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Chapter 1

Introduction

Glenn Rodriguez took college classes, trained service dogs and volunteered

for a youth program during his 26-year sentence. Chance Magazine reported

that he was denied parole earlier this year. His COMPAS score, generated by

a mysterious proprietary algorithm to estimate his likelihood of recommitting

a crime, was cited as evidence against his case for release [7]. How could

he prove that an inhuman, computer-generated algorithm had treated him

unfairly?

In order for Glenn to contest the court’s ruling, a comprehensive dialogue

needs to be built around the systemic problems that algorithms develop

when optimized for predictive accuracy. ProPublica, an investigative jour-

nalism newsroom, recently found that for every white inmate labeled high
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risk by COMPAS who didn’t recommit a crime upon release, there are two

black inmates who are similarly mischaracterized by the algorithm [8]. While

this finding screams racial discrimination, the field of machine learning cur-

rently lacks the larger philosophical and statistical framework to formalize

and resolve algorithmic bias. As machine learning techniques become more

pervasive, there is an increasing imperative to evaluate their effect on the

populations they model. This thesis is part of an effort in the field of fair

machine learning to develop a language with which victims like Glenn can

change the ways algorithms affect their lives.

What does it mean for an algorithm to discriminate? It it important to

acknowledge that a non-discriminatory model can’t exist. Inherently, an

algorithm that predicts individual behavior makes decisions based on a series

of relevant attributes - it discriminates and generalizes information in order

to capture patterns. However, not all attributes should be treated similarly.

Over time, the U.S. legal system has come to landmark decisions (many

during the civil rights movement) outlawing discrimination based on certain

characteristics.

Definition 1.1 Sensitive Attributes: These are individual characteris-

tics protected by U.S. Law. Discrimination based on these attributes (age,

disability, gender reassignment, marriage and civil partnership, pregnancy

and maternity, race, religion or belief, sex, sexual orientation) is illegal in

certain contexts (employment, sentencing, voting etc.).
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Legislation such as the Civil Rights Act, the Fair Housing Act, and the Equal

Credit Opportunity Act make discrimination based on sensitive attributes

such as color, religion, and sex illegal [2]. My thesis will focus on analyzing

algorithmic racial bias, although the question of how to balance a model with

respect to multiple sensitive attributes is an interesting line of inquiry with

unsatisfying answers. However, diagnosing disparate impact across even one

feature is still a complicated, multi-dimensional problem. One might suggest

that simply omitting the race variable from a training set would prevent

the model from discriminating. In a sense, they would be right. Disparate

treatment, a possible definition of discrimination, is defined as explicitly

deciding an outcome based on a sensitive attribute. A model that predicts

without the race variable would not exhibit disparate treatment. However,

there are many ways of defining discrimination.

In Griggs v. Duke Power Company, the US Supreme court ruled that a busi-

ness’s hiring process was problematic even though it did not depend ex-

plicitly on a sensitive attribute. Duke Power Co. was banned from using

intelligence scores and high school diplomas to determine professional fitness

because these measures were correlated with race and consequently caused

large differences in hiring outcomes for black and white individuals [9]. This

monumental decision began the struggle between concepts of disparate treat-

ment and disparate outcome. The concept of evaluating a model based on

“unintended discrimination” (disparate impact) is controversial and often
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directly contradicts the implications of disparate treatment. However, the

current, heated debate surrounding the concept of affirmative action and

white privilege is a testament to its relevance. My thesis will evaluate the

effect of over-policing on crime-related predictive algorithms in the context

of disparate impact.

Disparate impact is often defined as the violation of outcome equality. The

most stringent definition of outcome equality is Independence:

Definition 1.2 (Independence) If we define R as a binary classifier and

A as sensitive attribute with two levels a and b, a model is independent (does

not exhibit disparate impact) if it has the following behavior P (R = 1|A =

a) = P (R = 1|A = b).

However, there are also a series of more nuanced definitions of outcome equal-

ity. The US Equal Employment Opportunity Commission uses the 80% rule

to define outcome equality in hiring decisions:

Definition 1.3 (80% rule) If we define R as a binary classifier and A as

sensitive attribute with two levels a and b, a model follows the 80% rule

if it exhibits the following behavior P (R=1|A=a)
P (R=1|A=b) ≥ ε = 0.8 (assume that

P (R = 1|A = b) > P (R = 1|A = a) without loss of generality). Therefore,

a model exhibits disparate impact when P (R=1|A=a)
P (R=1|A=b) < ε = 0.8

Both independence and the 80% rule are vulnerable to arguments appealing

5



to business necessity. A company can claim that avoiding disparate impact

in hiring decisions would prevent the acquisition of certain skillsets and hurt

business. Variants on the definitions stated above are susceptible to this

criticism because they do not account for the accuracy of model decisions

with respect to the outcome an institution (or in this scenario, a company)

is seeking to maximize. For example, a business hiring process attempts to

identify applicants that are most likely to succeed within the company en-

vironment. This notion of professional fitness can be evaluated in a variety

of ways. In the sales department of a large clothing chain, employee success

may be accessed by the revenue of individual sales and the number of new

clients acquired. This business may argue that hiring equal numbers of black

and white applicants would be impossible for the success of their company

because a higher number of white applicants have taken the college market-

ing classes necessary to succeed. If they implement this hiring policy, they

will be violating notions of outcome equality such as Independence and the

80% rule. However, let’s take a closer look at the nature of this business’

hiring decisions. In this case, the business’ hiring model predicts a higher

likelihood of success for an individual who has taken more marketing classes.

If the company collects information on the sales numbers of black and white

applicants and demonstrates that the average difference between the pre-

dicted sales (based on the number of marketing classes and possibly modeled

using a linear regression) and the actual sales of these groups are the same,

they have demonstrated that the accuracy and error of the model across
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these two groups is the same. Therefore, in a sense they have demonstrated

that their algorithm treats individuals equally across race without necessarily

satisfying a notion of outcome equality. Separation and Sufficiency are two

definitions of algorithmic fairness that focus on equal treatment instead of

equal outcomes.

Let us define R as a binary classifier, A as the sensitive attribute and Y as

the target variable. A target variable is the outcome that the binary classifier

is attempting to predict (it is unobservable at the time of the prediction).

For example, A is race, R is a high COMPAS score and Y is whether or not

the defendant recidivates in the COMPAS case mentioned above.

It is important to note that Separation and Sufficiency can only be verified

when the target variable becomes observable (for COMPAS this was two

years after the defendant appeared in court), while Independence or the 80%

Rule can be evaluated immediately. This is not necessarily a disadvantage of

the following definitions, but it is an important distinction to bear in mind.

Definition 1.4 Separation: P (R = 1|Y = 1, A = a) = P (R = 1|Y =

1, A = b) and P (R = 1|Y = 0, A = a) = P (R = 1|Y = 0, A = b). The

probability of an outcome’s value is independent of the sensitive attribute

conditional on being classified positively (or negatively) by the model.

Definition 1.5 Sufficiency: P (Y = 1|R = 1, A = a) = P (Y = 1|R =

1, A = b) and P (Y = 1|R = 0, A = a) = P (Y = 1|R = 0, A = b). The proba-
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bility of being classified positively (or negatively) by the model is independent

of the sensitive attribute conditional on the value of the outcome variable.

Sufficieny implies that there is equal predictive accuracy across the sensitive

attribute. In the context of racial bias in the COMPAS algorithm, this means

that a high risk black individual is just as likely to have committed a crime

as a high risk white individual. Separation is the concept of fairness that

we will focus on in this paper. It is consistent with the racial bias found

by ProPublica in COMPAS and implies that, in order to achieve equality of

outcomes, a black individual who recommits a crime should be just as likely

to be labeled high risk as a white individual who recommits a crime. More

generally, Separation means that false positive and false negative rates are

equal across the sensitive attribute.

For reference, if “TN” is the number of observations correctly classified as

negative by the model and “FP” is the number of of observations incorrectly

classified as positive by the model then:

False Positive Rate,

FPR =
FP

TN + FP
(1.1)

and, if “TP” is the number of observations correctly classified as positive by

the model and “FN” is the number of of observations incorrectly classified

as negative by the model then:
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False Negative Rate,

FNR =
FN

TP + FN
(1.2)

Now that we have defined discrimination as disparate impact and decided

to measure it using Separation, the next question becomes: what are the

mechanisms driving non-Separation disparate impact in algorithms such as

COMPAS? If institutions aren’t intentionally discriminating, why does algo-

rithmic bias occur across sensitive attributes? In order to pinpoint the root

of differential outcomes, it is helpful to imagine models as part of a larger

environment.

Figure 1.1: Algorithm Cycle

World

Data

Model

Each arrow in the diagram above represents different steps in the modeling

process. And, at every juncture in the flow of information from one stage

to another, an algorithm is susceptible to subjective choices that can result

in discrimination and disparate outcomes. We are particularly interested

in the blue arrow between the “World” and the “Data” because it is often

overlooked. At first glance, establishing data acquisition methodologies seems
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like a robotic, mundane task. However, it is clearer on closer inspection

that the unique compromise between funding, experimental methodology,

privacy laws, and preconceptions of the world drives data collection and

almost completely determines the patterns that an algorithm will identify in a

training set. In addition, the realities and limitations of data collection often

cause data to be far from identically and independently sampled. Without a

representative sampling mechanism, many of the assumptions that statistical

inference and modeling rely upon fall apart.

1.1 The Thesis

Our hypothesis is that the common practice of over-policing black neighbor-

hoods results in skewed samples that affect models attempting to predict

individual crime. This conjecture relates to the COMPAS algorithm, but its

scope is not limited to criminal justice. The results can be generalized so that

they inform and correct modeling techniques that depend on over-sampled

populations in a variety of contexts. Figure 1.1 was included as both an in-

structive tool and a cautionary tale. The loop will only become stronger and

increasingly inaccessible to the public as models become more prevalent and

more complex. It is truly scary that a model picking up patterns from biased

data can have a substantial impact on the world and consequently create and

influence behavior that it then observes - thereby creating a feedback loop
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that molds the world in the image of dangerous measurement errors.

In order to evaluate our hypothesis, chapter two will begin by establish-

ing the model being examined, logistic regression. This is a very popular

binary classifier and will be the representative algorithm used to evaluate

theories of predictive accuracy and disparate impact. Then, it will explain

how we simulated the effect of over-policing on two representative popula-

tions as well as the basic tendencies of the logistic regressions that modeled

this representative dataset. Chapter three will focus on estimating the ef-

fect of over-policing on disparate impact contingent on a theory of criminal

tendencies. The conclusion will summarize and connect our findings.
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Chapter 2

Investigating the Effect of

Over-Policing on False Positive

Rates

2.1 Logistic Regression

In many ways, my thesis revolves around the behavior of logistic regression.

In order to better understand the mechanics of this model, I will use this

section to dive into the mathematics that provide the foundation for this

prediction algorithm.
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A logistic regression, which is a type of generalized linear model, differs from

ordinary least squares regression in a small, but fundamental way. Instead

of modeling a continuous outcome variable, a logistic regression models a

binary outcome variable using a link function. The logistic regression link

function is called the logit and represents the log odds ratio:

ln

(
πi

1− πi

)
= β0 +

n∑
j=1

βjxij

where i is an index for the subjects or observations and j is an index for the

explanatory variables. Solving for πi gives,

πi =
eβ0+

∑n
j=1 βjxij

1 + eβ0+
∑n

j=1 βjxij

The logit is a sigmoid function, dependent on the predictor variables and

the beta coefficients and constrained between 0 and 1. There are a couple of

important aspects of logistic regression to note at this point (they will come

in handy later).

• The maximum likelihood estimates for the beta coefficients do not exist

in closed form. Numerical approximation must be used.

• The predicted values from a logistic regression model can be considered

13



to be probabilities (πi), where Yi (the outcome variable) ∼ bern(πi). πi

(a number between 0 and 1) is a function of specific beta coefficients

and predictor variables for each observation. Consequently, in order to

predict on another data set, one needs to establish a cutoff point for

classifying an observation as 1 or 0 depending on the πi.

2.2 The Simulation

Based on a hypothetical scenario, our simulation generates a population from

which we can sample. Imagine that individuals in a population distinguished

by a binary race variable are prone to entering crime. Each individual in

the population has a likelihood of entering crime given by a function on

a few predictor variables. These variables include age and gender, whose

distributions in the population are determined in advance, and past criminal

offenses, which is initially set to 0 for every individual. Every year, a crime

likelihood is calculated for every individual that is generally higher for men,

the youth, and past criminals (as demonstrated in the plot below).
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Figure 2.1: A graph of crime likelihood as a function of age, gender, and
prior offenses after 10 years

The crime likelihood is defined as the probability of an individual entering

crime conditional on their attributes (gender, age, and past priors). In our

simulation, we created the crime likelihood function to reflect the general

effects of these attributes as seen in the COMPAS data (younger men with

more priors are more likely to go into crime), but we cannot claim that the

relative effect sizes of the attributes are accurate for any actual population.

Hopefully, further applications of this research will attempt to model a re-

alistic crime likelihood function for a given population using social science

theory.

Once an individual has entered crime, each year they either stay in crime,
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leave crime with 0.2 probability (a guess at the rate of this transition), or

enter jail. The probability of an individual in crime being jailed is different

across the two observed races in our simulation. The table below demon-

strates these differences:

Table 2.1: Probabilities of Entering Jail by Race and Prior Offenses

Black White

No Prior Offenses over-policing 0.05

Prior Offenses over-policing + 0.03 0.08

Once again, the relative differences between the probability of entering jail

for whites and for blacks is not meant to model a specific over-policed popu-

lation. The simulation is simply attempting to investigate how differences in

over-policing probabilities affects the population dynamics. In our simulated

model, once individuals are in jail, they serve a three year sentence and then

are released back into population where they undergo the same modeling

process with a prior offense recorded. See Algorithm 1 for more details and

pseudo-code for the simulation.

2.3 Running the Simulation

After running the simulation, we have a data set that we can use to train a

logistic model. Our binary response variable is whether or not an individual
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Initialize the population;
Ages are normally distributed around a mean of 30 with a standard deviation of 5;
Sex is equally likely to be male and female;
Race is equally likely to be black and white;
Priors are set to zero for every individual;
Each individual has a 5% chance of starting in crime;
Set the over-policing parameter = θ;
for 10 iterations (10 years) do

for every individual in the population do
calculate crime likelihood (γi) as a function of the individuals attributes

(sex, priors and age but not race). It should range from 0 (won’t enter
crime this year) to 1 (will enter crime this year);

if not in crime or jail then
Use the γi as the probability that the individual will enter crime;

end
if in crime but not in jail then

There is a 20% chance that you leave crime. But, if an individual
stays in crime;

if black then
if no prior offenses then

Use θ + 0.03 parameter as the probability that the individual
will enter jail;

end
if prior offenses then

Use θ as the probability that the individual will enter jail;
end

end
if white then

if no prior offenses then
5% chance of going to jail;

end
if prior offenses then

8% chance of going to jail;
end

end

end
if in jail then

An individual is in jail for three years and then reenters the
population;

end

end
Iterate age;

end
Then return to the first for loop with a population of those who have committed a

crime in the first 10 years;
If they commit a crime in the second 10 years than they are said to have

recidivated;

Algorithm 1: Running the Simulation17



who has committed a crime in the first ten years recommitted a crime in

the subsequent ten years, and our predictor variables are age and number of

previous offenses at the beginning of the second ten years, gender, and race.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.0445 0.5669 5.37 0.0000

Gender 0.8566 0.1347 6.36 0.0000
Age -0.1471 0.0143 -10.29 0.0000

White -0.9045 0.1554 -5.82 0.0000
Priors 0.8205 0.2062 3.98 0.0001

Table 2.2: Logistic Regression for Simulation with Over-Policing Parameter
Equal to 0.2

Table 2.2 represents the information contained in the logistic regressions

produced by the simulation. Age, gender, race, and priors are all significant

variables when predicting ten year recidivism. However, based on the me-

chanics of our simulation, we knew they would be! From the beginning, we

calculated the crime likelihood as a function of age, gender and priors. This

means that the likelihood of an individual going into crime and then jail are

based on these attributes. The different over-policing parameters acting on

the two populations makes the race variable significant as well. Increasing

the over-policing parameter increases the rate at which black individuals go

to jail and consequently the odds of a black individual having gone to jail

during the simulation relative to a white individual. Since the odds of a

black individual going to jail relative to a white individual is eBWhite (See

Table 2.2), we know that as we increase the over-policing parameter, the
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race variable (BWhite) will increase in magnitude and the model will predict

more blacks to recidivate. However, we don’t inherently know how the over-

policing parameter will influence the error of the model (the false positive and

false negative rates discussed earlier). How will increasing the over-policing

parameter change the false positive rate, the false negative rate, and the

separation (the fairness) of the model?

2.4 Distinguishing Between False Positive Rates

by Over-policing

In order to get a sense for the relationship between the over-policing param-

eter and the false positive rate we created a meta-simulation in which we ran

the simulation in Algorithm 1 for a range of over-policing values between 0.1

and 0.3 over 100 iterations. We then trained logistic regressions on each of

the corresponding data sets, predicted whether individuals recidivated dur-

ing the 10 years of the simulation based on a series of cutoff points (ranging
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from 0.1 to 0.9) and calculated the false positive rates (See Algorithm 2).

for each iteration do

for each value of the over-policing parameter do

I. Run the simulation once.

II. Save a data set containing the attributes of everyone who went to jail in the first

10 years and record whether they went to jail in the second 10 years in a

recidivism variable.

III. Run a logistic regression with the attributes as the independent variables and the

recidivism variable as the response variable.

IV. Run the simulation a second time and save this data.

for each cutoff value do

I. Predict whether or not individuals in the second simulation have recidivated using

the cutoff values (recall that a cutoff is necessary to predict a binary output since

a logistic regression outputs a probability value between 0 and 1).

II. Calculate the false positive rate and false negative rate based on these predictions.

end

end

end

Algorithm 2: Meta-Simulation

The average false positive rates (averaged over the iterations) are plotted in

the graph below:
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Figure 2.2: False Positive Rates

It seems from the plots that the false positive rate differs across different

levels of over-policing and race, but how can we be sure? How do we know

these differences aren’t the result of the meta-simulation’s natural variation?

In order to get a sense for whether the false positive rates are significantly

different from each other at a given cutoff value, we will take advantage of

the fact that the false positive rates are averaged over multiple iterations of

the meta-simulation for each over-policing values. Figure 2.3 replots figure

2.2 with standard error bars added from calculations in equations 2.1 and

2.2.

If we label the false positive rate for a given iteration, b, and cutoff value, c,
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as FPRcb and the total number of iterations as n,

FPRc =

∑n
i=b FPRcb

n
(2.1)

sFPRc =

√√√√ 1

n− 1

n∑
i=b

(FPRcb − FPRc)2 (2.2)

The 95% confidence interval for each true average false positive rate at a

given cutoff value is consequently:

FPRc ± tn−1,.975 ∗
sFPRc√

n
(2.3)

After adding error bars to the FPR curves, the difference between the rates

continues to be statistically significant:
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Figure 2.3: False Positive Rates with Standard Error Bars

The chart demonstrates that there is a statistically significant difference be-

tween black false positive rates across over-policing levels for most cutoff

values. However, it is important to acknowledge that this statistical sig-

nificance is partly artificial. Since we determine the distance between the

over-policing parameters tested, we have some control over whether the false

positive rates will be significantly different from each other. Therefore, it

is best to treat these statistical tests as more evidence of the general trend

indicating that as the prevalence of convicted individuals in the black pop-

ulation increases in response to the increasing over-policing parameter, the

false positive rate of the logistic regression for blacks will increase. Lastly,

note that the over-policing parameter does not directly affect the white pop-
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ulation, so it is encouraging to see that the white false positive rate does not

exhibit a similar trend. Let’s dive a little deeper into why the relationship

between the over-policing parameter and the false positive rate might exist:

When the predictors contain no information relating to the response variable,

the logistic regression predicts based on prevalence of the response variable

outcomes. This can be seen by manipulating the log-odds formula depicted

below:

πi =
eβ0+

∑n
j=1 βjxij

1 + eβ0+
∑n

j=1 βjxij

if Bj = 0 ∀j ∈ {1, · · ·n}, this expression equals:

πi =
eβ0

1 + eβ0

Therefore, the likelihood for the binary outcome variable yi with no predictor

variables becomes:

f(y) =
n∏
i=1

πyii (1− πi)1−yi

f(y) =
n∏
i=1

(
eβ0

1 + eβ0

)yi(
1− eβ0

1 + eβ0

)1−yi
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f(y) =

(
eβ0

1 + eβ0

)∑n
i=1 yi

(
1− eβ0

1 + eβ0

)n−
∑n

i=1 yi

ln(f(y)) =
n∑
i=1

β0 ∗ yi − n ∗ ln(1 + eβ0)

Differentiating the likelihood with respect to β0 and setting it equal to zero

produces the maximum likelihood estimator of πi.

dln(f(y))

bβ0
=

n∑
i=1

yi − n ∗
eβ0

1 + eβ0
= 0

∑n
i=1 yi
n

=
eβ0

1 + eβ0
= π̂i (2.4)

Therefore, it seems that the predictions of a logistic regression are connected

to the prevalence of the response variable outcomes and the information

contained in the variables. This relationship between predictions, prevalence

and information is highly related to the effect of over-policing on false positive

rates. At its core, over-policing is affecting the prevalence of the response

variable (recidivism) in the black population. By analyzing the connection

between prevalence, false positive rates, and variable information at a basic

level, we may be able to get a better handle on how over-policing affects false

positive rates. In order to examine this relationship, we designed Algorithm

3 to mimic a simple scenario where there is one continuous predictor variable

and a binary outcome. During the simulation we will vary the amount of

information contained in the predictor variable as well as the prevalence of the
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binary outcome, apply logistic regressions to these data sets, and calculate

the false positive rates of these models.

n is the number of observations;

for each iteration do

for a range of prevalence (ζ) values between 0 and 1 do

for a range of entropy (κ) values between 0.55 and 1 do

Generate the response variable ∼ bin(n, ζ) ;

Generate the predictor variable values by conditioning on the value of

the response variable ;

if the response variable is 1 then

create the predictor variable ∼ unif(1− κ, 1)

end

if the response variable is 0 then

create the predictor variable ∼ unif(0, κ)

end

Model the data using a logistic regression, predict using a cutoff value

of 0.5 and calculate the false positive rate ;

end

end

end

Algorithm 3: Variable Information and Prevalence Simulation

The entropy parameter (κ) in our simulation may be a little confusing on

first glance. Basically, it determines how much information the predictor

variable contains about the response. If κ = 1, then the predictor variable ∼

unif(0, 1) regardless of the response, and consequently the predictor contains

no information about the response. However, as the value of κ decreases,
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the uniform distribution that the predictor variable is drawn from is more

closely concentrated around the response variable - which means it contains

more information about the true value of the response variable. If κ < 0.5,

the uniform distributions for the predictor variables, given the two response

variables, have no overlap and the logistic regression can perfectly classify

the data.

The results of the simulation are depicted in the chart below:

Figure 2.4: False Positive Rates at a Cutoff Value of 0.5

It is clear from this graph that the false positive rate is a function of the

prevalence and the information in the model (the latter is highly related to

the accuracy of the model). However there are some interesting nuances to
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this data. Consider the case when κ = 1 and the prevalence is less than 0.5.

Because the predictor is uninformative, the logistic regression will classify all

the observations as ζ (see equation 2.2). At a cutoff of 0.5, no observations

will be classified positively, so the false positive rate will be zero (Equation

1.1). Similarly, when ζ > 0.5, all the observations will be classified positively

and the false positive rate becomes 1.

The non-linear relationship between the false positive rate and the prevalence

for each value of entropy is another intriguing aspect of the graph. It would

be very interesting to model the exact mathematical relationship between

prevalence, information, and false positive rate in order to understand the

idiosyncrasies of this data and better predict the effect of over-policing on

false positive rates.
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Chapter 3

Estimating the Over-Policing

Parameter Conditional on the

Crime Likelihood

How can we estimate the over-policing parameter? This is the next ma-

jor question that this thesis considers. In order to tackle this estimation

problem we are going to assume that we have some theory on how the en-

vironment and attributes of an individual affect their likelihood of entering

crime. Our simulation assumes a very specific relationship between age,

gender, priors, and crime likelihood, but we do not believe that these are

the only necessary variables or that we modeled the relationship completely.
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Papers like “Sex and involvement in deviance/crime: A Quantitative Re-

view of the Empirical Literature” and “The victimful-victimless crime dis-

tinction, and seven universal demographic correlates of victimful criminal

behavior” [4][5] emphasize the importance of sex and age, but also describe

other correlates and interaction effects inherent to criminal behavior that

we did not account for. The key to modeling over-policing is assuming that

γ̂i = f(ith individual’s observable attributes) can be calculated for each in-

dividual. The only other major parameter that enters the model (See Al-

gorithm 1) is θ. The value of θ affects the likelihood of an individual being

thrown in jail conditional on being in crime. Lastly, the probability of leav-

ing crime without going to jail is set at 0.2 for now, but this should be a

parameter estimated from research as well.

Within our framework, there are three states an individual can occupy in

any given year - out of jail and not in crime (state1), out of jail and in crime

(state2), and in jail (state3). Since the probabilities that determine the ways

individuals transition from state to state aren’t conditional on time, the

process is memoryless and can be modeled using a Markov chain (tailored

for every individual because they will all have different crime likelihoods).

Our goal is to calculate the probability that an individual being sent to jail,

a.k.a that they enter state3, at any point in a 10 year period. If γi = the

average of the crime likelihood in the first and last years of the simulation and

θ = the over-policing parameter, then the transition matrix of this Markov
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process describing the ith individual is constructed as:

M =


1− γi γi ∗ (1− θ) γi ∗ θ

0.2 ∗ (1− θ) 0.8 ∗ (1− θ) θ

0 0 1


This matrix is best understood in the following manner. The entry Mpq rep-

resents the probability of moving to state q conditional on being in state p.

For example, the entry M1,1 is (1−crime likelihood) and represents the prob-

ability of staying out of crime conditional on not being in crime; entry M2,1,

which is (probability of leaving crime) ∗ (1− probability of going to jail),

is the probability of leaving crime conditional on being in crime. The state

vector of an individual, xν , is a row vector where the τ th column of the row

vector is the probability of an individual being in stateτ in after ν years.

In order to find the probability of an individual who does not start in crime

or in jail of being sent to jail after ν years, we multiply the initial placement

vector

[
1 0 0

]
= x0
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by the transition matrix in the following manner:

[
1 0 0

]
1− γi γi ∗ (1− θ) γi ∗ θ

0.2 ∗ (1− θ) 0.8 ∗ (1− θ) θ

0 0 1


ν

= xν

When estimating θ, it is important to acknowledge that observational data

has information about only two states - whether an individual has been

caught by police or not (state3 or {state1 and state2}). For a given year, we

can calculate the maximum likelihood estimate for θ in the following manner:

n is the number of individuals in the populaiton;
for individuali in the population do

Calculate γi (the crime likelihood) for individuali based on their gender, age
and past priors according to equation 3.1;

γi =
10

age
+

1

30− 20 ∗ gender
+

1

18− (priors ∗ 2)2
− 1

3
(3.1)

Note: The output of equation 3.1 for a specific simulated population is
graphed in figure 2.1.;
Create the transition matrix for individuali using γi and calculate the
probability of individuali being in each state in a given year ν as a function of
θ by multiplying the initial state vector with the transition matrix as shown
above. Let πτ,i represent the probability of being in stateτ for individuali;
Let yi = 0 if individuali is in state1 or state2 (since we can’t observe the
difference between the two states), and yi = 1 if individuali is in state3;

end
Consequently, the likelihood function of θ for a given year ν is

L(θ) =

n∏
i=1

πyii,1(πi,2 + πi,3)1−yi where πi,τ = g(θ, γi) (3.2)

Where g is some function of θ and γi calculated using the transition matrix.

Algorithm 4: Maximum Likelihood Estimation
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For example, If we were going to calculate the product above with information

form after the first year, we would begin by multiplying:

[
1 0 0

]
1− γi γi ∗ (1− θ) γi ∗ θ

0.2 ∗ (1− θ) 0.8 ∗ (1− θ) θ

0 0 1

 =

[
1− γi γi ∗ (1− θ) γi ∗ θ

]

The likelihood function in equation 3.2 would be:

L(θ) =
n∏
i=1

(γi ∗ θ)yi(γi ∗ (1− θ) + 1− γi)1−yi

Where yi indicates whether or not the individual has been to jail after year

1.

Theoretically we could use use software to solve for the value of θ that

maximizes the likelihood in equation 3.2 for year 10. In other words, solve

for θ that satisfies the following equation:

d

dθ

n∏
i=1

πyii,1(πi,2 + πi,3)
1−yi = 0

However, solving for the MLE of θ using the information contained in year

10 of the simulation analytically would involve solving a polynomial with

more than 1000 terms. Instead of attempting this colossal task, we will take
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advantage of the fact that θ exists within a relatively small space (from 0 to

1) to grid search for an estimate of the θ that maximizes the likelihood above.

We tested this approach on a population that is over-policed with true θ =

0.15. In order to get a sense for the bias and variance of θ̂, we built the

sampling distribution by estimating the parameter over many simulations.

Figure 3.1: Histogram of Estimated θ’s (True θ = 0.15)

From this graph, it is clear that the bias and variance are small! The mean

of the distribution (the red line above) is 0.15035 and the standard deviation

is 0.015. However, if we look at the sampling distribution when the true

over-policing parameter equals 0.2:
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Figure 3.2: Histogram of Estimated θ’s (True θ = 0.2)

It appears that both the variance and the bias are higher for a more extreme

over-policing parameter! However, in order to confirm this relationship I

would need to conduct many more trials. The mean is now 0.1932 and the

standard deviation of the θ estimates is 0.0185.

Is it possible to obtain a better estimate of θ? Let’s looks at how the standard

deviation is related to the size of the population we sample. The sampling

distribution of the MLE asymptotically converges to approximately a normal

distribution centered around the true parameter with variance 1
In(θ)

, where

In(θ) is the Fisher information in a sample of size n with respect to θ. Or in

a more mathematical sense, it is the second derivative of the log likelihood
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function. For context, an example of the empirical likelihood calculated on

data generated from a model with θ = 0.2 is:

Figure 3.3: An example of an empirical likelihood function generated while
creating the sampling distribution (True θ = 0.2)

But, how do we find the Fisher information of θ explicitly? Finding this value

usually involves taking the expected value of the likelihood function’s 2nd

derivative. However, given the incredibly complicated nature of the likelihood

we are considering, it will be very hard if not impossible to solve this problem

analytically. Therefore, we will again appeal to numerical methods.

Since the grid of possible θ values we use to estimate the MLE is evenly

spaced, we can use an approximation of d2f(θ)
dθ2

(where f(θ) is the likelihood

of θ) based on central difference coefficients. In order to derive the coefficients
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for this estimation we will begin with the Taylor expansions of f(x± h) and

f(x ± 2h). The Taylor series will be truncated at the 4th terms in order to

achieve a 4th order accuracy approximation [3].

f(x+ h) ≈ f(x) + hf ′(x) +
h2f ′′(x)

2!
+
h3f (3)(x)

3!
+
h4f (4)(x)

4!
(3.3)

f(x− h) ≈ f(x)− hf ′(x) +
h2f ′′(x)

2!
− h3f (3)(x)

3!
+
h4f (4)(x)

4!
(3.4)

f(x+ 2h) ≈ f(x) + 2hf ′(x) +
4h2f ′′(x)

2!
+

8h3f (3)(x)

3!
+

16h4f (4)(x)

4!
(3.5)

f(x− 2h) ≈ f(x)− hf ′(x) +
4h2f ′′(x)

2!
− 8h3f (3)(x)

3!
+

16h4f (4)(x)

4!
(3.6)

We can eliminate the odd terms by adding equations 3.3 to 3.4 and equations

3.5 to 3.6:

f(x− h) + f(x− h) ≈ 2f(x) + 2
h2f ′′(x)

2!
+ 2

h4f (4)(x)

4!
(3.7)
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f(x− 2h) + f(x− 2h) ≈ 2f(x) + 8
h2f ′′(x)

2!
+ 32

h4f (4)(x)

4!
(3.8)

If we multiply equation 3.7 by 16 and subtract 3.8 in order to eliminate the

4th derivative term, we are left with:

16f(x−h)+16f(x−h)−f(x−2h)−f(x−2h) ≈ 30f(x)+24
h2f ′′(x)

2!
(3.9)

Solving for f ′′(x):

f ′′(x) ≈ 16f(x− h) + 16f(x− h)− f(x− 2h)− f(x− 2h)− 30f(x)

12h2

(3.10)

If f(θMLE) is the likelihood function evaluated at the MLE, f(θMLE±i∆x) is

the likelihood function evaluated at the ith index of the grid above or below

the index of the MLE, where ∆x is the uniform distance between the grid

indexes, Equation 3.10 becomes:

38



f ′′(θMLE) ≈ 1

(∆x)2

(
− 1

12
f(θMLE − 2∆x) +

4

3
f(θMLE −∆x)− 5

2
f(θMLE)

+
4

3
f(θMLE + ∆x)− 1

12
f(θMLE + 2∆x)

)
(3.11)

Over ten simulated samples, the average estimated Fisher information con-

tained in a sample of one thousand observations is 2891.67.

The MLE is asymptotically distributed:

(θMLE − θ)
√
In(θ) ∼ N(0, 1)

For high values of n, the sampling distribution is approximately (as stated

above):

θMLE
approx∼ N

(
θ,

1

In(θ)

)

The approximate normal distribution (graphed in black) based on the esti-

mated Fisher information together with the estimated sampling distribution,

depicted as a smoothed histogram using a kernel density estimator (in red),
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can be seen in Figure 3.4:

Figure 3.4: Fisher Normal Approximation of the Sampling Distribution

The normal distribution is a great approximation of the sampling distri-

bution! These results have two main implications. First, it means that the

standard deviation of the numerically estimated MLE depends on the sample

size and the Fisher information calculated from our grid estimated likelihood

in the ways we would expect. Considering the number of approximations

involved in this process, the similarity between the two distributions repre-

sented above is pretty amazing. This is strong evidence indicating that if we
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increased the size of our sample, we would decrease the standard error of our

estimator. Second, it was very computationally expensive to calculate the

standard deviation of the MLE estimate using an empirical sampling distri-

bution (we would bootstrap to find this sampling distribution if we had real

data). Being able to quickly compute the standard error of the over-policing

estimator based on the Fisher information in the sample could be very useful

in further applications.
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Chapter 4

Future Directions

Although our simulation models general processes with an element of ran-

domness, it lacks an explicit connection to reality. In particular, the percent-

age of the population that goes to jail and the recidivism rate is not based

on crime records. Further applications of this thesis could closely model a

current population in order to get a better sense for how well our estimation

technique handles realistic over-policing parameters.

It is also important to note that the COMPAS algorithm predictions con-

tained another layer of complexity. While the false positive rate of these

predictions was higher for black individuals, the overall model accuracy was

surprisingly equal across race. Our model does not produce this nuance.

Figure 4.1 demonstrates that the overall predictive accuracy is very different

42



across race and over-policing values. Future work on this topic will hope-

fully test the robustness of our results for different accuracy relationships,

including a model that better reflects the realities of the COMPAS algo-

rithm predictions. Additionally, it seems that the logistic regression model

is not capturing the structure of the data (i.e. isn’t predicting well). This

problem will need to be resolved before continuing this research.

Figure 4.1: Predictive Accuracy Across Race and Over-Policing Values

.
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Chapter 5

Conclusion

Consider the implications of applying the steps in this work to an actual

population. If we assume that a positive identification by the algorithm (an

individual is predicted to recidivate) factors into whether the individual is

sent to jail, then the logistic regression’s high false positive rates will augment

the effect of over-policing (which, in turn, results in more false positives),

creating a vicious feedback loop that only ends when every member of the

population is incarcerated.

As demonstrated by others and confirmed by this thesis, overall model accu-

racy is not an adequate measure of algorithmic validity. As models assume a

larger role in decisions about criminal justice and other important domains,

it is necessary to delve into the intricacies of different error types and their
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context-dependent impacts on lives. This thesis was not an attempt to ac-

curately model the impact of over-policing on disadvantaged populations in

specific communities. Rather, it operated on a powerful hypothetical. What

if you had two identical populations separated by a biased sampling mech-

anism? What if a false positive meant additional years of jail time? How

could we begin to examine the possible mechanisms that lead to different

false positive rates? How do classification models like the logistic regres-

sion balance different types of information inherent to skewed data? And,

finally, once we identify possible reasons for differential errors, how do we

estimate the effect of unfair sampling techniques (over-policing) when there

are a series of complex variables and relationships at play? This thesis be-

gins to scratch the surface of these questions. Figure 2.3 tells an important

story. It demonstrates that over-policing is a possible mechanism for ex-

plaining the large number of black defendants falsely labeled high risk by an

algorithm like COMPAS. By empirically modeling the relationship between

over-policing and false positive rates, the thesis helps to conceptualize the

way over-policing may directly affect high false positive rates. Through a sta-

tistical lens, over-policing is the implementation of a biased sampling mech-

anism, and the thesis suggests possible methods for estimating the degree

of the bias (maximum likelihood estimation of the over-policing parameter).

There are many other rabbit holes to explore, from different definitions of

fairness to different classification algorithms to the different context-relevant

impacts of error relationships. It is imperative that progress be made on
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these topics in order to ensure that individuals are treated equitably in an

algorithm-dominated world.
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