θ contains our confidence in

6



the true values of θ, represented as a probability distribution, before we take

into account new data D. The ε term is optional and is used here just to clar-

ify the dependence of the prior on previous information ε [Heckerman, 2008].

Definition 2.2 A posterior distribution p(θ|D, ε) of θ contains our confi-

dence in the true values of θ, represented as a probability distribution, after

we take into account new data D [Heckerman, 2008].

In our die example, the prior distribution of Θ can be in the form of a

Dirichlet distribution described above, with neutral parameters if we have

no good initial guess of the side probabilities. Two possibilities of a neutral

Dirichlet would be a distribution with all shape parameters equalling zero or

one. Such a neutral distribution represents our lack of knowledge (or surety

of belief) in the Θ distribution [Heckerman, 2008].

The posterior distribution in the example will take the same form as the

prior: a Dirichlet pdf. However, the parameters will be different due to

multiplying the prior by the likelihood term p(D|θ), which represents the

likelihood of seeing our data D conditional on the value of θ.

Definition 2.3 A likelihood p(D|θ) of observed data D is the likelihood of

seeing D assuming a given value of Θ, θ [Heckerman, 2008].

In our die example, the probability of seeing observed data (ni rolls of

each ith side) in terms of Θ is the multinomial pdf

f(n1, . . . , n6; θ(1), . . . , θ(6)) = n!
n1! . . . n6!Π

6
i=1(θ(i))ni (2.2)

7



where n is the total number of observed rolls, θ(i) is the prior probability of

the ith variable state, and ni is the observed number of rolls of the ith side.

We are assuming our rolls are mutually independent and can be modelled

through multinomial sampling. Bayes’equation gives the following:

p(θ|D, ε) = Dir(α1, . . . , α6)×Multinom({n1, . . . , n6}, {θ(1), . . . , θ(6)})
p(D)

(2.3)

where the Dirichlet and multinomial pdfs are those in Equations 2.1 and

2.2 and the denominator is the expression derived below in Section 2.2.2.

2.2.2 Marginal Probability

The denominator of the Bayes’ equation is the marginal probability, the un-

conditional probability of seeing D. P (D) is a scaling constant for the poste-

rior distribution, so it doesn’t affect the shape of the distribution. However,

it is still important in comparing different models via the Bayes’ factor. We

can write the marginal probability as follows:

p(D) =
∫
θ
p(D|θ, ε)p(θ|ε)dθ

We assume a Dirichlet representation of p(θ|ε) and multinomial representa-

tion of our observed data. Since the likelihood of seeing our entire dataset

with k possible values is the multinomial pdf (Eq. 2.1) and θ has a Dirichlet

8



pdf (Eq. 2.2), p(D) is equivalent to

p(D) = n!
n1! . . . nN !

Γ(∑N
i=1 αi)

ΠN
i=1Γ(αi)

∫
θ

ΠN
i=1(θ(i))ni+αi−1dθ

To simplify, we multiply in a constant and its inverse:

p(D) = n!
n1! . . . nN !

Γ(∑N
i=1 αi)

ΠN
i=1Γ(αi)

c−1
∫
θ
cΠN

i=1(θ(i))ni+αi−1dθ

and set

c = Γ(∑N
i=1 αi + ni)

ΠN
i=1Γ(αi + ni)

so that the integral is of the complete Dirichlet probability density function.

The integral equals 1 because the integral of any probability density function

over the entire space is 1. We rearrange to get:

p(D) = n!
n1! . . . nN !

Γ(∑N
i=1 αi)

Γ(∑N
i=1 αi + ni)

ΠN
i=1

Γ(αi + ni)
Γ(αi)

This closed-form expression isn’t especially neat, but it is a way to get the

marginal probability of observing our data from just observed data counts

ni and prior shape parameters αi.

2.3 Predicting Probability of New Data

Once we have the posterior distribution of our parameter θ, a goal would be

to evaluate the probability of seeing observed data given our posterior. To

9



predict the probability of seeing the next data point xn+1 with discrete value

x(k), we take the expected value of the probability of seeing our data and the

data point in question. Finding the expected value involves integrating, over

the entire θ parameter space, the probability θ(i) of observing the next cate-

gory [Heckerman, 2008]. For the remainder of the paper, we use dθ to denote

integration over the domains of each parameter in the vector (θ(1), . . . , θ(N)).

Put simply, we are weighting the probability of seeing the value x(k) by

its corresponding posterior distribution. To show the weighted posterior is

equivalent to p(xn+1 = x(k)|D), we let A be the event xn+1 = x(k). Then

P (A) =
∫
P (A, θ)dθ

since for the marginal probability P (A) we must consider all possible values

of θ. We can rewrite P (A, θ) in terms of conditional probabilities:

∫
P (A, θ)dθ =

∫
P (A|θ)P (θ)dθ

We condition P (A) on the data we observe (a subset of the population of

interest):

P (A|D) =
∫
P (A|θ,D)P (θ|D)dθ

We conclude that

p(xn+1 = x(k)|D) =
∫
p(xn+1 = x(k)|θ)p(θ|D)dθ

10



We can now predict the probability of specific dice rolls in our example.

Assuming we have a Dirichlet distribution on θ and that our data follows a

multinomial sampling distribution:

p(xn+1 = x(k)|D) =
∫
p(xn+1 = x(k), θ|D)dθ

=
∫
p(xn+1 = x(k)|θ)p(θ|D)dθ

=
∫
θ(k)p(θ|D)dθ

=
∫
θ(k) 1

β(α)ΠN
i=1(θ(i))αi+ni−1dθ

=
∫ αN + nN

(∑N
i=1 αi + ni + 1)− 1

1
β(α∗)(θ(k))αk+nkΠi 6=k(θ(i))αi+ni−1dθ

= β(α∗)
β(α)

∫ 1
β(α∗)(θ(k))αk+nkΠi 6=k(θ(i))αi+ni−1dθ

where α = {α1 +n1, . . . , αN +nN}, α∗ = {α1 +n1, . . . , αk +nk + 1, . . . , αN +

nN}, β(α∗) = (Πi 6=kΓ(αi+ni))×Γ(αk+nk+1)
Γ(

∑N

i=1 αi+ni+1)
, and β(α) = ΠN

i=1Γ(αi+ni)
Γ(

∑N

i=1 αi+ni)
. The inte-

gral is over the pdf of a Dirichlet distribution so the whole integral simplifies

to equal 1. Expanding out β(α) and β(α∗), this is equivalent to

= ΠN
i=1Γ(αi∗)

Γ(∑N
i=1 αi∗)

× Γ(∑N
i=1 αi + ni)

ΠN
i=1Γ(αi + ni)

= Γ(αi + ni + 1)
Γ(αi + ni)

× Γ(∑N
i=1 αi + ni)

Γ(∑N
i=1 αi + ni + 1)

= αi + ni∑N
i=1 αi + ∑N

i=1 ni

11



From the above equations, we can find the probability of the next obser-

vation being a particular category using only the prior shape parameters, the

number of data samples n, and ni, the number of times we see that category

in the data. Assuming a Dirichlet prior and multinomial likelihood, know-

ing the counts of seeing each category is sufficient for us to recalculate the

probabilities of seeing each category.

There are some distributions where the prior and posterior distributions

come out as nicely as the Dirichlet-multinomial example in this chapter.

In particular, having exponential family (binomial, Poisson, multinomial,

etc.) likelihoods allows for relatively simple integration and a closed form

[Heckerman, 2008]. Monte Carlo methods allow us to use distributions out-

side of the exponential family as likelihoods.

12



Chapter 3

Bayesian Networks and Active

Experimental Learning

3.1 Bayesian Networks

In this section, we describe how causal relationships are represented as net-

works and how Bayesian statistics applies to updating these networks. More

specifically, we talk about node-specific posterior distributions and how they

relate to the overall posterior [Heckerman, 2008].

3.1.1 Representation

The goal of a Bayesian network is to model causal relationships between

different uncertain variables X1, X2, . . . , Xn. For this paper, we assume each

Xi is a discrete categorical variable. These uncertain variables are related to

13



one another with a set of conditional independence assertions. In a network,

each uncertain variable Xi is represented by a node, and a directed edge from

node Xi to node Xj represents a conditional dependence of Xj on Xi. We

define Bayesian networks more succinctly in the following definition.

Definition 3.1 A Bayesian network has nodes {X1, . . . , Xn}, each repre-

senting one of n uncertain variables, and directed edges Xi → Xj representing

conditional dependence of variable Xj on Xi [Heckerman, 2008].

Each nodeXi has a set of parent nodes which send incoming edges intoXi.

We denote these parents of Xi as Pai. Since Xi is by definition conditionally

dependent on its parents, the state of Xi can be calculated based solely on

its parents’ states [Heckerman, 2008]. The probabilities of possible states of

Xi can be represented with Θi in a similar way to the die in the previous

chapter.

To update networks in a Bayesian manner, we can start with a network

prior and use samples of data to update the network. We start by focusing

on a simpler problem: how to update posterior distributions of each node

(Θi). As an initial step, we must understand how to represent the probability

of each node in relation to the probability of the entire network. Given a

pre-defined structure Sh of variables X1, . . . , Xn, p(xi|pai, θi, Sh) is the local

probability function of observing a single variable Xi at its current state

(with the parents pai and θi specified by the existing Sh). Because each

node’s local probability function depends only on immediate parents and all

14



edges are directed, we can assume that the local probabilities of all nodes

are mutually independent. Therefore, we can define the joint probability

function for the whole graph as the product of all local probability functions

[Heckerman, 2008]:

Definition 3.2 The joint probability function for a network is

p(x|θs, Sh) =
n∏
i=1

p(xi|pai, θi, Sh)

, given that the local probabilities p(xi|pai, θi, Sh) are mutually independent.

3.1.2 Updating Network Probabilities

Much like for single variables, we use data to update our beliefs about network

structure and dependencies. Since the individual variables have independent

probabilities, we can update our beliefs about each Xi separately. In order

to calculate the probability of Xi = xi, we need to be able to update θi, our

belief in the true value of Xi.

Because θi can have different distributions based on different parent con-

figurations and the state of interest of Xi itself, we can add subscripts to

differentiate unique situations [Heckerman, 2008]. θ(k)
ij is the probability of

observing Xi at state k with parents paj. In particular, θij = (θ(1)
ij , . . . , θ

(k)
ij ) is

a vector representing the probabilities of the different k states of Xi with par-

ents paj. For each θij, our goal is to get the posterior distribution p(θij|D,Sh),

which depends on a prior p(θij|Sh) and likelihood p(D|θij, Sh). We have the

15



following variant on Bayes’ Rule:

p(θij|D,Sh) = p(θij|Sh)p(D|θij, Sh)
P (D)

We make the following assumptions to make our calculation of the pos-

terior easier:

1. The data D is complete; that is, there is no missing data.

2. The θij vectors are independent from one another and therefore follow

parameter independence.

Using the previous two assumptions, we can then write the posterior as

the following:

p(θ|D,Sh) = Πn
i=1Πqi

j=1p(θij|D,Sh) (3.1)

Each p(θij|D,Sh) can be written as a single-variable θ distribution from

the previous chapter. To find each of these single-variable posteriors, we use

the methods from Chapter 1 to calculate each posterior using the observed

data.

Once we have the posterior distribution, we can calculate the probabilities

of seeing a particular node outcome in the network. To obtain predictions

for next sample xn+1, we average over θS, the possible parameters for the

16



network structure. In the following equations, j and k are dependent on i:

p(xn+1 = x(k)|D,SH) = EP (θS |D,Sh)(
n∏
i=1

θ
(k)
ij )

=
∫

(
n∏
i=1

θ
(k)
ij )p(θ|D,Sh)dθS

=
n∏
i=1

∫
θ

(k)
ij p(θij|D,Sh)dθij

3.1.3 Learning Network Structure

Calculating structure posterior probabilities works similarly to finding net-

work probabilities; we want to find p(Sh|D) where Sh is the discrete uncertain

variable representing the distribution of possible true structures. Theoreti-

cally, we start with a prior distribution of all possible structures which could

represent our true network [Heckerman, 2008]. We use Bayes’ Theorem to

find the posterior distribution of the possible true structures:

p(Sh|D) = p(Sh)p(D|Sh)
p(D) (3.2)

In 3.2, p(D|Sh) is the marginal likelihood of the data, given by the prod-

ucts over i and j of single-variable i-j marginal likelihoods:

p(D|Sh) =
n∏
i=1

qi∏
j=1

Γ(αk)
Γ(αij + nij)

K∏
k=1

Γ(αijk + nijk)
Γ(αijk)

From the posterior distribution we calculate using Bayes’ Rule, we can

17



pick the structure with the highest posterior probability Sh∗ as the best

representation of the data:

Sh∗ = argmaxSh{P (Sh|D)}

Finding a structure in this manner is not actually feasible in real life. In

the next section, we explain an algorithm which allows us to find a structure

with high posterior probability in real life [Heckerman, 2008].

3.2 Computationally Finding Structure Fits

The following sections will mostly be concerned with finding a near-best

structure in real life, in which we face some obstacles. Unfortunately, for

example, finding the best structural fit of a network to data is an NP-hard

process [Heckerman, 2008]. The difficulty lies in there being more than ex-

ponential in n possible structures for a network with n nodes. In our discrete

variable Sh, we’d have to consider a very large number of graphs. To fa-

cilitate an otherwise intractable process of finding a good-fit DAG (directed

acyclic graph) to our data, we use a bootstrapping technique. Before going

into detail about the bootstrapping algorithm, we define a Bayesian scoring

function and elaborate on how networks are scored.

18



3.2.1 Bayesian Scoring

Because the marginal probability p(D) doesn’t vary with network structure,

we can use a Bayesian scoring metric proportional to the posterior probability

of a network to quantify the goodness-of-fit of a network.

Definition 3.3 The Bayesian score of a network is

f(Sh : D) = log p(D|Sh) + log p(Sh)

We try to find network configurations which maximize the Bayesian score.

3.2.2 Bootstrapping to Find Good Structure Fits

From the data we have on each uncertain variable in the network, we sample r

instances with replacement N times, leading to a set of samples D1, . . . , DN .

We assign an initial empty graph representation to each bootstrap Di.

From these empty graphs, we can improve our graph fits by considering

neighboring graphs. Neighbor graphs are created from existing graphs by

making one of three local changes (edge deletion, addition, or direction re-

versal). Because we need to avoid creating cycles (where we can start at a

node and find a path back to that node through directed edges), there are

O(n2) such possible changes for a given graph with n nodes. We calculate

the new Bayesian scores caused by each of the local changes (using Def. 3.3)

and take the difference of these new scores with the corresponding scores of

19



the networks prior to the edge change. More formally, if we let f(Sh : D)

be the score for the whole graph, we can assume independence between in-

dividual nodes plus their corresponding parents and decompose f(Sh : D)

[Gamez et al., 2011]:

f(Sh : D) =
n∑
i=1

f({Xi, Pai)} : D)

Then we can find score differences between neighboring and original

graphs using one of the three below processes for each possible edge:

1. Add edge, Xj → Xi: f(Xi, Pai)
⋃{Xj})− f(Xi, Pai))

2. Delete edge, Xj → Xi: f(Xi, Pa(Xi) \ {Xj})− f(Xi, Pai))

3. Reverse edge directionality (by deleting existing edge and adding an

oppositely oriented one), Xj → Xi: [f(Xi, Pai)\{Xj})−f(Xi, Pai))]+

[f(Xj, Pa(Xj)
⋃{Xi})− f(Xj, Pa(Xj))]

We choose the neighboring graphs which yields the largest positive differ-

ence as our new best graphs {G′1, . . . , G′N}. We stop altering the graphs when

changes no longer improve the posterior score by more than a user-specified

amount α [Gamez et al., 2011].

We then choose the final graphs with the best Bayesian scores as good-fit

DAGs to our data.

20



Result: Bootstrap DAGs from Data

Starting parameters: data D, number of DAGs to learn N, stopping

threshold α, number of DAGs to return F;

for t in 1:N do

Initialize empty graphs Gt, G′t;

do

Gt = G′t;

G′t=Find Best Neighboring Graph(Gt);

while Score(G′t)-Score(Gt) > α;

return Gt

end

G=order {G1, . . . , GN} by score (decreasing);

return G[1:F]
Algorithm 1: Main Bootstrapping Algorithm

21



Result: Find Best Neighboring Graph

Starting Parameters: Graph G;

for nodes (Xi, Xj) in G do

if edge i→ j exists then
Scoreijmax = max Bayesian score of {deleting i→ j, reversing

i→ j, keeping i→ j};

if edge i→ j doesn’t exist then
Scoreijmax = max Bayesian score of {adding i→ j, not adding

i→ j};

Apply edge process which yields Scoreijmax to G;

end

return G
Algorithm 2: Finding Best Neighboring Graph

3.2.3 Converting DAGs to PDAGs

We regard our “best” graph with some doubt because some directed edges

in our graph can be reversed while retaining the same posterior distribution.

Because of the ambiguity of some edge directions, it is better to change

our DAG (directed acyclic graph) network to a PDAG (partially directed

acyclic graph) representation. We convert a DAG to a PDAG by taking the

DAG and turning directed edges which follow the following conditions into

undirected edges:

1. flipping directionality does not change the number of immoral v-structures

(defined in Section 3.3)

22



2. child node of the directed edge is not a child node of an intervention in

S

Using the above conditions to convert DAGs ensures that all DAGs mapped

to a single PDAG have the same posterior probability [Ness et al., 2017].

3.3 V-Structures

In this section, we go more into detail about the first condition for orienting

an edge: that the edge is part of a v-structure. V-structures are a specific

directed-edge structure which encode a specific type of dependence structure

between three connected variables. In order to describe v-structures, we must

first describe dependence (d-separation).

The d in d-separation stands for dependence, and two variables X and

Y are d-separated given other variables O if X and Y are independent given

O (notation is X ⊥ Y |O) [Kuleshov and Ermon, 2019]. In simpler terms, X

doesn’t contribute any additional information about Y and vice versa if we

know O already. We can further formalize d-separation as follows. Two nodes

are d-separated given observed nodes O if the two nodes aren’t connected

by an active path. A path is active if for each triple of consecutive nodes

(X, Y, Z) either:

1. X → Z → Y and Z /∈ O

2. X ← Z ← Y and Z /∈ O

23



Figure 3.1: The four types of dependency structures

3. X ← Z → Y and Z /∈ O

4. X → Z ← Y and Z or any descendent is in O

The last structure X → Z ← Y is a v-structure, which encodes a different

dependency relation (X ⊥ Y |O if O is unobserved and X 6⊥ Y |O if O is

observed) than the first three structures. A v-structure is called, rather

archaically, immoral if there is no edge between the parent nodes.

All variables which are d-separated given O in a DAG G are independent

given O. We can generalize G as a PDAG (partially-directed acyclic graph)

since the dependency relations of the first three structures are identical and

the last is distinct. In other words, we can change the direction of any edge

in a DAG and preserve its dependency structure unless edge reversal in-

duces a new immoral v-structure or destroys an existing immoral v-structure

[Kuleshov and Ermon, 2019].

24



3.4 Summary

We now have a computationally efficient way of finding good structural fits

of networks to data, and we know how to class graphs into more generic

PDAGs. Bootstrapping structure fits and PDAGs will be useful in finding

ideal interventions which further improve structural fits.

25



Chapter 4

Experiments and Information

Gain

4.1 Methods

In this section, we will go over what experiments are, how the authors of

bninfo implement the DAG-to-PDAG algorithm, and how we measure the

effectiveness of experiments [Ness, 2015].

4.2 Experiments

From a physical science point of view, experiments consist of variables and

the relationships between variables. By clarifying relationships between vari-

ables, scientists can predict future behavior and interaction between vari-

26



ables. For this section, we’ll assume that variables have finite, discrete states.

Variables and their true relationships can be represented by a Bayesian net-

work; more specifically, variables and their relationships to the best of our

knowledge can be represented by a PDAG.

As a recurring example, we’ll use a problem pertinent to the first robot

who autonomously carried out experimental design and hypothesis genera-

tion [Flatley, 2009]. Let’s say Adam the Robot Scientist wants to predict

whether his co-workers will be nice to him on a certain day or not. The

variables he’s interested in are the following:

• Whether his co-workers are nice to him or not (Nice?)

• Whether it’s Friday or not (Friday?)

• Whether his co-worker is a Luddite (Luddite?)

• Whether his co-worker is having a bad day (Bad Day?)

• Whether Adam is happy (Happy Adam?)

The true network representation (4.1) has completely directed edges but

is currently unknown. Our goal is to get to the true representation from a

PDAG derived from the bootstrapping process (Section 3.2.2). In order to

extrapolate the relationships between variables, Adam will need to perform

experiments and get data.

27



Nice?

Friday? Luddite?

Bad Day?

Happy Adam?

Figure 4.1: A complete network representation of Adam’s variables.

4.2.1 What is an Experiment?

Definition 4.1 An experiment/intervention in the physical science world

involves setting a variable to multiple states and seeing how other variables

are affected (or not affected) by the different states. The outcome of the

experiment is the existence of directed edges between the variable and other

variables.

In Adam’s example network, we can realistically control the states of sev-

eral of the variables: whether Adam is happy (through some programming),

for example, or whether Adam’s coworker is having a bad day. If we set these

variables to their various possible states, we can observe how these states af-

fect their neighboring variables (Nice? in the case of the Happy node and

Nice? + Luddite? in the case of the Bad Day node).

28



?

?

?

Figure 4.2: A PDAG output of the bootstrapping algorithm; we want to get
from the PDAG to Fig. 4.1.

Once we perform an experiment on a variable, we know the directionality

of causation between that variable and its neighbors [Pearl, 1995]. Either the

variable has no effect on a neighbor (in which case the edge is determined to

be directed towards the variable), or the variable affects the neighbor (and

the edge is determined to be directed from the variable to the neighbor).

Because we would like to predict effective experiments before we perform

them in real life, however, we only have access to the high-posterior possible

network fits from the previous chapter’s bootstrapping algorithm (Fig. 1).

We’d like to compare the PDAG network fits following from the possible net-

work fits alone to the PDAG network fits resulting from different experiments

on those network fits.

For each possible PDAG network fit, we assume that an experiment on

29



a variable node will orient any incident edges, even if we don’t know which

direction those edges would be oriented. An experiment on the Bad Day

node will orient the connections to the Luddite and Nice nodes, although we

don’t know in which direction. We can assume the orientation of incident

edges because an experiment in real life would clear up ambiguous causality

relations between the experiment node and incident nodes.

4.3 PDAGs in the Code

In order to convert each DAG into a corresponding PDAG, the code decides

which edge orientations to fix based on three conditions: whether the edge is

part of a v-structure, whether either of its nodes is adjacent to an intervention

node, and whether the edge has a prior skewed probability [Ness et al., 2017].

The last condition was proposed by the code’s authors in addition to the two

more standard ones (mentioned in the previous chapter). We go more into

more detail about the skewed-prior condition below.

Ness defines a skewed-prior edge as one which has an orientation prob-

ability other than exactly 0.5, but his definition is rather stringent. If the

probability of an edge is skewed, then that edge is marked as oriented during

the DAG-to-PDAG process. The additional skewed-prior condition poten-

tially results in more edges being marked as oriented than if we consider

only the orientation conditions (v-structure preservation and intervention

adjacency) of Section 3.2.2 alone.

30



I changed the code to make the definition of a skewed-prior edge more

flexible: I can classify edges as unskewed if their probabilities lie within a

user-defined range ("flex") of 0.5.

Result: Returns PDAG from DAG

DAG G, interventions S;

for edge e in G do

if e is in an immoral v-structure then

Mark e’s direction as fixed;

if e’s child is adjacent to S then

Mark e’s direction as fixed;

if e has a skewed prior then
Mark e’s direction as fixed

end

for edge f in unfixed edges do
Fix f if reversing directionality would change number of

v-structures;
end

Algorithm 3: DAG to PDAG conversion
In the results chapter, I use a flex of 0, but the new definition of skewedness

may be useful for future exploration of the package.

4.4 Information Gain

From the previous sections, we see that interventions can improve our knowl-

edge of the network structure: we now quantify the improvement. When we

31



apply interventions on a DAG, we may end up with more oriented edges than

if we didn’t apply any interventions. The difference in number of oriented

edges caused by an intervention is the information gain of the intervention

[Ness et al., 2017].

Definition 4.2 Given a PDAG induced by DAG D and a PDAG induced by

D plus interventions V, the information gain of V is

IG(D, V ) = # edges oriented by {D,V}−# edges oriented by {D}

We can get a more stable estimate of the information gain of an intervention

by averaging the information gain over multiple high-probability DAG fits

G = {G1, . . . , GP}. {G1, . . . , GP} are the P DAGs with the highest Bayesian

scores at the end of the bootstrapping algorithm (Algorithm 1).

Definition 4.3 Given PDAGs induced by DAGs G = {G1, . . . ,GP}, data

D, and PDAGs induced by G plus interventions V, the expected information gain

or estimated information gain of V is

EIG =
∑
Gi∈G

IG(Gi, V )× P (Gi|D)

The expected/estimated information gain is what we’ll be using to quan-

tify how much structural information an additional intervention will give us

over the PDAGs derived from the top P bootstrapped DAGs.

32



4.5 Summary

We went over what experiments/interventions are, and how we can quantify

how they improve our knowledge of network structure via expected informa-

tion gain.

33



Chapter 5

Testing Priors

5.1 The DREAM network

The DREAM network is a signaling network which represents how cell pro-

teins interact and react to signals from the environment. Each protein is a

node in the network and each edge is a regulatory relationship between two

proteins [Ness et al., 2017]. It consists of 4 receptors tfna, tgfa, il1a, and igf1

along with other non-receptor nodes.

First, we simulate data from the known network to replicate the sce-

nario where we have data about the network but are unsure of the actual

network structure. We then use the bootstrapping algorithm to get initial

high-probability DAGs (Algorithm 1). We can then investigate interventions

as described in the previous chapter.

34



Figure 5.1: The DREAM network of cell proteins.

5.2 Structure Probabilities

In the code, the authors use an edge-wise notion of structure probability to

define their structure priors. Given an edge from node Xi to node Xj, they

think of edge probability in terms of edge existence and edge directionality

[Ness et al., 2017]. The number of edges adjacent to Xi is the degree of Xi,

the number of adjacent edges directed away from Xi is its out-degree, and

the number of adjacent edges directed towards Xi is its in-degree.

Definition 5.1 The probability of existence of edge {i, j} is denoted

P (i− j) or πij

Definition 5.2 The probability of edge orientation{i → j} is denoted

35



P (i→ j|i− j) or −→πij

If we let Iij(G) be the indicator function of whether edge {i, j} exists in

graph G and −→Iij(G) be the indicator function of whether {i → j}, then our

prior for an entire graph is

p(Sh) = c
∏
ij∈G

(1− πij)1−Iij(G)(πij−→π ij)Iij(G)−→I ij(G)

We incorporate the above prior into the bootstrapping process via the

initial use of the prior p(Sh) in the Bayesian score equation [Ness et al., 2017].

5.3 Motivation for Exploring Priors

A question which follows from the previous sections is how different prior

edge probabilities affect the expected information gain for each potential

intervention. The prior edge probabilities affect the initial bootstrapping

process of finding good-fit DAGs to the data. In addition, whether each edge

probability is considered skewed (Section 4.3) or not affects which edges

are marked as oriented before taking into account experiments. Ultimately,

marking edges as unskewed can increase the expected information gain for

experiments, while priors can also drastically affect the bootstrapped DAG

structure.

36



5.4 Methods

Ness considered an uninformative-prior case and an informative prior case.

In the uninformative prior case, the authors assume that the probabilities

for edge existence and edge directionality each follow a uniform distribution.

With the informative prior, they assume a 0.147 probability for the exis-

tence of edges incident to receptor nodes (tnfa, tgfa, il1a, and igf1), and a

nearly zero probability for them being directed towards the receptor nodes.

They use the product of the existence and directionality probabilities as an

edge-wise prior in building the initial DAGs and finding information gain of

interventions [Ness et al., 2017].

Figure 5.2: Incoming receptor edges with ~0 prior probability of existence.

37



The authors multiply the existence and orientation probabilities to get

an overall probability of a directed edge existing. Using the original, ~0,

informative prior to inform the DAGs created through the bootstrapping

process, the median out-degree of tnfa (the node with the highest expected

information gain) over the DAGs is 5 while the median in-degree of tnfa over

the DAGs is 0.

We use different distributions as priors in both the bootstrapping and in-

tervention steps. We keep the flex constant at 0. We test different prior edge

distributions: the original informative prior, a 0.25 receptor-edge-probability

distribution, a 0.5 distribution, and a 0.75 distribution.

5.5 Results

The higher the probabilities of incoming edges to receptor nodes were, the

lower the expected information gain of interventions on the receptor nodes.

The decrease in EIG implies that the higher receptor edge priors either impact

the DAG structure in a way which reduces the number of adjacent undirected

edges in the bootstrapping step or increases the number of adjacent directed

edges in the DAG-to-PDAG step.

5.5.1 Results by Prior

If the prior says it’s extremely unlikely that incoming edges to receptors

exist (as it did in the original parameters set by the authors), then either

38



Figure 5.3: Incoming receptor edges with 0.25 probability of existence.

an edge between any given receptor and another node doesn’t exist at all or

it’s directed the other way (outwards from the receptor). Implementation

of either of the two options can be reflected in the step where we bootstrap

DAGs from data (Algorithm 1), which may result in a more diverse set of

final, good-fit DAGs than the set created with a less extreme prior. The

two options also potentially create situations where alternative structures

are created to match the data we build from since the simplest explanation

(incoming edges to receptors) for correlation may not be probable.

Compared to the original prior (Fig. 5.2), the information gains for graphs

with a 0.25 prior of receptor edge probabilities (Fig. 5.3 )are similar in

ranking. The median out-degree of tnfa is 5 while the median in-degree of

39



tnfa is 1. The degrees (Fig. 5.6) of the other nodes seem to support a

correlation between out-degree and expected information gain.

Figure 5.4: Incoming receptor edges with 0.5 probability of existence.

If the prior edge probability of incoming edges to receptors is high (Fig.

5.4, 5.5), then the incoming edges to receptors are likely to exist in the DAGs

produced by the bootstrapping process. If the edges stay directed during the

DAG-to-PDAG process, interventions done on the four receptors do not count

the receptor-directed edges towards their information gain.

Compared to the previous two priors, the information gains for graphs

with a 0.5 prior of receptor edge probabilities (Fig. 5.4) are drastically dif-

ferent. All four receptor nodes (tnfa, il1a, tgfa, and igf1) now have the four

lowest estimated information gains. The median out-degree for tnfa is 4, and

40



the median in-degree is 3. While the total degree of the tnfa node hasn’t

changed much, the ratio between out and in degrees has, drastically.

Figure 5.5: Incoming receptor edges with 0.75 probability of existence.

The information gains for graphs with a 0.75 prior of receptor edge prob-

abilities (Fig. 5.5) follow a similar pattern as the previous 0.5 prior. The

differences in information gains between nodes are more pronounced, and the

four receptor nodes still have the four lowest estimated information gains.

The median out-degree for tnfa is 4, and the median in-degree is 4. In other

words, as the probability for incoming edges to receptors gets higher, the ra-

tio of out to in degrees for tnfa (and likely other receptors to a lesser degree)

gets lower.

41



5.5.2 Expected Information Gain and Degree

Looking at a summary box plot (Fig. 5.6), there appears to be several main

categories of expected information gain trends among different nodes. Each

box in the top EIG plot represents the distribution of EIG over the top

50 PDAGs produced by the bootstrapping and DAG-to-PDAG algorithms.

Each box in the bottom two degree plots represents the distribution of out

and in degrees over the top 50 DAGs produced by the bootstrapping algo-

rithm. For the receptors (the first four left proteins in our plots), lower in-

coming probabilities are correlated with higher information gain and higher

probabilities with much lower information gain. Most of the other nodes

exhibit monotonic trends, where expected information gain increases as in-

coming receptor edge probabilities rise. Some of these monotonic trend nodes

show little change even though they exhibit the trend; these tend to have

small expected information gain across the probabilities in comparison to

other nodes. The other monotonic trend nodes show much more noticeable

increases in expected information gain.

We can look at the in and out degrees of our nodes for all graphs after

the bootstrapping process and before the DAG-to-PDAG conversion (Fig.

5.6). The DAG in and out degrees are closely related to the information

gains of each node in each graph, which count the undirected adjacent edges

in the corresponding PDAGs. The most obvious trend we see is that as the

prior edge-probability increases, so do the in-degrees of the receptor nodes,

indicating that the higher prior causes some of the prior-probability edges

42



to appear in our best-fit DAGs. The non-receptor nodes have fairly stable

median in-degrees.

When we look at the variability of the degrees across receptors, we notice

that degrees of the receptor nodes are most variable when the prior edge prob-

abilities are lowest. The difference in variability supports the idea that our

low priors force the bootstrapping process to create alternate, more complex

structures to explain our data. If Ness had used a higher probability than

the original prior, the DAGs created by the bootstrapping process would be

quite different.

As the prior edge probabilities get higher, the variability of the non-

receptor node degrees and expected information gains gets higher as well.

It remains to be determined whether the trends we witness are due to the

specific nodes in question and how the data supports a certain structure,

or whether putting directed edge priors in general has the same effect on

children nodes.

43



Figure 5.6: Box plots comparing expected information gain and degrees
across different edge priors and nodes.

44



Chapter 6

Concluding Remarks

6.1 Discussion

We can hypothesize about why different uniform priors on certain nodes lead

to drastically different information gains on those nodes, but it is difficult

to quantify how and why. I’d like to further elaborate on the relationship

between out-degree of receptor nodes and their expected information gain.

Some further goals would be testing priors on different non-receptor nodes

and finding an explicit quantitative relationship between in/out degrees and

the expected information gain.

6.2 Conclusion

The prior edge probabilities play a key role in determining the expected

45



information gain of the receptor nodes. The importance of the prior edge

probabilities is mostly seen in the bootstrapping phase, where different pri-

ors produce graphs with different ratios of in to out degrees across receptors.

More analysis on the relationship between prior edge probabilities and ex-

pected information gain is needed.

46



Bibliography

[Flatley, 2009] Flatley, J. (2009). Artificial intelli-

gence solves boring science experiments, makes in-

terns obsolete. https://www.engadget.com/2009/04/03/

artificial-intelligence-solves-boring-science-experiments-makes/.

[Gamez et al., 2011] Gamez, J. A., Mateo, J. L., and Puerta, J. M. (2011).

Learning bayesian networks by hill climbing: efficient methods based on

progressive restriction of the neighborhood. Data Mining and Knowledge

Discovery, 22(1-2):106.

[Heckerman, 2008] Heckerman, D. (2008). A Tutorial on Learning with

Bayesian Networks, pages 33–82. Springer Berlin Heidelberg, Berlin, Hei-

delberg.

[Kuleshov and Ermon, 2019] Kuleshov, V. and Ermon, S. (2019). Stan-

ford cs228 notes. https://ermongroup.github.io/cs228-notes/

representation/directed/.

47

https://www.engadget.com/2009/04/03/artificial-intelligence-solves-boring-science-experiments-makes/
https://www.engadget.com/2009/04/03/artificial-intelligence-solves-boring-science-experiments-makes/
https://ermongroup.github.io/cs228-notes/representation/directed/
https://ermongroup.github.io/cs228-notes/representation/directed/


[Ness, 2015] Ness, R. (2015). bninfo: Queries and information theoritic op-

erations on Bayesian networks. R package version 1.0.

[Ness et al., 2017] Ness, R. O., Sachs, K., Mallick, P., and Vitek, O. (2017).

A bayesian active learning experimental design for inferring signaling net-

works. In Sahinalp, S. C., editor, Research in Computational Molecular

Biology, pages 134–156, Cham. Springer International Publishing.

[Pearl, 1995] Pearl, J. (1995). Causal diagrams for empirical research. Data

Mining and Knowledge Discovery, 82(4):669–710.

[Sarwan, 2016] Sarwan, N. S. (2016). Bayesian statistics explained to begin-

ners in simple english. https://www.analyticsvidhya.com/blog/2016/

06/bayesian-statistics-beginners-simple-english/.

[Sverchkov and Craven, 2017] Sverchkov, Y. and Craven, M. (2017). A re-

view of active learning approaches to experimental design for uncovering

biological networks. PLOS Computational Biology, 13(6):1–26.

48

https://www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english/
https://www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english/

	Introduction
	Bayesian Statistics
	Introduction
	Bayes' Rule
	Prior, Posterior, and Likelihood
	Marginal Probability

	Predicting Probability of New Data

	Bayesian Networks and Active Experimental Learning
	Bayesian Networks
	Representation
	Updating Network Probabilities
	Learning Network Structure

	Computationally Finding Structure Fits
	Bayesian Scoring
	Bootstrapping to Find Good Structure Fits
	Converting DAGs to PDAGs

	V-Structures
	Summary

	Experiments and Information Gain
	Methods
	Experiments
	What is an Experiment?

	PDAGs in the Code
	Information Gain
	Summary

	Testing Priors
	The DREAM network
	Structure Probabilities
	Motivation for Exploring Priors
	Methods
	Results
	Results by Prior
	Expected Information Gain and Degree


	Concluding Remarks
	Discussion
	Conclusion


