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Abstract

Neural network models are powerful tools in the world of machine learning.
In this paper I attempt to peel back the layers of complexity and examine the
underlying math of this class of models. I extend this examination to convolu-
tional neural networks and how they achieve state-of-the-art performance on
image classification problems. Finally, I apply convolutional neural networks
to a problem called neural style transfer, which creates image combinations
from different content and style images.
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Chapter 1

Introduction

Machine learning is a field that combines statistics and computer science
to generate predictions for all kinds of applications and data sources. One of
the most popular machine learning models used today is the neural network.
Neural networks are machine learning models that are loosely based on the
structure of neurons in a human brain. In recent years, neural networks have
gained popularity because the computational power of hardware has caught
up to their complexity. They have revolutionized several areas including
computer vision and natural language processing. For my thesis, I will focus
on neural network models.

The majority of my thesis will be analyzing and understanding the mathe-
matics behind neural networks. Typically, they are thought of as black boxes,
meaning it is generally difficult to understand how the model reaches its fi-
nal prediction. I will walk through the math behind forward propagation,
backpropagation, and various model optimizers.

Convolutional neural networks (CNNs) are a subclass of neural networks
that apply preprocessing techniques to extract features from patterns in data.
CNNs excel at automated feature engineering, creating feature maps that can
then be fed into traditional fully-connected neural network layers. This makes
CNNs attractive for dealing with image data because they are able to capture
the high-level characteristics of an image and make accurate predictions [17].

Finally, I will utilize these machine learning techniques in an image pro-
cessing application in order to combine the style and content of two images.
This technique is called neural style transfer.

1



Chapter 2

Mathematics of Neural
Networks

2.1 Overview

Neural networks are a class of machine learning models that are able to
learn incredibly complex functions. The way that these models learn is by
training the model to make accurate predictions on a specific dataset. For
supervised learning, which we will focus on, this training is done by feeding
in inputs, calculating outputs, and then comparing the model output to the
actual label for that given input. Once the prediction error is calculated, the
error can be propagated back to adjust the parameters of the network in a
process called backpropagation [1]. The end goal of a neural network model
is to be able to make accurate predictions on data that the network has not
seen before, generally referred to as test data.

Figure 2.1 shows an example of a fully-connected (dense) neural network
with inputs x1, x2, . . . xn, two intermediate layers of sizes k1 and k2, and
finally a single output node. The intermediate layers of a network are also
referred to as hidden layers because they are “hidden” from the outside world
inside the network. Thus, all of the layers in a network are hidden layers
except for the input and output layers. The example network below has two
hidden layers of sizes k1 and k2, but in practice neural networks can have
any number of hidden layers, and typically have many, each having various
non-uniform sizes.
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Figure 2.1: Network with 2 Hidden Layers
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2.2 Perceptron/Neuron

Many consider Frank Rosenblatt’s paper on what he called the “Percep-
tron” [11] to be the beginning of neural networks as we know them today.
Rosenblatt’s Perceptron models a single neuron in the human brain, and
is the building block of neural networks. Figure 2.2 shows the layout of a
neuron, with x1, x2, . . . xn as the inputs, w0, w1, . . . wn as their corresponding
weights, an activation function, and an output.

f

Activation
function

∑
Outputw2x2

...
...

wnxn

w1x1

w01

inputs weights

Figure 2.2: Neuron

To calculate the output of the neuron, we first find z, the linear combi-
nation of the inputs:

z = w0 +
n∑

i=1

xiwi (2.1)

The weight w0 does not have a corresponding input value and is sometimes
referred to as the bias [11]. This is useful because once we start training our
network it will be nice to have an adjustable weight that does not directly
coincide with a specific input. Once z is calculated, it is run through an
activation function f to get a, the output of the neuron:

a = f(z) (2.2)

The output of a neuron will be a single value that is then passed on as
an input into the next neuron in the sequence. The single value will have
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varying characteristics depending on the activation function f . For example,
the activation function could be just the identity function f(z) = z, although
this is not normally used in practice. There are many different activation
functions and the next section will explore some of them further.

2.3 Activation Functions

Activation functions are used in neural networks to induce a non-linearity
in order for the network to represent more complex functions. Without non-
linear intermediate activation functions, it would be possible to represent the
entire network as a composition of matrix multiplications [1]. For example,
for a network with one hidden layer, the output of the hidden layer would
be:

z[i] = xw[i] + b[i] (2.3)

where x is the input vector, w[i] is the weight matrix for layer i, b[i] is the
bias for layer i, and z[i] is the output for layer i. Below would be the final
output for the network:

z[i+1] = z[i]w[i+1] + b[i+1] (2.4)

These two equations can be composed into the following equation for the
entire network:

z[i+1] = (xw[i] + b[i])w[i+1] + b[i+1]

z[i+1] = xw[i]w[i+1] + b[i]w[i+1] + b[i+1]
(2.5)

As you can see, the network has been reduced to a simple linear com-
bination of the inputs. Activation functions are the key to increasing the
function space that neural networks can approximate.

Consider an activation function f that is applied to the output of each
layer of our network. The equations for our simple network are now shown
below.
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z[i] = x[i]w[i] + b[i]

a[i] = f(z[i])

z[i+1] = a[i]w[i+1] + b[i+1]

a[i+1] = f(z[i+1])

(2.6)

where a[i] is the output for layer i after the activation function has been
applied.

The function f adds complexity to our model and allows us to predict
more comprehensive functions. The next sections will analyze some of the
activation functions currently used in practice.

2.3.1 ReLU

ReLU (Rectified Linear Unit) is currently the most popular activation
function for the hidden layers of neural networks [1]. For a given input z,
ReLU(z) is defined below.

ReLU(z) = max(0, z) (2.7)

Thus, ReLU essentially sets all negative inputs to 0 and acts as the iden-
tity for positive inputs. As we will discuss later, this reduces the time it takes
for the network to converge when adjusting the weights during backpropa-
gation, because the loss that gets propagated back will get canceled when
multiplied by 0.

2.3.2 Sigmoid

The sigmoid function is another popular activation function used to map
an input to a value in the interval (0, 1). The function σ is defined as follows:

σ(z) =
1

1 + e−z
(2.8)

One popular application of the sigmoid activation function is to map the
penultimate output of a network to a probability for a binary classification
problem [1].
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2.3.3 Softmax

The softmax function is another popular activation function used for the
output layer of a neural network. The difference between softmax and sig-
moid is that softmax is used for multi-class classification problems, where
the neural network must predict the class of an input from many (K > 2)
classes [1]. For the softmax function on a single class output ki representing
class i, we first calculate eki and then divide by

∑K
j=1 e

oj , the sum of the rest
of the classes. The softmax function ensures that we get a prediction in the
interval [0, 1]. The complete formula is shown below:

softmax(ki) =
eki

K∑
j=1

ekj
(2.9)

The softmax would be evaluated similarly for the other K−1 classes. This
concludes our discussion of activation functions. The next section will go into
detail about evaluating the predictions of our network via loss functions.

2.4 Loss Functions

Loss functions are used in models throughout machine learning to deter-
mine the error in their predictions, which can be used to tune the model
parameters and improve prediction accuracy. The type of loss function used
depends on the specifications of the learning problem. For regression prob-
lems, where the prediction is continuous, sum of squared error (SSE ) is a
popular loss function given by equation 2.10 [1].

SSE =
∑
i

(yi − ŷi)2 (2.10)

where yi is the ground-truth response value and ŷi is the prediction from
our model for observation i. From this equation we can see that the loss
is minimized when the prediction is equal to the true response for a given
input. A variant of SSE is typically used to evaluate the overall performance
of a model, namely mean-squared error (MSE ) shown below:

MSE =
1

n

n∑
i

(yi − ŷi)2 (2.11)
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where n is the number of predictions being evaluated.
For classification problems, the loss function is slightly more complicated

because the output is generally a prediction of the probability of a given
label among a number of discrete possible labels. The loss function used
is called cross-entropy loss [1]. For binary classification, where the ground
truth label for observation i (yi) has only two possibilities (yi = 0 or yi = 1),
the cross-entropy loss is shown in equation 2.12.

CrossEntropyLoss =
∑
i

−(yi log ŷi + (1− yi) log(1− ŷi)) (2.12)

where ŷi is the model prediction for observation i.
We can see that one of the two components in the loss function will be

set to zero for each observation, depending on the ground truth label, and
the other component will be small if the prediction is close to the label. This
formula generalizes to multi-label classification for a problem with L possible
labels as follows:

CrossEntropyLoss =
∑
i

−
L∑
l

y
(l)
i log ŷi

(l) (2.13)

where y
(l)
i is the ground-truth for observation i for label l and ŷi

(l) is the
model prediction for observation i for label l.

The next section will combine the knowledge of loss functions with the
neural networks discussed above in the process of learning the network pa-
rameters: backpropagation.

2.5 Backpropagation

Backpropagation in a neural network is the process of adjusting the pa-
rameters of the network (weights) in order to decrease the loss (prediction
error). This procedure is the key to the success of neural networks in learning
complex functions [1]. Backpropagation starts at the end of the network, the
output, and works all the way back to the beginning of the network, updat-
ing the respective weights as they are encountered through an optimization
technique called gradient descent.
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Using gradient descent to update weight wi involves the derivative of the
loss function with respect to wi:

∂L
∂wi

. This derivative describes the change
in the loss function with respect to the change in weight wi. Thus, if the
derivative is positive, the loss will increase as wi increases and if the derivative
is negative the loss will decrease as wi increases. Since the goal of training
our network is to minimize the loss, wi must be updated to ensure the loss
will decrease [12]. Therefore, by subtracting this derivative from wi, we can
be certain that the loss will decrease:

w′i = wi −
∂L

∂wi

(2.14)

However, equation 2.14 is only partially complete. To complete the up-
date step for wi, we introduce a hyperparameter λ. A hyperparameter is
a meta-parameter for our network that is determined by the programmer
before training the model. In practice, the programmer will use some sort
of optimization technique to choose the hyperparameters that give the best
model performance [12]. λ represents the learning rate of the model, which
determines how fast or how slow the model converges to the optimal param-
eters. High values of λ correspond to larger jumps in the value of wi, which
causes the network to learn faster. Equation 2.15 shows the updated version
of the learning step.

w′i = wi − λ
∂L

∂wi

(2.15)

At the point, the major question left to be answered is: how do we find
∂L
∂wi

? This is where the chain rule from calculus comes into play. As a quick
refresher, given F = f ◦ g = f(g(x)), the chain rule is shown in equation
2.16.

F ′(x) = f ′(g(x)) · g′(x) (2.16)

The chain rule lets us propagate the value given by the loss function back
through each node and weight in the network, from the final output all the
way to the original layer. For each weight wi, the chained derivatives must
represent all the possible paths from wi to the output of the model [1].
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Figure 2.3: Paths from w1 to the model output.

Figure 2.3 shows an example of the paths from w1, the weight connecting
x1 and h11 in the network. w1 is highlighted in green and the possible paths
from w1 to the output of the network are highlighted in red. To calculate
∂L
∂w1

for the above example, we trace each path using the chain rule:

∂L

∂w1

=
∂L

∂ŷ
· ∂ŷ
∂w1

(2.17)

∂L

∂w1

=
∂L

∂ŷ

(
∂ŷ

∂h21
· ∂h21
∂w1

+ · · ·+ ∂ŷ

∂h2k2
· ∂h2k2
∂w1

)
(2.18)

∂L

∂w1

=
∂L

∂ŷ

(
∂ŷ

∂h21
· ∂h21
∂h11

· ∂h11
∂w1

+ · · ·+ ∂ŷ

∂h2k2
· ∂h2k2
∂h11

· ∂h11
∂w1

)
(2.19)

∂L

∂w1

=
∂L

∂ŷ

(
∂ŷ

∂h21
· ∂h21
∂h11

+ · · ·+ ∂ŷ

∂h2k2
· ∂h2k2
∂h11

)
∂h11
∂w1

(2.20)

∂L

∂w1

=
∂L

∂ŷ

(
∂ŷ

∂h21
· ∂h21
∂h11

+ · · ·+ ∂ŷ

∂h2k2
· ∂h2k2
∂h11

)
x1 (2.21)

In the above equations, the ∂L
∂ŷ

represents the derivative of the loss func-
tion with respect to ŷ. The terms inside the parenthesis in equation 2.21
represent the weights from the second hidden layer to the output and be-
tween node h11 and the second hidden layer. These terms also have to take
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the activation functions at each node into account. As expected, the above
equations get much more complex as the given wi gets farther from the out-
put of the network and the number of paths grows.

In practice, backpropagation is computed using a dynamic programming
approach, which means that the partial derivative of the loss function (with
respect to the given node) is saved at each node on the way back through
the network to save computation time [1].

The process of backpropagation, similar to forward propagation, is also
done using matrices to speed up computation. Thus, instead of specifically
updating w1 as shown above, the algorithm would update the entire first
weight matrix w[1] in one step. This process is shown in equation 2.22,
keeping in mind that we are starting at the end of the network and working
our way back, and we are now taking into account activation function g[i] for
layer i.

∂L

∂a[2]
=
∂L

∂ŷ
(2.22)

∂L

∂z[2]
=

∂L

∂a[2]
� (g[2])′(z[2]) (2.23)

∂L

∂a[1]
=

∂L

∂z[2]
(w[2])T (2.24)

∂L

∂z[1]
=

∂L

∂a[1]
� (g[1])′(z[1]) (2.25)

∂L

∂w[1]
= xT

∂L

∂z[1]
(2.26)

2.6 Optimizers

The backpropagation section discussed using a technique called gradient
descent to update the parameters of a network. In this section, we will review
additional algorithms to optimize gradient descent.

2.6.1 Momentum

Momentum solves the problem of large variation in the gradient of the
loss function from one observation to another [12]. Figure 2.4 shows a loss
contour, with the arrows representing the paths taken by two optimization
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algorithms. The red path in Figure 2.4 depicts an example of one such
inefficient gradient path, while the blue path shows a much more efficient
path.

Figure 2.4: Example of oscillating gradient (red) and
path we would prefer (blue).

By preventing wild oscillations in the gradient, the parameters will find a
smoother, faster path to their optima (shown in blue in Figure 2.4). A more
efficient path is achieved by incorporating the previous gradient, from the
observations already seen, into the calculation for the new gradient.

If we let t denote the number of times this optimization algorithm has
been run, then momentum incorporates the gradient at time t − 1 into the
calculation for the gradient at time t.

Thus, equation 2.15 becomes:

wi,t = wi,t−1 − V (t) (2.27)

where V (t) includes the current gradient and the previous gradient mul-
tiplied by a decay factor γ. V (t) is defined as follows.

V (t) = γV (t− 1) + λ
∂L

∂wi,t−1
(2.28)

t = 1 represents the first time the optimization is run, which is after
the first training observation (or batch of observations) has gone through
forward propagation. There is no previous gradient at t = 1 so we must have
V (0) = 0.

Equation 2.28 now incorporates the current gradient ( ∂L
∂wi,t−1

), the previ-

ous gradient (included in V (t−1)), and a hyperparameter γ that determines
how much weight the previous gradient deserves (normally 0.9) [12].
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2.6.2 Adagrad

Adagrad is a gradient descent extension that incorporates an adjustable
learning rate for each parameter. Thus, the algorithm is able to perform
smaller updates (low learning rate) for parameters associated with frequently
occurring features and larger updates (high learning rate) for parameters
associated with infrequent features [12]. Thus, equation 2.15 is extended to
equation 2.29.

wi,t = wi,t−1 −
λ√

Gii,t−1 + ε
· ∂L

∂wi,t−1
(2.29)

where Gt−1 is a diagonal matrix where each element i, i is the sum of the
squares of the gradients with respect to parameter i up to time (t − 1) and
ε is a smoothing term that ensures no division by zero.

Since Gt−1 contains the sum of the squares of the past gradients with
respect to all parameters along its diagonal, we can vectorize our optimiza-
tion using element-wise matrix multiplication, called a Hadamard product,
denoted with �.

Θt = Θt−1 −
λ√

Gt−1 + ε
� ∂L

∂Θt−1
(2.30)

where Θ denotes all the weights and biases of our network.

2.6.3 Adam

Adaptive moment estimation (Adam) combines the concept of momentum
and the adaptive learning rates for each parameter from the previous two
methods. Whereas momentum can be thought of as a ball running down a
slope, Adam has been described as behaving like a heavy ball with friction
[6].

First, compute the decaying averages of the past and past squared gradi-
ents mt and vt as follows:

mt = β1mt−1 − (1− β1)
∂L

∂Θi,t

(2.31)

vt = β2vt−1 − (1− β2)
∂L2

∂Θi,t

(2.32)
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mt is the first moment (mean) and vt is the second moment (variance)
of the gradient, with hyperparameters β1 and β2 as rates of decay. Default
values of 0.9 and 0.999 for β1 and β2 respectively perform very well in practice
and are rarely ever changed [2].

Then, since mt and vt are initialized as zeros, they will be biased towards
zero, therefore they must be bias-corrected to m̂t and v̂t in equations 2.33
and 2.34.

m̂t =
mt

1− β1
(2.33)

v̂t =
vt

1− β2
(2.34)

Finally, the update step is similar to what we have seen with the opti-
mizers above:

Θi,t+1 = Θi,t −
λ√
v̂t + ε

· m̂t (2.35)

Adam combines the previous two optimization methods and is a popu-
lar optimization method used in practice to update the weights in a neural
network.
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Chapter 3

Convolutional Neural Networks

3.1 Motivation

Convolutional neural networks (CNN) are a class of neural networks that
are most commonly applied to visual image data. The mathematical fun-
damentals of CNNs have been around since the middle of the 20th century,
similar to the models discussed above, however their effectiveness with visual
images has become much more pronounced with the increased capabilities of
hardware in the last decade [1].

The structural difference between convolutional neural networks and the
networks previously discussed is that CNNs have a built in preprocessing
section before the fully-connected layers. An example of this preprocessing
section is shown in Figure 3.1, followed by two dense layers at the end of the
network [15]. The beginning section of the network is made up of convolu-
tional layers and pooling layers.

The role of a convolutional layer is to extract features from the data by
training filters. These filters, once learned, allow higher level features of the
input to be captured and ultimately used by the dense layers to make a
prediction.

The pooling layers are much simpler, as they just aggregate the data from
the previous layer in a specified way. Pooling is used to reduce variance and
computational complexity in a CNN.
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Figure 3.1: Example CNN Architecture

CNNs were inspired by the biological processes that make up the visual
cortex in many animals. The connections between neurons in a convolu-
tional network resemble the patterns found in the process that humans use
to recognize images. Thus, it is not surprising that CNNs have shown the
most promise in the field of visual imagery. In humans, individual cortical
neurons only respond to stimuli in a limited region of the visual field called
the receptive field [17]. The receptive fields of various neurons partly overlap
so that the entire visual field is covered by the complete set of neurons.

Convolutional neural networks also have the concept of a receptive field.
Once the image has been processed by the convolutional and pooling layers,
each element of the output has a different receptive field of pixels that it
represents in the original image. By increasing the receptive field of an
element in the output, the network can represent higher level features by
relating pixels that were not necessarily near each other in the original image.

3.2 Mathematics

3.2.1 Convolution

Suppose the input to the convolution is a n × m image I, which can be
represented by an array of size n × m. Thus, Ii,j represents the element at
the ith row and jth column of I. Given a filter K ∈ R2k1+1×2k2+1, where

16



K =

K−k1,−k2 . . . K−k1,k2
... K0,0

...
Kk1,−k2 . . . Kk1,k2

 (3.1)

the convolution of the image I with the filter K is given by

(I ∗K)i,j =

k1∑
u=−k1

k2∑
v=−k2

Ku,vIi+u,j+v (3.2)

It is important to consider that the convolutional behavior shown in the
above equation needs to be specifically defined for the borders of the image
[1].

3.2.2 Layers

Convolutional Layer

Consider a convolutional layer l. The input of layer l consists of m[l−1]

feature maps from the previous layer, each of size n
[l−1]
1 ×n[l−1]

2 . When l = 1,
the input is a single image I which is the original input to the network. The
output of layer l includes m[l] feature maps of size n

[l]
1 × n

[l]
2 . The equation

below shows how to compute the ith feature map in layer l, denoted Zi

Z
[l]
i = B

[l]
i +

m[l−1]∑
j=1

K
[l]
i,j ∗ Z

[l−1]
j (3.3)

where B
[l]
i is the bias matrix for layer l, similar to the bias in a dense

neural network layer. K
[l]
i,j is the filter connecting the jth feature map in layer

(l − 1) with the ith feature map in layer l [1].
The center of the filter can either start outside the border of the image,

on the border of the image, or inside the border of the image. The term for
this distinction is padding (as in padding the outside of the image with zeros
in order to extend the filter). Full padding refers to starting the filter outside
the border of the image, half padding to start the center of the filter on the
image border, and no padding for keeping the filter entirely inside the input
image.

Another parameter used in convolution is stride [1]. Stride refers to the
number of pixels the filter is shifted over each time. When the stride is 1 the
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filter moves 1 pixel at a time. When the stride is 2 the filter moves 2 pixels
at a time and so on. Thus, if the stride is greater than 1, the dimensions
of the output image will be smaller than the dimensions of the input image.
Changing the padding can also affect the size of the output image.

Assuming that we are using half padding, a stride of s, and the filter K
[l]
i,j

has size 2k1 + 1 × 2k2 + 1, the size of the output feature maps of layer l is
given by

n
[l]
1 =

n
[l−1]
1 − 2k

[1]
1

s[1] + 1
and n

[l]
2 =

n
[l−1]
2 − 2k

[1]
2

s[1] + 1
(3.4)

The tunable parameters in the convolutional layer l are the weights of the
filters K

[l]
i,j and bias matrix B

[l]
i [1].

Pooling Layer

Let l be a pooling layer. The output of l contains the same number
of feature maps as the input, m[l] = m[l−1], but they are of reduced size.
Pooling, also called subsampling, typically involves placing non-overlapping
windows on the feature maps and keeping one value per window.

layer (l − 1)
feature maps

layer l
feature maps

Figure 3.2: Illustration of a pooling layer.

There are two main types of pooling: average pooling and max pooling.
In average pooling, the mean of the values in each window is used in the

output. This method generally smooths out the image and is less effective
for identifying sharp features.
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For max pooling, the maximum value in each window is taken. In prac-
tice, max pooling has been shown to produce faster convergence during train-
ing [1].

19



Chapter 4

Neural Style Transfer

4.1 Overview

Neural style transfer is a technique that creates new images by combining
the content of a reference image and the style of a separate reference image.
The algorithm was first introduced by Gatys et al. in 2015 [3]. They showed
that the content and style of an image can be represented by using different
intermediate feature maps from CNN layers. Then, a combination image
can be optimized to incorporate the style of the style reference image and
the content of the content image.

The inputs to our algorithm are the content image, the reference style
image, and a few hyperparameters to control the weighting of content vs.
style in the output image. The algorithm output will be the combination
image with the content and style of the input images respectively.

In order to arrive at a combination image with these desired properties,
the algorithm starts with a copy of the content image, called the input image,
and optimizes this new image based on a loss function [3]. The loss function
incorporates both the content loss and the style loss to ensure that both
properties are present in the final optimized image.

A high level outline of this algorithm is as follows:

1. Identify the content and style reference images.

2. Construct the loss function.

3. Run the reference images through the CNN to get values for the loss
function.

20



4. Optimize the input image to minimize loss.

Since the first step is trivial, the next section will focus on constructing
the loss function.

4.2 Loss Function

As stated above, the loss function is a combination of the content loss and
the style loss of the input image. Each of these elements has an associated
weight which can be adjusted based on the ratio of content vs. style desired
in the final combination image [3]. Thus, our loss function can be written as:

L = wcontentLcontent + wstyleLstyle (4.1)

where wcontent and wstyle are the content and style weights respectively.

4.2.1 The CNN

In order to calculate the loss of our input image, we are going to run both
it and the reference images through a trained convolutional neural network. A
“trained” CNN means that the network has already learned how to categorize
images, meaning that it is very good at answering questions like: “which
of these five categories does this image belong to: dog, cat, horse, mouse,
or bear?”. A network learns to make these kinds of predictions by being
trained on thousands of labeled images and adjusting its weights through
backpropagation.

Luckily for us, there exist pre-trained CNNs that are publicly available
and very good at predictions. One of the most popular of these networks is
called VGG-19 (for its 19 layers) [14]. This is the model we will use in our
algorithm. Below is the summary of the “head” of the network, which refers
to the convolutional and pooling layers that come before the fully-connected
section of the network. This figure will be helpful in our discussion of content
and style loss.

It is important to note that for our application we will not use the final
output of the CNN. Instead we will utilize the intermediate feature maps
that are output from various convolutional layers in the head of the network
because our goal is to change the input image, not the weights of the network
(which is the typical goal in training a CNN) [3].
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Figure 4.1: Summary of VGG-19 model head [9]

4.2.2 Content Loss

The content of an image consists of its high level features. These could
be people, buildings, or any objects prominent in the image. For example, in
a grayscale image of a house, the house is the content of the image. If color
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was added to the image, the house would remain the content.
In a convolutional neural network, as you propagate forwards, farther

from the starting layer, the feature maps of the input image become higher
and higher level. Since image content is composed of high level features, we
want to use the feature map of the final convolutional layer to represent the
content of an image [17].

In the VGG-19 model, shown in Figure 4.1, the last convolutional layer
is block5 conv3. The output will be a matrix F ∈ Rn×m, where n is the
number of feature maps each of size m (which is the height times the width
of the feature map). Fij corresponds to the ith feature at position j. Thus,
for content loss, we will take the squared difference between the output of
this layer for the input image and the content reference image:

Lcontent =
∑
i,j

(Fij,ref − Fij,input)
2 (4.2)

where Fref and Finput are the outputs of layer block5 conv3 for the con-
tent reference image and input image respectively [3].

4.2.3 Style Loss

On the other hand, the style of an image is made up of both low and
high level features. There are many aspects of image style including the
color palette and brush stroke size. Thus, instead of using the feature map
of the final convolutional layer of our CNN, we use several layer outputs
evenly spaced throughout the CNN to include both low and high level style
features [3]. The layers used for style loss are block1 conv1, block2 conv1,
block3 conv1, block4 conv1, and block5 conv1 (refer to Figure 4.1).

Additionally, it is important to examine the correlation between differ-
ent filter responses in a given feature map in order to capture the texture
information of the input image but not the global arrangement. This can be
done by computing the Gram matrix between all pairs of features in each
feature map. The Gram matrix Gl

ij is the inner product between the vector-
ized feature maps i and j in layer l, shown in Equation 4.3. Gij represents
the correlation between feature maps i and j [3].

Gl
ij =

∑
k

F l
ikF

l
jk (4.3)
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The style loss from layer l is given by the difference between the Gram
matrices for the style reference image Gref and the input image Ginput for
every pair of feature maps:

Sl =
∑
i,j

(Gl
ij,ref −Gl

ij,input)
2 (4.4)

To calculate the overall style loss we take the average style loss from all
the style layers used.

Lstyle =
1

L

L∑
l

Sl (4.5)

where L is the number of style layers used, which is five in our case [3].
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4.3 Optimization

Now that the loss function has been defined, there needs to be a way to
optimize the input image based on the given loss. The key to this optimiza-
tion is backpropagation. Backpropagation in convolutional neural networks
is very similar to the backpropagation through fully-connected neural net-
works described in chapter 2. The concept of propagating error back through
the weights of the network via the chain rule remains unchanged.

However, for this application the actual pixel values of the input image
will be adjusted instead of the weights of the network. The parameters
of the network will be “frozen” so that they will not change during the
backpropagation. Instead, each iteration of backpropagation will adjust the
pixel values of the image based on an optimizer [3].

I chose to use the Adam optimizer, described in chapter 2, in order to
adjust the input image. Adam works very well in practice and produces
satisfying style content combinations in under a minute of optimization.

Psuedocode for the algorithm is given below:

Algorithm 1 Neural Style Transfer

Start with a copy of the content reference image, call this input image
Run content and style reference images through VGG-19 model
for num epochs do

Run input image through VGG-19
Calculate L using intermediate feature maps
Backpropagate error through VGG-19 and adjust pixel values of input
image

end for
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4.4 Results

Below are examples of the neural style transfer algorithm output with var-
ious content and style reference images. These example were created from my
neural style transfer implementation in the Python programming language
using the TensorFlow framework. The code can be found in a repository
on my personal GitHub page [9]. The images used in these examples are all
available in the Wikimedia Commons.

Content reference image [13] Style reference image [16]

Figure 4.2: Neural Style Transfer Walker Dorm Example
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Content reference image [10] Style reference image [7]

Figure 4.3: Neural Style Transfer Beagles Example
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Below is an example of how varying the style weight in the loss function
can change the output of the algorithm to incorporate different amounts of
the style representation. As the figure shows, as the style weight increases
so does the amount of “abstractness” from the style reference image. The
content weight is kept constant at wcontent = 100 for this analysis.

Content reference image [8] Style reference image [5]

wstyle = 1× 10−7 wstyle = 1× 10−6 wstyle = 1× 10−5

wstyle = 1× 10−4 wstyle = 1× 10−3 wstyle = 1× 10−2

Figure 4.4: Neural Style Transfer Turtle Example
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Chapter 5

Conclusion

In this analysis, we were able to utilize the inner structure of convolu-
tional neural networks in an algorithm to synthesize the content and style of
two reference images. This process began with opening up the black box of
neural networks and examining how these models are able to learn patterns
in data. Chapter 2 dove into the details of neural networks and explained
their many complexities including activation functions, backpropagation, and
optimizers. Then our focus shifted to convolutional neural networks, a spe-
cialized class of model that performs well with image data. CNNs incorporate
additional data preprocessing in the form of convolutional and pooling lay-
ers at the front of the network. Finally, chapter 4 detailed our application:
neural style transfer. NST takes advantage of the intermediate layers of a
convolutional neural network to capture style and content representations of
two images and then uses backpropagation to optimize a combined image.
Using this technique we were able to create abstract works of art using the
mathematics of neural networks as our paintbrush.
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