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Abstract

Correlations between variables are important in many contexts. However, when
one or both of the variables exhibit intraindividual variability, conventional esti-
mates of the Spearman rank correlation coefficient are biased towards zero. This
bias towards zero is referred to as attenuation. The bias can be reduced if the
mean of several measurements is used as the score rather than one measurement.
Using means, however, does not eliminate the bias completely. The bias has an
inverse relationship with the repeatability of the variables. In this thesis, I present
an estimator for the correlation coefficient that mitigates the attenuation. The es-
timator is a product of the Spearman correlation coefficient and a correction factor.
The correction factor is a function of within- and between-individual components of
variance for each of the two traits being correlated. Simulations show that optimal
sampling effort usually involves a small number of trials per individual and a large
number of individuals.

”A knowledge of statistics is like a knowledge of a foreign language or
of algebra; it may prove of use at any time under any circumstances.”

A.L Bowley
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Chapter 1

Introduction

1.1 Introduction

Correlations between various phenomena are probably one of the most widely
used and frequently misused statistical tools in the natural and behavioral sci-
ences [3]. Correlations between traits, for example, are important in helping de-
termine functional relationships between biochemical, morphological, and whole
organism traits [2]. Quantitative geneticists have always appreciated the role of
phenotypic and genetic traits in determining how selection acts and how traits
respond to selection. The strength of correlation coefficients between various phe-
nomena can lead to additional research into the nature of the relationship between
the variables.

Given the practical importance of correlations, accurate estimates of the strength
of the linear relationships between variables are desirable. Unfortunately, conven-
tional estimates of the Spearman rank correlation coefficient are biased towards
zero whenever one or both of the variables involved in calculating a correlation co-
efficient exhibits intraindividual variability (i.e., the repeatability is less than one).
This phenomenon is known as attenuation. Since almost all behavioral and physi-
ological traits exhibit some degree of intraindividual variability, it is important to
find an unbiased correlation coefficient. Therefore, it is safe to assume that most of
the correlation coefficients reported in the literature are understimates, on average,
of the true correlation coefficients. The bias is reduced but not eliminated if the
mean of several measurements is used as each individual’s score rather than one
measurement.

Research on finding a correction factor to mitigate the bias in the correlation
coefficient has already been done for the Pearson product moment correlation co-
efficient. My research will focus on finding the correction factor for the Spearman
rank correlation coefficient. The Spearman correlation coefficient uses ranks of mea-
surements instead of actual measurements in calculating the correlation coefficient.
The Spearman correlation coefficient is widely used in physiological and behavioral
studies [5]. The chief advantage of using the Spearman rank correlation coefficient
over the Pearson correlation coefficient is that the Spearman correlation coefficient
reduces the effect of extreme values in calculating the correlation coefficient. In the
Pearson correlation coefficient, outlying cases will have a large effect on the mean
and therefore on the correlation. In a Spearman correlation,however, the extreme
value is assigned a rank which is of same order of magnitude as the rest the values.
Rank based correlation coefficients also eliminate disparities caused by differences
in distributions of the two characteristics being correlated [9]. Using ranks, a vari-
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Chapter 1: Introduction 2

able that follows a normal distribution can still be compared on even terms with
another variable whose distribution is, for example, quite skewed. In addition, rank
based correlation coefficients are also very useful if the variables being correlated
have scores rather than values. A good example is when one is investigating the
relationship between scores assigned to contestants in a beauty contest and contes-
tants’ heights. Since there are no units associated with beauty levels, scores are
used instead. Also, sometimes, the only data available to a researcher are ranked
and so is it very useful to have a rank based correlation coefficient.

In this thesis, I describe the bias that results from intraindividual variability
and present an estimator that gives theoretically unbiased correlation coefficients.
In section 2.1 I present alternative methods available to mitigating attenuation
bias. In section 2.2 I show the theoretical derivation of the correction factor. In
section 2.3 I describe the simulations I did to determine whether the correction
factor mitigates the attenuation. Section 2.4 shows that the magnitude of the bias
varies with the repeatability of the trait as well as the number of measurements
per individual. In section 2.4, I also use simulations to evaluate the performance of
my unbiased estimator versus the conventional estimator. Section 2.5 explores the
allocation of effort between number of individuals versus number of measurements
per individuals.



Chapter 2

Correction for attenuation
due to intraindividual
variability

2.1 Alternative Approaches

Conventional correlation coefficients are attenuated whenever one or both of the
variables being correlated exhibit intraindividual variation.The intraindividual vari-
ation is statistically identical to measurement error. Variables that exhibit intrain-
dividual variation have repeatabilities less than one. Repeatability is loosely defined
as a statistic that describes the variation in measurements obtained with the same
method on identical test material under the same test conditions (same operator,
same apparatus and same environment). Variables with repeatability equal to one
are those that have no measurement errors, i.e., under identical conditions, a re-
searcher gets the same value everytime the experiment is performed e.g., number
of students in a class. Variables with high repeatabilities are those that have low
measurement errors and variables with low repeatabilities are those that have high
measurement errors.

Researchers have always known that conventional estimates of correlation co-
efficients are biased if there is measurement error. Spearman [9] noted that mea-
surement error was equivalent to rolling a ball down a rugged slope. Even though
a positive association is expected between how far the ball rolls and the force with
which the ball was rolled, the unevenness of the ground will confound how far the
ball will roll. If a correlation coefficient is calculated between how far the ball rolled
and the force with which the ball was rolled, the value obtained will certainly be
less than what is should be, it will be closer to zero, hence attenuation.

Several methods have been proposed to try to eliminate the bias. Spearman
suggested that researchers should use more than one measurement of the variables
under study. The researcher should take several measurements, calculate their
mean and then find the correlation coefficient of the means. Spearman also sug-
gested another method in which a third variable is found which is connected to the
two variables being correlated. In such a case, the unbiased correlation coefficient
would be a function of the correlation coefficients of the two variables with the third
variable. Using a third variable, however, he noted would sometimes overcompen-
sate for the bias and ends up overestimating the correlation coefficient between the
variables.

3



Chapter 2: Correction for attenuation due to intraindividual variability 4

Some researchers favor the use of confidence sets instead of point estimates. In-
stead of getting a point estimate for the correlation coefficient, they calculate an
interval estimate. Although this has been around for a while [4], many researchers
have ignored it because of misunderstandings regarding the application of the in-
terval estimates [4]. Using interval estimates gives boundaries of those population
parameters that would most likely have produced an obtained value.

Another method which is widely used is often discussed in the context of confir-
matory factor analysis [6]. In confirmatory factor analysis, which is also referred to
as structural equation modeling, measurement errors are explicitly modeled and
error free correlation coefficients thus calculated. This approach for obtaining
measurement-error-free correlation coefficients is well known in the area of struc-
tural modeling, but it is rarely discussed within other contexts. A paper by Fan [6]
showed that the confirmatory factor analysis approach yields the same results as
using a correction factor.

2.2 Deriving Correction Factor

In deriving the correction factor, we have two variables X and Y which exhibit
intraindividual variation. To model the presence of measurement error, we add the
error terms εij and ωil to the equations. Hence we have the following equations;

xij = µxi + εij (2.1)

yik = µyi + ωik (2.2)

where;

• i represents the individual

• j, l are the trials

• µxi is the mean for individual i at temperature X.

• µyi is the mean of the individual k at temperature Y.

We denote the correlation between x̄ and ȳ as cor(x̄, ȳ).
The derivation of the correction factor proceeds as following:
By definition;

r = cor(x̄, ȳ) =
cov(x̄, ȳ)√
var(x̄)var(ȳ)

(2.3)

We know,

cov(x̄, ȳ) = cov(
1
nx

nx∑
j=1

xij ,
1
ny

ny∑
l=1

yik)

=
1
nx

1
ny

nx∑
j=1

ny∑
l=1

cov(xij , yik)

=
1
nx

1
ny

nx∑
j=1

ny∑
l=1

cov(µxi + εij , µyi + ωik)

=
1
nx

1
ny

nx∑
j=1

ny∑
l=1

(cov(µxi, µyi) + (cov(µxi, ωik) + cov(µyi, εij) + cov(εij , ωik))



5 2.2 Deriving Correction Factor

But we also know that

cov(µxi, ωik) = cov(µyi, εij)
= cov(εij , ωik)
= 0 (by independence)

Canceling the zero terms we get,

cov(x̄, ȳ) =
1
nx

1
ny

nx∑
j=1

ny∑
l=1

cov(µxi, µyi)

= cov(µxi, µyi).

(2.5)

In addition, we also know that by definition, ρ is the true correlation coefficient
of the true means of the variables X and Y, i.e., µxi and µyi. Hence,

ρ = cor(µxi, µyi) =
cov(µxi, µyi)√
var(µxi)var(µyi)

(2.6)

By simple algebra,

cov(µxi , µyi) = ρ
√
var(µxi)var(µyi). (2.7)

To find var(x̄), we proceed as follows:

var(x̄) = var(
1
nx

nx∑
j=1

xij)

=
1
n2
x

var(
nx∑
j=1

µxi + εij)

=
1
n2
x

var(nxµxi +
nx∑
j=1

εij)

=
n2
x

n2
x

var(µxi) +
1
n2
x

var(
nx∑
j=1

εij) (by independence)

= var(µxi) +
1
nx
var(εij)

Hence,

var(x̄) = var(µxi) +
1
nx
var(εij) (2.8)
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Similarly,

var(ȳ) = var(µyk
) +

1
ny
var(ωik) (2.9)

Substituting (2.7), (2.8), and (2.9) into (2.3) we get

r = cor(x̄, ȳ)

= ρ

√
var(µxi)var(µyi)√

(var(µxi) + 1
nx
var(εij))(var(µyi) + 1

ny
var(ωik))

= ρ

√√√√ σ2
a,Xσ

2
a,Y

(σ2
a,X +

σ2
w,X

nx
)(σ2

a,Y +
σ2

w,Y

ny
)

= ρ

√√√√ σ2
a,X

(σ2
a,X +

σ2
w,X

nx
)

σ2
a,Y

(σ2
a,Y +

σ2
w,Y

ny
)

Which gives

cor(x̄, ȳ) = ρ

√√√√ σ2
a,X

(σ2
a,X +

σ2
w,X

nx
)

σ2
a,Y

(σ2
a,Y +

σ2
w,Y

ny
)

(2.10)

Where,

• σ2
a,X is the true variation among the individuals at temperature X.

• σ2
a,Y is the true variation among the individuals at temperature Y.

• σ2
w,X is the true variation in the values within an individual at temperature

X.

• σ2
w,Y is the true variation in the values within an individual at temperature

Y.

• nx is the number of measurements (trials) per individual at temperature X.

• ny is the number of measurements (trials) per individual at temperature Y.

Before we proceed to show the results of the theoretical derivation, it is necessary
at this point to define the 4 different correlation coefficients in this thesis.

• ρ=cor(µxi, µyi), here there are an infinite number of subjects and an infinite
number of trials per individual.

• r=cor(µxi, µyi), here we have an infinite number of subjects, but a finite num-
ber of trials.

• r̂=cor(x̄, ȳ), this is the conventional correlation coefficient with finite number
of subjects and a finite number of trials per individual.

• rcorrected =(r̂)(correction factor).

To find the correction factor, we notice that r = ρz where z is the term under the
square root in equation (2.10).
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Hence we now have the relationship ρ = z
a . Based on the equations above and a

little algebraic manipulation of z, we get,

ρ = r

√√√√(1 +
σ2
w,X

nxσ2
a,X

)(
1 +

σ2
w,Y

nyσ2
a,Y

)
(2.11)

If we are using values from samples, we get the following equation,

rcorrected = r̂

√√√√(1 +
s2w,X
nxs2a,X

)(
1 +

s2w,Y
nys2a,Y

)
(2.12)

Where,

• s2a,X is the sample variation among the individuals at temperature X.

• s2a,Y is the sample variation among the individuals at temperature Y.

• s2w,X is the sample variation in the values within an individual at temperature
X.

• s2w,Y is the sample variation in the values within an individual at temperature
Y.

The correction factor is the term under the square root sign. This formula has
been presented by several authors [2]. Equation (2.10) shows that if intraindividual
variability exists, the conventional estimates of the correlation coefficient is biased
toward zero because the term under the square root sign is always less than one.
Ideally, the scale factor ”z” is one which would make r = ρ. The magnitude of the
bias decreases as the number of measurements per individual increases and also as

the repeatability (which is given by σ2
w,Y

σ2
a,Y

) increases.

2.3 Simulations

Using equation (2.12), an unbiased estimator for the correlation coefficient is given
by

rcorrected = r̂

√√√√(1 +
s2w,X
nxs2a,X

)(
1 +

s2w,Y
nys2a,Y

)
(2.13)

where r̂ is the conventional correlation coefficient calculated using mean values (x̄, ȳ)
for each individual at each of the temperatures X and Y obtained from the sample.
Also, the population variance terms σ2 are replaced with sample variance terms s2.
This was done because we do not always know the true population values, but we
can estimate the population values from the samples. Equation (2.13) can also be
written in terms of repeatabilities [2];

rcorrected = r̂

√(
1 +

1− ri,X
nxri,X

)(
1 +

1− ri,Y
nyri,Y

)
(2.14)

Where;

• ri,X is the repeatability of trait X

• ri,Y is the repeatability of trait Y
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Equation (2.14) can be used to obtain unbiased estimates of correlations from pub-
lished work that provided results for repeatabilities. To determine whether the
correction factor worked, I simulated data on locomotor performance of the lizard
Sceloporous graciosus based on data from Adolph [1]. In the experiment, there were
21 lizards, and each lizard was raced around a track 20 times at 20◦ C and 20 times
at 35◦ C. Hence for the experiment, nx = ny = 20. Similarly, in the simulation,
there were 21 ”lizards” and each lizard was ”raced” around a track 20 times at each
of the temperatures and all the times were then ranked. A Spearman correlation
coefficient was calculated to determine the relationship between the ranks of the
times at each of the temperatures. The samples were drawn from a bivariate nor-
mal distribution with known correlation coefficients (ρ = 0.4 and 0.8). I examined
the effects of the number of lizards (Nsubjects = 2, 5, and 10) and repeatability
(ri = 0.2, 0.5 and 0.8) on the distribution of the corrected Spearman correlation
coefficients. The number of measurements per lizard at each of the temperatures
X and Y was set to be equal (nx = ny = ntrials) and varied (ntrials = 2, 5 and,
10) to examine the effect of the change in the number of the measurements on the
distribution of the corrected spearman correlation coefficient. As shown in equa-
tions (2.1) and (2.2), normally distributed error terms were added and adjusted to
yield the desired repeatability. For each combination of parameter values, I drew
5000 independent samples and from each sample calculated four different estimates
of the correlation coefficient.

(1) uncorrected for bias, but without adding measurement error terms (i.e
σw,X = 0) as a check for the simulation procedure.This should on average, yield an
unbiased estimate because the repeatabilities equal 1.

(2) uncorrected for bias. This is the conventional Spearman correlation coeffi-
cient. On average, this should yield a biased estimate.

(3) corrected for bias using equation (2.10) using known population variance
components. This should yield an unbiased estimate on average.

(4) corrected for bias using equation (2.10) using variance components estimated
from the sample. This should also yield an unbiased estimate.
Simulations were run using the statistical language R.

2.4 Results

Figure (2.1) shows the distribution of sample correlation coefficients for a single set
of parameter values. In this example, I used 10,000 runs. Several features are worth
noting in the plot. The uncorrected correlation coefficients were biased towards zero
as predicted by the theory, whereas the corrected values were generally unbiased.
Another interesting feature is that the distributions differ in variance. The variance
of the unbiased estimates (labeled w/o error) is entirely due to sampling of indi-
viduals because these runs have zero intraindividual variability (repeatability= 1).
The other three distributions exhibit variance due to both sampling of individuals
and sampling values within individuals (intraindividual variability). The greater
sampling variance of the unbiased estimators compared to the conventional estima-
tor is due to the fact that the unbiased estimate involves multiplying the biased
estimate by a multiplicative factor. It is also interesting to note that the variance of
the corrected correlation coefficients are about the same indicating that estimating
the variance parameters does not increase the sampling variance extensively. Also,
the graph showing the distribution of the corrected correlation coefficients (labeled
ANOVA adj) has a bump at the end of the distribution. The bump is due to sim-
ulation coding. The correlation coefficients were forced to be less than one which
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Figure 2.1: Distribution of r̂

ended up squashing the distribution causing the bump.
Figures 2.2 and 2.3 summarize the simulation results for all the combinations of

the parameters used. The difference between the two graphs is that figure 2.2 has
ρ = 0.4 and figure 2.3 has ρ = 0.8. In figures 2.2 and 2.3 each boxplot represents
90% of the distribution of the corrected correlation coefficients. The bottom line
is the fifth percentile, the bold middle line represents the median and the top line
is the 95th percentile. The first boxplot represents 90% of the distribution of the
conventional correlation coefficients when ntrials = 2, ρ = 0.4, Nsubjects = 20
and the repeatabilities (ri,X and ri,Y = 0.2). The two boxplots next to the first
one represent the distributions of corrected correlation coefficients using sample
variance terms and population variance terms respectively but with the same values
for ntrials, ρ, ri,X and ri,Y . The three box plots next to the first three represent
the distribution of the correlation coefficients mentioned above but with ri,X and
ri,Y = 0.5

All the simulations confirmed that the conventional correlation coefficient is
biased and that the correction factor eliminated the bias. The simulations also
confirmed various other interesting facts. For example, the magnitude of the bias
was greatest for the smallest number of samples per individual and for the lowest
repeatabilities. In some of the cases, especially where the true correlation coefficient
ρ was 0.8, the entire boxplot fell below the true value. When ρ = 0.4, there
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Figure 2.2: Biasedness and Variation of r̂ with ρ = 0.4
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were fewer boxplots that fell entirely below the true value even though most of
the distribution of the correlation coefficients lied below the true value for lower
sample sizes and lower repeatabilities. Interestingly, the attenuation is not reduced
by increasing the number of subjects. Increasing number of subjects, however,
reduces the variance of the distribution of the correlation coefficients.

2.5 Sampling Effort

The unbiased estimator for the correlation coefficient requires at least two measure-
ments per individual so we can estimate the within-and among-variance components
used in equation (3). As noted before, having more than two measurements per in-
dividual decreases the bias and should also give more accurate estimates of the mean
as well as the variance components. However, increasing the number of individu-
als reduces the variance of the distribution of the corrected correlation coefficients,
which gives more accurate estimates. So there is a trade-off between the number of
trials and the number of individuals.

I ran simulations to explore the trade-off between Nsubjects and ntrials and to
determine how varying them would affect the distributions of the estimates of ρ.
I assumed that a researcher could only take 160 measurements and had to choose
between more lizards (Nsubjects)and more runs per lizard (ntrials). The number of
lizards ranged from 4 to 80 and the number of trials per lizard ranged from 2 to 40. I
then obtained 5000 samples for each allocation and for each possible combination of
repeatabilities and true correlations. Assuming the researcher could only take 160
measurements was done because, sometimes obtaining measurement is very difficult
or dangerous. Also, sometimes, there are considerable costs involved in running the
equipment used to take the measurements and one would like to take measurements
in the most efficient manner.

Figures 2.4 and 2.5 show the effect of the trade-off between number of individuals
versus number of trials per individual on the variance of the unbiased correlation
coefficient (corrected using sample variance components and labeled ANOVA adj in
figure 2.1) obtained via simulations. Figure 2.4 shows the variation in the corrected
correlation coefficients when ρ = 0.4 and figure 2.5 shows the variation in the
corrected correlation coefficients when ρ = 0.8.

Each bar shows the median and the central 90% of the sample correlation coef-
ficients. The total number of observations is fixed at 160. Results from the simula-
tions show that the estimates are unbiased since the median lies on the true correla-
tion coefficients value and the distributions are symmetric. In the (4,40) cases, the
median lines lie above the true correlation coefficient lines but the distributions are
not symmetric so the estimates are not biased either. For low repeatabilities in both
ρ = 0.4 and 0.8, it seems that the variance is lowest for some intermediate allocation
value. In this simulation, the variance was lowest when we had 40 subjects and 4
trials per subject. In higher repeatability cases however, the variance monotonically
decreases as the number of individuals increases. These results suggest that if we
want to minimize the sampling variance of the correlation coefficients, we have to
determine the repeatability of the traits under investigation. If the traits have high
repeatabilities, the most precise estimates are obtained when we have the largest
number of individuals and only 2 trials per individual.
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Chapter 3

Conclusions

The Spearman Correlation coefficients between individual mean values are biased
towards zero when one or both the traits exhibit intraindividual variability. The-
oretically, a multiplicative factor can be found which eliminates the bias. The
correction factor is a function of among- and within-variance components of the
measurements. It can also be expressed as a function of repeatabilities of the traits.
Thus, most uncorrected correlation coefficients reported in literature on physiolog-
ical traits are biased towards zero. The bias is however, easy to correct as long
as the within- and among-individual variance components are known or are able
to be calculated. The corrected correlation coefficients have higher variance than
the conventional correlation coefficient estimator. This variance can be reduced by
increasing the number of individuals in the study, but that does not reduce the bias.
Thus, depending on the precision required by the researcher and the repeatability of
the traits, an optimal trade off between number of individuals and number of trials
can be found. Because two measurements per individual are enough to calculate
variance components needed to eliminate the bias, optimal design for sampling effort
usually requires a few measurements per individual (at least two) and the largest
number of individuals feasible. The correction factor is then used to eliminate the
bias.
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