Inverse Functions

Inverse functions do the opposite of functions. If a function takes an input and adds 5 to it, its inverse will take an input and subtract 5 from it. If a function divides a number by 17 , its inverse will multiply it by 17. If $f(3)=5$, that means f takes in 3 and spits out 5 . It's inverse, then, should take in 5 and spit out 3 . In other words, $f^{-1}(5)=3$. It's like the outputs of f are the inputs of f^{-1}, and vice versa. Mathematically, this is best expressed using the idea of compositions of functions.

The inverse of f is the function f^{-1} such that $\left(f \circ f^{-1}\right)(x)=x$ and $\left(f^{-1} \circ f\right)(x)=x$.
This makes sense according to the intuitive definition first given above. If you take x and plug it into f, you get out $f(x)$. Then take $f(x)$ and plug it into f^{-1}, and you get $f^{-1}(f(x))$, which is the same as $\left(f^{-1} \circ f\right)(x)$. On the other hand, f^{-1} should do the opposite of f. Since f turned x into $f(x), f^{-1}$ should turn $f(x)$ back into x. So if you compose the two, you end up back where you started, with x. Putting this all together says that $\left(f^{-1} \circ f\right)(x)=x$. A similar argument tells us that $\left(f \circ f^{-1}\right)(x)=x$ as well. Armed with just this knowledge, you should be able to answer the following questions.
(1) Let $f(x)=x^{3}-5$. Which of the following is true?
(a) $f^{-1}(2)=3$
(b) $f^{-1}(0)=2$
(c) $f^{-1}(-4)=1$
(d) $f^{-1}(1)=4$
(2) Let's say $g(2)=5$. Which of the following might be the inverse of g ?
(a) $g^{-1}(x)=x+3$
(b) $g^{-1}(x)=x-3$
(c) $g^{-1}(x)=2 x-7$
(d) $g^{-1}(x)=x$
(3) Let $f(x)=\frac{x-3}{2}$. Which of the following is the inverse of f ?
(a) $f^{-1}(x)=\frac{x+3}{2}$
(b) $f^{-1}(x)=\frac{2}{x-3}$
(c) $f^{-1}(x)=\frac{3-x}{2}$
(d) $f^{-1}(x)=2 x+3$

Sometimes we want to find the formula for the inverse of a function. For example, we might know that $f(x)=x^{3}-3$ and try to find a formula for f^{-1}. There's a simple method for this. Since f takes in x and spits out $y=x^{3}-3$, we want something that takes in $y=x^{3}-3$ and spits out x. So what must you do to y in order to turn it into x ? Since $y=x^{3}-3$, we know that $y+3=x^{3}$, and so we know that $\sqrt[3]{y+3}=x$. Therefore, the inverse function should take in y and spit out $\sqrt[3]{y+3}$. However, since we usually let x represent the input of a function (whether it's f or f^{-1}), we'll typically change that y into an x and write $f^{-1}(x)=\sqrt[3]{x+3}$.

That kind of procedure works in general:
(1) Write the equation $y=f(x)$.
(2) Solve for x in terms of y.
(3) Interchange all x 's and y 's. The resulting formula will represent $f^{-1}(x)$.

Here's another example. If $g(x)=\frac{x+1}{2 x-5}$ and we want to find g^{-1}, we would do the following.
(1) Set $y=\frac{x+1}{2 x-5}$.
(2) Solve for x in terms of y :

$$
\begin{aligned}
y & =\frac{x+1}{2 x-5} \\
y(2 x-5) & =x+1 \\
2 x y-5 y & =x+1 \\
2 x y-x & =1+5 y \\
x(2 y-1) & =1+5 y \\
x & =\frac{1+5 y}{2 y-1}
\end{aligned}
$$

(3) Write $g^{-1}(x)=\frac{1+5 x}{2 x-1}$.

A helpful trick in that problem - if you're trying to solve for some variable, say z, then it might help to get all the terms with a z in them to one side of the equation, factor out a z, and then divide. In this problem, we got all of the terms with an x in them to one side (so we had $2 x y-x$ on that side), then factored out an x, and divided by what was left over (which was $2 y-1$).

Now you try out this procedure. Find the inverse function, f^{-1}, for each of the following functions. If you want to double-check your work, you can always compose f and f^{-1} to make sure that $\left(f \circ f^{-1}\right)(x)=x$.
(1) $f(x)=\frac{x}{2}-3$
(2) $f(x)=x^{3}+2$
(3) $f(x)=\sqrt[3]{x+1}$
(4) $f(x)=\frac{2 x-3}{x-1}$

You also read off information about an inverse function from the graph of a function. Let's see what the relationship is. Let's say $f(x)=x^{3}+3$. Then, for example, $f(1)=4$. Right away we know that $f^{-1}(4)=1$, since inverse functions "do the opposite." Now, the fact that $f(1)=4$ means that the point $(1,4)$ is on the graph of f, and similarly, since $f^{-1}(4)=1$, we know that the point $(4,1)$ is on the graph of f^{-1}. Likewise, since $f(2)=11$, the point $(2,11)$ is on the graph of f and the point $(11,2)$ is on the graph of f^{-1}. So to get from the graph of f to the graph of f^{-1} (or vice versa), you simply have to switch the x 's and y 's. This corresponds to reflecting over the diagonal line $x=y$:

Figure 1. The line $y=x$ is in black. The graph of f^{-1} (red) is the reflection of the graph of f (blue) over the line $y=x$.

Now you can answer some questions with your newfound knowledge.
(5) Let f be given by the following graph. What is $f^{-1}(5)$? What is $f^{-1}(1)$?

Figure 2.
(6) Let g be given by the following graph. Sketch a graph of g^{-1}.

Figure 3.

