\qquad

Exponential Growth and Decay

1. A scientist isolates 2000 grams of a radioactive isotope. Five hours later, 1800 grams are left. Assuming this isotope decays exponentially, answer the following questions.
(a) If the scientist returns in 5 more hours, how much of the isotope will remain?
(b) What is the half-life of this isotope? The half-life is the time it takes for the quantity of a substance to reduce to half its original value.
2. The populations of Ant Hill A and and Ant Hill B are both growing exponentially. The following population data was recorded one day:

Ant Hill	$12: 00 \mathrm{pm}$	$5: 00 \mathrm{pm}$
A	100	120
B	80	150

Approximate the time at which the population of Ant Hill B will first exceed the population of Ant Hill A.
3. Suppose you boil a kettle of water and pour it into a cup to make tea. Initially, the water is $100^{\circ} \mathrm{C}$, and it cools to $80^{\circ} \mathrm{C}$ in 10 minutes. How long will it take to reach a drinkable temperature of $65^{\circ} \mathrm{C}$ if the room is $25^{\circ} \mathrm{C}$?
4. It's Thanksgiving morning and you have a feast to prepare. You place your thawed, room temperature $\left(70^{\circ} \mathrm{F}\right)$ turkey into a preheated oven $\left(325^{\circ} \mathrm{F}\right)$ at 10 am . When you check the turkey at 11 am , the internal temperature of the turkey has reached $102^{\circ} \mathrm{F}$. Will it reach a safe $180^{\circ} \mathrm{F}$ by the time your guests arrive at 4 pm ?

