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First published January 5, 2005; doi:10.1152/jn.00827.2003. Beta-adren-
ergic receptors and the cyclic AMP signaling pathway play an im-
portant role in neuronal plasticity and in learning and memory and are
known to change with aging. We examined the effects of B-adrenergic
stimulation paired with 5-Hz low frequency stimulation (LFS) of
Schaffer collateral-commissural afferents on population spike ampli-
tude in area CA1 of hippocampal slices from young (3 mo) and aged
(22 mo) Fischer 344 rats. Application of the (-adrenergic agonist
isoproterenol (1 uM) for 10 min followed immediately by 3 min LFS
produced long-lasting potentiation in young hippocampi, but the
magnitude of potentiation in aged rats was significantly attenuated and
was not long-lasting. In slices prepared from young rats, long-term
potentiation (LTP) induced by this protocol occludes subsequent
attempts to produce conventional high frequency stimulation-induced
LTP, and vice versa, suggesting that these two forms of potentiation share
one or more molecular mechanisms. Age-related differences in response
to LES alone were not observed, but significant differences in response to
B-adrenergic stimulation were apparent. Similarly, significant age-related
differences in response to direct activation of adenylate cyclase with
forskolin (10 uM) were observed. In both age groups, this enhancement
produced by isoproterenol or forskolin is only transient, returning to
baseline within 60 or 90 min, respectively. Taken together, these studies
of adenylate cyclase-mediated forms of potentiation in area CA1 suggest
that there is an age-related defect, either upstream or downstream of
adenylate cyclase activation, in this important signaling system. Such
changes may contribute to the compromised performance on memory
tasks that is often observed with normal aging.

INTRODUCTION

The hippocampus is known to be a critical component of the
mammalian CNS for consolidation of experience into long-
term memory (Milner 1966; Scoville and Milner 1957; Squire
1982, 1992). The role of the hippocampus in declarative
memory is substantiated by a growing body of human (Squire
1982) and animal (Barnes 1979; Rapp and Amaral 1992)
research demonstrating that an intact hippocampus is necessary
for successful performance of declarative memory tasks. Al-
though aging does not inevitably lead to mnemonic decline,
humans (Poon 1985) and rats (Gallagher and Burwell 1989;
Jiang et al. 1989) frequently display compromised performance
on memory tasks during normal aging.

Such changes in behavior have been correlated with neuro-
physiological changes in the hippocampus, particularly
changes in long-term potentiation (LTP) (Bach et al. 1999).
LTP is widely regarded as a cellular substrate for learning and

memory (for review, see Bliss and Collingridge 1993) due to
its long-lasting nature and associative properties. Interestingly,
aged (24-mo-old) rats that have learning and memory deficits
also exhibit a higher rate of decay of LTP or synaptic enhance-
ment in the dentate gyrus (Barnes 1979; deToledo-Morrell et
al. 1988). The most thoroughly characterized form of LTP to
date is that induced in vitro at CA1 synapses by brief bursts of
high-frequency tetanic stimulation (0.5-1 s of 100- to 200-Hz
stimulation) of the Schaffer collateral-commissural pathway.
In earlier studies of the effects of aging on this form of LTP in
vitro, deficits in the induction or maintenance of LTP were not
apparent (Deupree et al. 1991; Landfield et al. 1978; Moore et
al. 1993), even in slices prepared from aged rats displaying
significant spatial memory deficits (for reviews, see Barnes
1994, 2003; Lynch 1998). More recent studies by Bach et al.
(1999) again demonstrated no significant age-related difference
in tetanus-induced LTP 1 h poststimulus, which they refer to as
early LTP (E-LTP), but they did observe significant reduction
in late-phase LTP (L-LTP) measured 3 h poststimulus. This
reduction in L-LTP, a form of potentiation that is dependent on
the cAMP signaling pathway (Abel et al. 1997; Frey et al.
1993; Bourtchuladze et al. 1994), was associated with an
increase in spatial memory errors in aged mice.

Although it is unclear why deficits in E-LTP were not
observed in aged animals, it is possible that deficits in poten-
tiation were masked by the supraphysiological 100-Hz stimu-
lation parameters typically used in these studies. Indeed, other
studies by Moore et al. (1993), Deupree et al. (1993), and
Rosenzweig et al. (1997) have demonstrated that when less
intense, more physiologically relevant stimulus parameters are
used to induce LTP, significant differences in the magnitude
and incidence of LTP are observed in slices from aged versus
young rats. One such stimulation pattern is primed burst
stimulation, which reliably induces LTP in young but not aged
animals (Moore et al. 1993). Alternatively, Thomas et al.
(1996) have found that 5-Hz LFS applied for 3 min after
B-adrenergic receptor activation induces significant LTP of
field excitatory postsynaptic potentials (EPSPs) in area CA1 of
young (3- to 5-wk-old) mice. It is unclear why the pairing of
these stimuli induces such reliable LTP, whereas either stim-
ulus alone does not (Thomas et al. 1996), but it may be that the
LFS-induced rise in intracellular [Ca?*] may act synergisti-
cally with B-adrenergic receptor-coupled G, to activate ade-
nylate cyclase, thereby producing a persistent form of synaptic
potentiation. This prospect of two signaling pathways acting in
concert to produce LTP is attractive in that it provides a
molecular mechanism of associativity.
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The hippocampus receives a diffuse but substantial projec-
tion of norepinephrine (NE)-containing fibers from the locus
coeruleus (Fuxe 1965; Loy et al. 1980; Moore 1982). NE has
been shown to modulate neuronal function in all three regions
of the trisynaptic hippocampal pathway by acting at (3-adren-
ergic receptors. In area CA1l, superfusion of NE or the 3-ad-
renergic agonist isoproterenol (ISO) does not seem to have any
direct effect on EPSPs (Gereau and Conn 1994a; Heginbotham
and Dunwiddie 1991; Mueller et al. 1981; Parfitt et al. 1992;
but see Thomas et al. 1996); both agonists, however, markedly
potentiate the population spike amplitude (Gereau and Conn
1994a; Heginbotham and Dunwiddie 1991; Dunwiddie et al.
1992; Mueller et al. 1981). NE can modulate the excitability of
CA1l pyramidal neurons by decreasing the amplitude and
duration of the slow calcium-activated potassium afterhyper-
polarization (AHP) that occurs after depolarizing stimuli (Mad-
ison and Nicoll 1986a); this is mediated by the cAMP effector
pathway (Madison and Nicoll 1986b). This reduction in the
AHP blocks the accommodation of pyramidal cell discharge
rate, a phenomenon that is also referred to as “spike frequency
adaptation.” As a result, NE or elements of the cAMP pathway
profoundly affect neuronal excitability and neuronal function.
Activation of the cAMP pathway via -adrenergic stimulation
(Gereau and Conn 1994b) or direct stimulation of adenylate
cyclase (Chavez-Noriega and Stevens 1994) can also enhance
excitatory synaptic transmission.

Previous studies have demonstrated an age-related func-
tional deficit in receptor systems that are coupled to the cAMP
effector pathway, including [3-adrenergic receptors in the cer-
ebellum (Bickford 1983; Parfitt 1988; Parfitt and Bickford-
Wimer 1990; Parfitt et al. 1988, 1990b) and hippocampus
(Bickford-Wimer et al. 1987) and dopaminergic receptors in
the prefrontal cortex (Parfitt et al. 1990a). In these studies,
changes in the responsiveness of receptors coupled to other
second-messenger systems were not observed. Such deficits in
the hippocampus can lead to reduced cAMP-dependent phos-
phorylation events (Parfitt et al. 1991). Although there do not
appear to be significant age-related changes in (-adrenergic
receptor number or affinity in the hippocampus (Miller and
Zahniser 1988) or changes in NE levels (Roubein et al. 1981),
NE is unable to fully stimulate adenylate cyclase activity in the
senescent rat hippocampus (Walker and Walker 1973); as a
result, decreases in cAMP levels are observed (Hara et al.
1992). In light of these observations, the goal of the present
study was to investigate age-related changes in hippocampal
neuronal excitability produced by [-adrenergic receptor stim-
ulation paired with low-frequency electrical stimulation.

METHODS

Fischer 344 rats were obtained from the National Institute of Aging
colony at Charles River Breeding Laboratories and maintained ac-
cording to National Institutes of Health guidelines in a facility ac-
credited by the Association for Accreditation of Laboratory Animal
Care (AAALAC). Hippocampal slices from young (3-mo-old) and
aged (22- to 24-mo-old) male rats were prepared as previously
described (Madison and Nicoll 1986a) and placed in an oxygenated
holding chamber at room temperature (22-24°C) for =1 h. A single
slice was then transferred to a recording chamber, where it was
submerged and superfused continuously at a rate of 3—4 ml/min with
artificial cerebrospinal fluid (ACSF) containing (in mM) 119 NaCl,
2.5 KCl, 1.3 MgCl,, 2.5 CaCl,, 1.0 NaH,PO,, 26.2 NaHCO,, and 11
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glucose. This solution was gassed with 95% O,-5% CO,, bringing it
to pH 7.4. Stimulating electrodes and recording electrodes were
placed in stratum radiatum and s. pyramidale, respectively. Stimulat-
ing pulses of 0.1-ms duration were delivered to the Schaffer collateral-
commissural fibers via bipolar tungsten electrodes (Fred Haer) at a
rate of 0.033 Hz. The intensity of stimulation was set so that the
amplitude of responses was ~50% of the maximum population spike
amplitude. Responses were recorded at room temperature (22-24°C)
with extracellular electrodes of 5-10 M) resistance, filled with 3.0 M
NaCl. Signals were amplified on a Dagan IX1 amplifier and digitized
using MacLab/2e data-acquisition hardware. Data were filtered at 1
kHz and analyzed using MacLab Scope software. In some experi-
ments, signals were amplified using Axoclamp 2B and Brownlee
amplifiers, filtered at 1 kHz, and analyzed using Labview acquisition
and analysis software. The amplitude of population spikes was mea-
sured as the length of a vertical line drawn from the minimum of the
field response to the midpoint of the line that joined the two positive
peaks. In all experiments, manipulations were made only after stable
responses had been obtained for =20 min. ISO (isoproterenol HCI,
Sigma) or forskolin (Calbiochem) were initially dissolved in dH,O or
DMSO, respectively, and then diluted to their final concentration in
the ACSF. Final DMSO concentration was 0.1%, a concentration that
did not affect the population spike amplitude.

Acute changes in neuronal excitability measured during an appro-
priate 5-min period after drug application or stimulation were com-
pared in slices from young versus aged rats using repeated-measures
ANOVA, with population spike amplitude over time as the repeated
measure and age as a factor. Persistent changes in neuronal excitabil-
ity were also compared by repeated-measures ANOVA, with popula-
tion spike amplitude over time, measured 55— 60 min after completion
of a manipulation, as the repeated measure and age as a factor. In a
few cases where indicated, population spike amplitudes were com-
pared using a paired Student’s r-test. Where stated, N represents the
number of slices used in each experiment, prepared from a minimum
of five animals per age group. Results are reported as the means = SE.

RESULTS

Thomas and colleagues (1996) have reported a form of LTP
of field EPSPs in area CA1 of juvenile mouse hippocampus
that persisted for >1 h when ISO superfusion was immediately
followed by 3 min of low-frequency (5 Hz) electrical stimula-
tion (LFS). In a similar vein, we observed in young adult
(3-mo-old) F344 rats that 10-min superfusion of slices with
ISO (1 uM), followed by LFS, produces LTP of the CAl
population spike amplitude (Fig. 1A). Because of the presumed
dependence of this potentiation on adenylate cyclase, we will
refer to it as AC-LTP. In aged rats, the acute response to ISO
was much lower than that observed in the young rats (see also
Fig. 4), and AC-LTP was not observed (Fig. 1B); the popula-
tion spikes returned to their baseline amplitude within 60 min
after the LFS. Data from 10 slices from 9 young adult rats and
7 slices from 5 aged rats are summarized in Fig. 1C. In slices
from the young rats, the population spike amplitude was
48.7 = 12.1% above baseline 50—60 min after LFS, which was
significantly different from baseline amplitude (0.0 * 2.4%;
P < 0.01, repeated-measures ANOVA). In slices from aged
rats, responses 50—60 min after the LFS were significantly
lower than those in slices from young rats (P < 0.01, repeated-
measures ANOVA) and had returned to baseline (9 = 10. vs.
0.0 = 3.0%; P > 0.05, Student’s paired #-test). In all slices for
this and subsequent studies, responses of similar baseline
amplitude were used. Although the population spike amplitude
for a given stimulus strength was lower in slices from aged as
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FIG. 1. B-adrenergic stimulation followed by 5-Hz, 3-min low-frequency

stimulation (LFS) produces persisting potentiation of population spike ampli-
tude in slices from 3- but not 24-mo-old F344 rats. A: plot of normalized CA1
population spikes in a slice prepared from a young adult rat. The slice was
perfused with isoproterenol (ISO; 1 wM) for 10 min followed immediately by
LFS. B: plot of normalized CA1 population spikes in a slice prepared from an
aged rat. The slice was exposed to ISO (1 uM) + LFS. A and B, insets: sample
population spike waveforms corresponding to times a—c of time plots. Cali-
bration: 2 mV, 10 ms C: ensemble analysis showing that ISO followed by LFS
leads to long-term potentiation (LTP) of the population spike amplitude in
young but not aged rats. As demonstrated in Fig. 5, the acute effects of ISO
were significantly different in slices from young vs. aged rats. After the LFS,
depression of the population spike was observed. Subsequent potentiation in
slices from young rats was significantly greater than in slices from aged rats,
and persisted for =60 min. In slices from aged rats, population spikes decayed
to baseline within 60 min after the LFS.
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compared with young rats, the maximum population spike
amplitude, and hence the baseline amplitudes, did not differ
significantly between young and aged rats; baseline population
spike amplitudes were 3.52 *= 0.32 and 4.09 = 1.12 mV in
slices from young versus aged rats, respectively (P > 0.05;
Student’s z-test).

In both age groups, the LFS immediately produced a tran-
sient depression of the population spike amplitude followed by
recovery and potentiation. This depression appeared to be more
pronounced in slices from the young animals as compared with
those from the aged animals. In the absence of ISO, 3 min of
LES produced short-term depression of the population spike
amplitude in both young and aged rats (Fig. 2); neither the
magnitude nor the time course of this depression was signifi-
cantly different in slices from young versus aged hippocampus
(P > 0.05, repeated-measures ANOVA). In contrast with
recent work by Watabe and O’Dell (2003) and Tombaugh et al.
(2002), but consistent with Brown et al. (2000), we did not
observe potentiation of the EPSP or complex spiking after
either short (150 pulses) or long (900 pulses) exposure to this
5-Hz LFS.

To determine whether AC-LTP observed in young adult rats
shares some common molecular mechanisms with LTP in-
duced by a 100-Hz tetanus, we investigated whether tetanus-
induced LTP occluded AC-LTP and vice versa. LTP induced
by two bursts of 100-Hz stimulation (HFS) did occlude sub-
sequent attempts to induce AC-LTP (Fig. 3A); conversely,
induction of AC-LTP occluded subsequent HFS-induced LTP
(Fig. 3B). In contrast, in aged animals, the transient potentia-
tion induced by ISO/LFS treatment did not occlude subsequent
HFS-induced LTP (Fig. 4).

Because the acute effects of ISO in aged rats were markedly
attenuated as compared with acute responses in young (Fig.
1C), we decided to examine age-related changes in response to
B-adrenergic stimulation alone. As previously reported by
Heginbotham and Dunwiddie (1991), we found that exposure
of slices from young rats to ISO alone produced an increase in
excitability of pyramidal neurons, as demonstrated by the
potentiation of the evoked population spike amplitude (Fig. 5);
however, as observed by Gereau and Conn (1994a), this
potentiation did not persist on washout of the agonist. In slices
prepared from young rats, ISO (I M) produced signifi-
cant enhancement (61.9 = 8.1% above baseline; P < 0.01;
repeated-measures ANOVA) of the population spike amplitude
3-8 min after beginning the superfusion of the agonist. Al-
though the enhancement in population spike amplitude was not
of equal magnitude for each slice studied, all 30 slices dis-
played potentiation in response to ISO application. This en-
hancement declined steadily during washout, however, such
that the population spike amplitudes were not significantly
different from baseline amplitudes 60—65 min after washout
(11.6 = 5.9 vs. 0.0 = 1.5%; P > 0.05, paired Student’s z-test).
Slices prepared from aged F344 rats revealed significant sub-
sensitivity to the (-adrenergic agonist; the magnitude of the
acute response (359 * 6.8% above baseline; n = 8) was
significantly less in the aged as compared with young animals
(P < 0.05; repeated-measures ANOVA). As in the young
animals, the acute effects of ISO (1 wM) were not persistent;
the population spike amplitude 60—65 min after washout
declined toward baseline (3.3 = 7.2 vs. 0.2 = 1.7%). The dose
of ISO chosen for these studies (1 wM) produces maximal
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FIG. 2. Ensemble analysis for responses to LFS (3 min, applied at time 0) in the absence of ISO in young and aged rat hippocampi. There was no significant
difference in the depression induced in young vs. aged hippocampi (repeated-measures ANOVA). In addition, population spikes returned to their baseline

amplitude in slices from both young and aged rats within 30 min.

potentiation of the population spike (Mueller et al. 1981) in
slices from young rats; increasing the ISO dose to 2 or 10 uM
in slices from aged rats did not enhance the maximal increases
in population spike amplitude (Fig. 6). Thus in the aged rats the
lack of AC-LTP was not due to using a suboptimal dose of the
B-adrenergic agonist (i.e., to a rightward shift in the ISO
dose-response curve with aging), but to a depression of the
maximal enhancement.

The direct activation of adenylate cyclase by forskolin (10
M) produced an increase in population spike amplitude that
was significantly greater than the forskolin-induced potentia-
tion in slices from aged animals (39 = 7 vs. 14 = 6%,
respectively, measured 20—30 min after forskolin superfusion
was stopped; P < 0.05; repeated-measures ANOVA; Fig. 7).
When forskolin was initially applied, the population spike
amplitude was inhibited somewhat, perhaps due to the trans-
port of cAMP out of cells and activation of adenosine receptors
by cAMP-derived adenosine (Chavez-Noriega and Stevens
1994; Dunwiddie et al. 1992; Lu and Gean 1999; Pockett et al.
1993; Rosenberg and Li 1995). This hypothesis is supported by
previous observations that forskolin-induced or 8-bromo-
cAMP-induced depression is inhibited by the cAMP transport
inhibitor probenicid (Lu and Gean 1999), by inhibition of
cAMP phosphodiesterase (Lu and Gean 1999), or by inhibition
of adenosine receptors (Dunwiddie et al. 1992; Pockett et al.
1993). The brief inhibition in response to forskolin, if it occurs,
is followed by enhancement of the population spike amplitude.
As reported by Dunwiddie and colleagues (1992), the forsko-
lin-induced potentiation persisted for ~40 min after washout;
we have observed, however, that the potentiation decays back
to baseline with 50 additional min of washout of this very
lipophilic agent in slices from both young and aged rats (Fig.
7B). The inactive forskolin derivative 1,9-dideoxy-forskolin

did not significantly change population spike amplitudes (Fig.
7B; paired Student’s #-test).

DISCUSSION

The results presented here demonstrate that LTP of popula-
tion spikes can be induced in area CA1 of hippocampal slices
prepared from young adult rats by pairing (3-adrenergic recep-
tor stimulation with LFS. This form of LTP, which we refer to
as AC-LTP, is significantly reduced in magnitude in aged rats
and is not long-lasting. Thomas et al. (1996) hypothesize that
potentiation of this kind in young animals is produced by the
coincident signals of cAMP (due to [(-adrenergic receptor
stimulation) and calcium influx (due to the LFS). Thus the
deficits in AC-LTP in the aged animals could be due to changes
in the B-adrenergic/cAMP signaling pathway, or to changes in
calcium signaling. There have been numerous reports of
changes in calcium homeostasis in hippocampus from senes-
cent animals, revealing an excess of voltage-dependent cal-
cium influx, perhaps due to increases in voltage-sensitive
calcium channels, alterations in calcium buffering, or distur-
bances in calcium uptake and extrusion (for reviews, see Foster
and Kumar 2002; Khachaturian 1984; Landfield 1994). Such
changes in calcium signaling contribute to prolonged calcium-
dependent AHPs in aged hippocampal neurons (Moyer et al.
1992; Landfield and Pitler 1984). Pretreatment with ISO may
further enhance the AHP via the activation of PKA and
phosphorylation-induced opening of L-type calcium channels;
this would prevent AC-LTP from persisting in slices from aged
animals. Further experiments to address this possibility would
involve examining whether AC-LTP can be rescued in slices
from aged rats pretreated with an L-type channel blocker, or
the K™ channel blocker apamin, using an approach similar to
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FIG. 3.

In young rats, HFS-induced LTP occludes subsequent attempts to induce AC-LTP and vice versa. A: LTP was induced by two100-Hz tetani (1 s each,

separated by 30 s). After 25 min, the stimulus strength was reduced to elicit responses of baseline amplitude. Once a stable baseline was achieved again, ISO
(1 uM) was applied for 10 min followed immediately by 5-Hz LES for 3 min. Responses 60 min after the LFS were not significantly different from baseline
(n = 4; Student’s t-test). B: conversely, after induction of AC-LTP and allowing =90 min for ISO to be washed from the slice, tetanus-induced LTP was blocked;
responses returned to baseline within 40 min after tetanus (n = 4; Student’s #-test). Insets: sample population spike waveforms corresponding to times a—c of

time plots. Calibration: 4 mV, 10 ms.

that of Norris et al. (1998b). Given the evidence for calcium
dysregulation with aging, further experiments should also be
done to reveal whether the compromised AC-LTP observed in
aged animals here was due to the relatively high Ca*" : Mg?*
ratio that was used (2.5 mM Ca®":1.3 mM Mg>").

Norris et al. (1996) demonstrated an increased susceptibility
to long-term depression (LTD) at CA3—CA1 synapses of aged
rats, perhaps due to the altered calcium homeostasis in these

180

animals (Landfield 1994; Ouanounou et al. 1999) and an
enhancement of protein phosphatase activity (Norris et al.
1998a). In the present study, however, responses to LFS alone
were not significantly different in slices from young versus
aged rats (Fig. 2). This suggests that the observed differences
in AC-LTP may be due primarily to changes in adenylate-
cyclase-mediated signaling. Indeed, pyramidal neurons of the
aged hippocampi were significantly less responsive to super-

FIG. 4. In aged rats, transient potentiation
induced by ISO + LFS does not occlude
subsequent HFS-induced LTP. ISO (1 uM)
was applied for 10 min followed immediately
by 5-Hz LFS for 3 min Responses 60 min
after the LFS were not significantly different
from baseline (n = 6; Student’s ¢-test). LTP
was subsequently induced by 2 100-Hz tetani
(1 s each, separated by 30 s).
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FIG. 5. Ensemble analysis of the effect of ISO
on the population spike amplitude in hippocampal
area CA1 of young vs. aged F344 rats. Slices were
superfused with 1 uM ISO for 10 min as denoted
by the filled bar. ISO application enhanced the
population spike amplitude ~62 * 8% above
control in 3-mo-old rats but only 36 * 7% in 22-
to 24-mo-old rats (measured 3—8 min after begin-
ning superfusion of the agonist). A repeated-mea-
sures ANOVA supports the hypothesis that there
is a significant difference (P < 0.05) between the
acute responses in slices from young versus aged
rats to the B-adrenergic agonist. In both age
groups, potentiated responses decayed to baseline
within 60 min after washout.
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fusion of the B-adrenergic agonist, ISO, or to direct activation and the cAMP phosphodiesterase inhibitor, rolipram; further-
of adenylate cyclase with the diterpene, forskolin, as compared more, deficits in L-LTP, which is dependent on cAMP produc-
with young adult hippocampi (Figs. 5-7). This agrees with tion, are attenuated by D1/D5 agonists. These experiments
previous work demonstrating age-related changes in (-adren-  support the hypothesis that the age-related defect in the cAMP-
ergic modulation of neuronal excitability (Bickford 1983; PKA signaling pathway is upstream of cAMP production.

Bickford-Wimer et al. 1987; Gould and Bickford 1997; Parfitt Previous investigations by others (Dunwiddie et al. 1992;
1988; Parfitt et al. 1988, 1990b, 1991) and changes in cAMP  Heginbotham and Dunwiddie 1991) suggested that long-lasting
signal transduction (Hara et al. 1992; Walker and Walker potentiation of evoked population spike amplitudes in area CA1
1973). It is unclear, however, whether the age-related decrease occurs after exposure of hippocampal slices to B-adrenergic ago-
in response to ISO is due to a reduced ability of receptors to  nists (such as ISO) alone or to agents that stimulate adenylate
activate G proteins, a reduced ability of G proteins to activate cyclase directly (such as forskolin). These effects were reported to
adenylate cyclase, an increase in expression of G; alpha pro-  persist for =30—40 min after the washout of ISO. In our exper-
teins (as described by Bazan et al. 1994 in heart), decreased iments, 3-adrenergic potentiation (>>12% above control) at 25-30
activity of adenylate cyclase, or increased cAMP phosphodi- min into the washout period was observed in only 10 of 30 slices
esterase activity; alternatively or additionally, these changes from the young rats. After 55—60 min of washout, the population
may be due to a defect(s) downstream of cAMP production.  spike amplitudes in our experiments were not significantly differ-
Bach et al. (1999) observed that deficits in spatial learning in  ent from control. The direct activation of adenylate cyclase with
aged mice can be ameliorated by treatment with agents that forskolin produced potentiation that persisted for =40 min on
elevate cAMP concentrations, such as D1/D5 receptor agonists  washout, as observed by Dunwiddie and colleagues (Dunwiddie
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FIG. 7. Effects of forskolin on CAl population spike
amplitude in young vs. aged F344 rats. A: forskolin appli-
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cation (10 uM for 10 min, as denoted by the bar) enhanced
the population spike amplitude 39 = 7% in 3-mo-old rats
but only 14 £ 6% in 22- to 24-mo-old rats. A repeated-
measures ANOVA supports the hypothesis that there is a
significant difference (P < 0.05) between the acute re-

B 50

A

T

sponses in slices from young vs. aged rats to direct stimu-
lation of adenylate cyclase. At 50 min after washout, sig-
nificant potentiation of the population spike was still ob-
served, but within 90 min, the population spike amplitudes
decayed back to baseline (see B). B: summary of results of
forskolin-induced potentiation of CAl population spikes.
Whereas population spike amplitudes 20 min after washout
(“acute” responses) were significantly different from con-
trol, responses at 90 min after washout (“persistent”) did not
differ significantly from baseline responses (Student’s -
test, P > 0.05). In addition, superfusion of the inactive
derivative, 1,9-dideoxyforskolin (10 uM), did not affect the
population spike amplitude. n = 26, forskolin in young;
n = 4, dideoxyforskolin in young; n = 10, forskolin in aged
slices.

% Increase in
population spike amplitude
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}

acute 7
acute 7
acute
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dideoxy-
Forskolin

Young

Forskolin

et al. 1992; Heginbotham and Dunwiddie 1991); we found,
however, that the potentiation decays to baseline within 50
additional min of washout of this lipophilic agent. Thus to
produce reliable potentiation of population spikes that persists for
=1 h, we found that adenylate cyclase activation must be paired
with LFS.

AC-LTP shares some common molecular mechanisms with
conventional high-frequency (100 Hz) stimulation-induced LTP
as shown by the occlusion experiments. One such common
mechanism is likely the activation of N-methyl-p-aspartate
(NMDA) receptors because both AC-LTP (data not shown) and
tetanus induced LTP (Wigstrom and Gustaffson 1986) are atten-
uated or blocked, respectively, by the NMDA receptor antagonist
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persistent

Forskolin

Aged

APV. Furthermore, tetanus-induced LTP produces significant
elevation of intracellular cAMP (Chetkovich and Sweatt 1996),
activation of PKA (Blitzer et al. 1995; Roberson and Sweatt
1996), and phosphorylation of PKA substrates (Blitzer et al.
1998). Phosphorylation of the GluR1 AMPA receptor subunit at
S845 can regulate the peak open probability of the AMPA
receptor channel (Banke et al. 2000; Roche et al. 1996) and is
required for subcellular trafficking of GluRI-containing AMPA
receptors to the synaptic membrane (Ehlers 2000). In addition,
PKA-mediated phosphorylation of S845 is required for the main-
tenance of NMDA receptor-dependent LTP (Esteban et al. 2003).
The occlusion of AC-LTP by prior tetanus-induced LTP suggests
that prior saturation of one or more of these intracellular events by
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tetanic stimulation inhibits the production of AC-LTP. Con-
versely, stimulation of adenylate cyclase via [3-receptor-coupled
G, and LFS-induced rises in intracellular [Ca®"] appear to satu-
rate one or more mechanisms required for subsequent tetanus-
induced LTP. Experiments in hippocampal slices from aged rats,
in which modest tetanus-induced LTP was still observed after the
failed attempts to induce AC-LTP, suggest that it is the more
persistent cellular changes, such as those produced by PKA
activation, that contribute to the occlusion of subsequent tetanus-
induced LTP in young rats. In such cases in aged rats, the
tetanus-induced LTP observed after the transient AC-LTP likely
depends more heavily on calcium-calmodulin-triggered mecha-
nisms that are activated by the intense calcium influx that occurs
during the high-frequency stimulation.

Noradrenergic modulation of synaptic potentiation after various
patterns of LFS has been studied extensively by Katsuki et al.
(1997) in 4- to 5-wk-old rats, and by Thomas et al. (1996) in 3- to
5-wk-old mice. In both cases, B-adrenergic activation produced
LTP of field EPSPs when accompanied by 900 pulses of LFS
(5-10 Hz), whereas neither of these stimuli alone produced
potentiation. We observed that ISO followed by 5-Hz (3 min)
stimulation produces potentiation of EPSPs in slices from 4-wk-
old but not from mature adult rats (6-wk- to 3-mo-old rats; data
not shown). For this reason, we decided to study the modulation
of population spike amplitude so that comparisons could be made
between mature adult and aged adult animals. Nevertheless, fur-
ther investigation of the differences in noradrenergic modulation
of synaptic potentiation of EPSPs in juvenile versus mature adult
rodents may provide additional clues as to the molecular require-
ments for achieving synaptic potentiation.

Although the noradrenergic modulation of excitatory synapses
and neuronal excitability in the CNS has yet to be understood, it
is likely that noradrenergic input to the hippocampus plays a role
in enhancing memory formation. Norepinephrine seems to play an
important role in selective attention, arousal, and emotions (As-
ton-Jones et al. 1984; Crow and Wendlandt 1976), behavioral
states that obviously enhance learning and memory. Experiments
in humans by Cahill et al. (1994) demonstrated that $-adrenergic
receptors in the amygdala are required for accurate recall of
information obtained during emotional experiences. Thus it is
possible that a decline in the release of NE in the hippocampus, or
decreased sensitivity to NE with advancing age, would tend to
compromise an individual’s declarative memory. Additional work
is necessary to understand the role that norepinephrine plays in
modulating repetitive low-frequency activation of glutamatergic
synapses in the intact hippocampus and how such modulation
changes with aging. Overall, the results presented here suggest
that aged hippocampal neurons are no longer able to respond
normally to [(-adrenergic stimulation or to direct activation of
adenylate cyclase; this may have profound consequences on
synaptic plasticity, and hence learning and memory, in aged
animals.
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