Simple Linear Regression using Matrices

Math 158, Spring 2009
Jo Hardin
Simple Linear Regression
with Matrices

Everything we've done so far can be written in matrix form. Though it might seem no more efficient to use matrices with simple linear regression, it will become clear that with multiple linear regression, matrices can be very powerful. Chapter 5 contains a lot of matrix theory; the main take away points from the chapter have to do with the matrix theory applied to the regression setting. Please make sure that you read the chapters / examples having to do with the regression examples.

Special Matrices

$$
\begin{gathered}
\mathbf{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \mathbf{I}_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\mathbf{J}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \quad \mathbf{0}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Regression Model

Matrix Addition

$$
\begin{aligned}
Y_{i} & =E\left[Y_{i}\right]+\epsilon_{i} \\
\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right) & =\left(\begin{array}{c}
E\left[Y_{1}\right] \\
E\left[Y_{2}\right] \\
\vdots \\
E\left[Y_{n}\right]
\end{array}\right)+\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right) \\
\underline{Y} & =E[\underline{Y}]+\underline{\epsilon}
\end{aligned}
$$

Matrix Multiplication

Example

Consider multiplying an $r \times c$ matrix with a $c \times s$ matrix. The interior dimensions must always be the same. The resulting matrix will always be $r \times s$. The element in the $i^{\text {th }}$ row and $j^{\text {th }}$ column is given by:

$$
\sum_{k=1}^{c} a_{i k} b_{k j}
$$

$$
\begin{aligned}
A B & =\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right) \\
& =\left(\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}
\end{array}\right) \\
A B & =\left(\begin{array}{ccc}
3 & -1 & 0 \\
0 & 1 & 1 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 2 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
4 & 1 \\
-1 & 1 \\
-2 & -3
\end{array}\right)
\end{aligned}
$$

and in the linear regression context...

$$
\begin{aligned}
& E\left[Y_{i}\right]=\beta_{0}+\beta_{1} X_{i} \\
& \left(\begin{array}{c}
E\left[Y_{1}\right] \\
E\left[Y_{2}\right] \\
\vdots \\
E\left[Y_{n}\right]
\end{array}\right)=\left(\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\vdots & \\
1 & X_{n}
\end{array}\right)\binom{\beta_{0}}{\beta_{1}} \\
& E[\underline{Y}]=X \underline{\beta} \\
& \underline{Y}^{t} \underline{Y}=\left(\begin{array}{llll}
Y_{1} & Y_{2} & \cdots & Y_{n}
\end{array}\right)\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right)=\sum_{i=1}^{n} Y_{i}^{2} \\
& X^{t} X=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
X_{1} & X_{2} & \cdots & X_{n}
\end{array}\right)\left(\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\vdots & \vdots \\
1 & X_{n}
\end{array}\right)=\left(\begin{array}{cc}
n & \sum_{i=1}^{n} X_{i} \\
\sum_{i=1}^{n} X_{i} & \sum_{i=1}^{n} X_{i}^{2}
\end{array}\right) \\
& X^{t} \underline{Y}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
X_{1} & X_{2} & \cdots & X_{n}
\end{array}\right)\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right)=\binom{\sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} X_{i} Y_{i}}
\end{aligned}
$$

Matrix Inverses in the Regression Context

Matrix Inverses

An $n \times n$ matrix A is called invertible if there exists an $n \times n$ matrix B such that

$$
A B=B A=I_{n}
$$

B is called the inverse of A and is typically denoted by $B=A^{-1}$. (Note, inverses only exist for square matrices with non-zero determinants.)

Example

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad A^{-1}=\left(\begin{array}{cc}
d /(a d-b c) & -b /(a d-b c) \\
-c /(a d-b c) & a /(a d-b c)
\end{array}\right)
$$

where the determinant is given by $D=a d-b c$.

$$
\begin{aligned}
A^{-1} A & =\left(\begin{array}{cc}
d /(a d-b c) & -b /(a d-b c) \\
-c /(a d-b c) & a /(a d-b c)
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& =\left(\begin{array}{cc}
(a d-b c) /(a d-b c) & (b d-b d) /(a d-b c) \\
(-a c+a c) /(a d-b c) & (a d-b c) /(a d-b c)
\end{array}\right) \\
& =I_{2}
\end{aligned}
$$

$$
A=\left(\begin{array}{ll}
3 & 2 \\
1 & 6
\end{array}\right) \quad A^{-1}=\left(\begin{array}{cc}
6 / 16 & -2 / 16 \\
-1 / 16 & 3 / 16
\end{array}\right)
$$

$$
A^{-1} A=\left(\begin{array}{cc}
6 / 16 & -2 / 16 \\
-1 / 16 & 3 / 16
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
1 & 6
\end{array}\right)
$$

$$
=\left(\begin{array}{ll}
(18-2) / 16 & (12-12) / 16 \\
(-3+3) / 16 & (-2+18) / 16
\end{array}\right)
$$

$$
=I_{2}
$$

Variance of Coefficients

$$
\text { Recall: } \begin{aligned}
X^{t} X & =\left(\begin{array}{cc}
n & \sum_{i=1}^{n} X_{i} \\
\sum_{i=1}^{n} X_{i} & \sum_{i=1}^{n} X_{i}^{2}
\end{array}\right) \\
\text { So, } D & =n \sum X_{i}^{2}-\left(\sum X_{i}\right)^{2}=n \sum\left(X_{i}-\bar{X}\right)^{2} \\
\left(X^{t} X\right)^{-1} & =\left(\begin{array}{cc}
\frac{\sum X_{i}^{2}}{n \sum \sum\left(X_{i}-\bar{X}\right)^{2}} & \frac{-\sum_{i=1}^{n} X_{i}}{n \sum\left(X_{i}-\bar{X}\right)^{2}} \\
\frac{-\sum_{i=1}^{n} X_{i}}{n \sum\left(X_{i}-\bar{X}\right)^{2}} & \frac{n}{n \sum\left(X_{i}-\bar{X}\right)^{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{1}{n}+\frac{\bar{X}^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}} & \frac{-\bar{X}}{\sum\left(X_{i}-\bar{X}\right)^{2}} \\
\frac{-\bar{X}}{\sum\left(X_{i}-\bar{X}\right)^{2}} & \frac{1}{\sum\left(X_{i}-\bar{X}\right)^{2}}
\end{array}\right) \\
\sigma^{2}\{\underline{b}\} & =\sigma^{2} \cdot\left(X^{t} X\right)^{-1}
\end{aligned}
$$

Estimating Coefficients

Recall the normal equations that come from differentiating the sum of squared residuals with respect to both β_{0} and β_{1} :

$$
\begin{aligned}
n b_{0}+b_{1} \sum X_{i} & =\sum Y_{i} \\
b_{0} \sum X_{i}+b_{1} \sum X_{i}^{2} & =\sum X_{i} Y_{i} \\
\left(\begin{array}{cc}
n & \sum X_{i} \\
\sum X_{i} & \sum X_{i}^{2}
\end{array}\right)\binom{b_{0}}{b_{1}} & =\binom{\sum Y_{i}}{\sum X_{i} Y_{i}} \\
\left(X^{t} X\right) \underline{b} & =X^{t} \underline{Y} \\
\underline{b} & =\left(X^{t} X\right)^{-1}\left(X^{t} \underline{Y}\right)
\end{aligned}
$$

checking:

$$
\begin{aligned}
\left(X^{t} X\right)^{-1}\left(X^{t} \underline{Y}\right) & =\left(\begin{array}{cc}
\frac{1}{n}+\frac{\bar{X}^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}} & \frac{-\bar{X}}{\sum\left(X_{i}-\bar{X}\right)^{2}} \\
\frac{-\bar{X}}{\sum\left(X_{i}-\bar{X}\right)^{2}} & \frac{1}{\sum\left(X_{i}-\bar{X}\right)^{2}}
\end{array}\right)\binom{\sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} X_{i} Y_{i}} \\
& =\binom{\frac{\sum Y_{i}}{n}+\frac{\sum Y_{i} \bar{X}^{2}}{\sum\left(X_{i} \overline{x^{2}}\right.}+\frac{-\sum X_{i} Y_{i}(\bar{X})}{\sum\left(X_{i} \bar{X}\right)^{2}}}{\frac{-\sum Y_{i}(\bar{X})}{\sum\left(X_{i}-\bar{X}\right)^{2}}+\frac{\sum X_{i}}{\sum\left(X_{i}-\bar{X}\right)^{2}}} \\
& =\binom{\bar{Y}-b_{1} \bar{X}}{\frac{\sum Y_{i}\left(X_{i}-\bar{X}\right)}{\sum\left(X_{i}-\bar{X}\right)^{2}}}=\binom{b_{0}}{b_{1}}
\end{aligned}
$$

Fitted Values

$$
\begin{aligned}
\hat{Y}_{i} & =b_{0}+b_{1} X_{i} \\
\left(\begin{array}{c}
\hat{Y}_{1} \\
\hat{Y}_{2} \\
\vdots \\
\hat{Y}_{n}
\end{array}\right) & =\left(\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\vdots & \vdots \\
1 & X_{n}
\end{array}\right)\binom{b_{0}}{b_{1}} \\
\hat{Y} & =X \underline{b} \\
& =X\left(X^{t} X\right)^{-1}\left(X^{t} \underline{Y}\right) \\
& =H \underline{Y} \\
\text { "hat" matrix: } H & =X\left(X^{t} X\right)^{-1} X^{t}
\end{aligned}
$$

Note that the predicted values are simply a linear combinations of the response variable (Y) with coefficients of the explanatory variables (X).

Residuals

$$
\begin{aligned}
e_{i} & =Y_{i}-\hat{Y}_{i} \\
\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right) & =\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right)-\left(\begin{array}{c}
\hat{Y}_{1} \\
\hat{Y}_{2} \\
\vdots \\
\hat{Y}_{n}
\end{array}\right) \\
\underline{e} & =\underline{Y}-\underline{\underline{Y}} \\
& =\underline{Y}-X \underline{b} \\
& =\underline{Y}-H \underline{Y} \\
& =(I-H) \underline{Y} \\
\sigma^{2}\{\underline{e}\} & =\sigma^{2}\{(I-H) \underline{Y}\} \\
& =(I-H) \sigma^{2}\{\underline{Y}\} \\
& =(I-H) \sigma^{2} \\
s^{2}(\underline{e}) & =M S E \cdot(I-H)
\end{aligned}
$$

ANalysis Of VAriance

$$
\begin{aligned}
S S T O & =\underline{Y}^{t} \underline{Y}-\left(\frac{1}{n}\right) \underline{Y}^{t} J \underline{Y} \\
S S E & =\underline{Y}^{t} \underline{Y}-\underline{b}^{t} X^{t} \underline{Y} \\
S S R & =\underline{b}^{t} X^{t} \underline{Y}-\left(\frac{1}{n}\right) \underline{Y}^{t} J \underline{Y}
\end{aligned}
$$

Prediction of New Observations

$$
\begin{aligned}
\underline{X}_{h} & =\binom{1}{X_{h}} \quad \underline{X}_{h}^{t}=\left(\begin{array}{ll}
1 & X_{h}
\end{array}\right) \\
\hat{Y}_{h} & =\underline{X}_{h}^{t} \underline{\underline{b}} \\
\sigma^{2}\left\{\hat{Y}_{h}\right\} & =\underline{X}_{h}^{t} \sigma^{2}\{\underline{b}\} \underline{X}_{h} \\
& =\sigma^{2} \cdot \underline{X_{h}^{t}\left(X^{t} X\right)^{-1} \underline{X}_{h}} \\
s^{2}\left\{\hat{Y}_{h}\right\} & =M S E \cdot \underline{X}_{h}^{t}\left(X^{t} X\right)^{-1} \underline{X}_{h} \\
s^{2}\left\{\hat{Y}_{h(\text { new })}\right\} & =\operatorname{MSE} \cdot\left(1+\underline{X}_{h}^{t}\left(X^{t} X\right)^{-1} \underline{X}_{h}\right)
\end{aligned}
$$

R Code for Dealing with Matrices Addition

```
> matrix1 <- matrix(c(1:12),ncol=4, byrow=T)
    1
    5
    9
> matrix2 <- matrix(seq(2,24,by=2),ncol=4, byrow=T)
    2 4 6 8
    10
    18}20\quad20\quad2
> matrix1 + matrix2
gives exactly what you'd expect, element by element addition.
    3
    15}18821\quad2
    27}303033 3
```


Multiplication

```
> matrix1 * matrix2
gives element by element multiplication.
    2
    50
    162 200 242 288
> matrix1 %*% matrix2
gives an error because you can't multiply a 3 < 4 by a 3 < 4.
```

> matrix1 \% *\% t(matrix2)
gives matrix multiplication of the first matrix times the transpose of the second (3×3).
$\begin{array}{lll}60 & 140 & 220\end{array}$
$\begin{array}{lll}140 & 348 & 556\end{array}$
$\begin{array}{lll}220 & 556 & 892\end{array}$
> t(matrix1) \%*\% matrix2
gives matrix multiplication of the transpose of the first matrix times the second (4×4).
$\begin{array}{llll}214 & 244 & 274 & 304\end{array}$
$\begin{array}{llll}244 & 280 & 316 & 353\end{array}$
$\begin{array}{lllll}274 & 316 & 358 & 400\end{array}$
$\begin{array}{llll}304 & 353 & 400 & 448\end{array}$

Note that the products are only symmetric because matrix1 $=2$ matrix2.

Taking Inverses

The function for inverting matrices in R is solve. Remember that solve only works on square matrices with non-zero determinants.

```
> matrix3 <- matrix(c(5,7,1,4,3,6,2,0,8), ncol=3, byrow=T)
    5 7 1
    4 3 6
    2 0 8
> solve(matrix3)
gives the inverse of matrix3.
    -0.923 2.154 -1.5
    0.769 -1.462 1.0
    0.231 -0.538 0.5
    > solve(matrix3) %*% matrix3
gives the identity matrix, I_ .
    1 8.9e-16 -1.78e-15
    0 1.0e+00 1.78e-15
    0 0.0e+00 1.0e+00
```

