Homework Solutions

Math 1060Q: Precalculus

Professor Hohn

Fall 2013

Absolute Value Worksheet

Question 9

Find all possible values for x where |x + 3| - |x - 2| < 1.

Solution. Notice that the definition of the absolute value gives us:

$$|x+3| = \begin{cases} x+3 & \text{if } x+3 \ge 0\\ -(x+3) & \text{if } x+3 < 0. \end{cases}$$

Rewritten,

$$|x+3| = \begin{cases} x+3 & \text{if } x \ge -3 \\ -(x+3) & \text{if } x < -3 \end{cases}$$

And,

$$|x-2| = \begin{cases} x-2 & \text{if } x-2 \ge 0\\ -(x-2) & \text{if } x-2 < 0 \end{cases}$$

Rewritten,

$$|x-2| = \begin{cases} x-2 & \text{if } x \ge 2\\ -(x-2) & \text{if } x < 2. \end{cases}$$

This means we have four cases:

- 1. $x \ge -3$ and $x \ge 2$ (that is, $x \ge 2$)
- 2. x < -3 and $x \ge 2$ (no such x exists, throw this case out)
- 3. $x \ge -3$ and x < 2 (that is, $x \in [-3, 2)$)
- 4. x < -3 and x < 2 (that is, x < -3)

You can think of a number line divided into sections: $(-\infty, -3)$, [-3, 2), and $[2, \infty)$.

Now, let's check each case.

Case 1: If $x \in [2, \infty)$, then |x + 3| = x + 3 and |x - 2| = x - 2. Let's plug that into our equation.

$$x + 3 - (x - 2) < 1$$

 $5 < 1$

This is not true for any $x \in (2, \infty)$. Hence, $x \notin (2, \infty)$.

Case 3: If $x \in [-3,2)$, then |x+3| = x+3 and |x-2| = -(x-2). Let's plug that into our equation.

$$\begin{array}{l} x+3+(x-2) < 1 \\ 2x+1 < 1 \\ 2x < 0 \\ x < 0 \end{array}$$

Hence, for Case 3, if $x \in [-3, 2)$, then x must also be less than 0. Hence, $x \in [-3, 0)$.

Case 4: If x < -3, then |x+3| = -(x+3) and |x-2| = -(x-2). Let's plug that into our equation.

$$-(x+3) + (x-2) < 1$$

 $-3 - 2 < 1$
 $-5 < 1$

For Case 4, all $x \in (-\infty, -3)$ make our equation true. Hence, $x \in (-\infty, -3)$.

Therefore, |x+3| - |x-2| < 1 when $x \in (\infty, -3)$ or $x \in [-3, 2)$. That is, $x \in (-\infty, 0)$.