Homework Solutions

Math 1060Q: Precalculus

Professor Hohn

Fall 2013

Absolute Value Worksheet

Question 9

Find all possible values for x where $|x+3|-|x-2|<1$.
Solution. Notice that the definition of the absolute value gives us:

$$
|x+3|= \begin{cases}x+3 & \text { if } x+3 \geq 0 \\ -(x+3) & \text { if } x+3<0\end{cases}
$$

Rewritten,

$$
|x+3|= \begin{cases}x+3 & \text { if } x \geq-3 \\ -(x+3) & \text { if } x<-3\end{cases}
$$

And,

$$
|x-2|= \begin{cases}x-2 & \text { if } x-2 \geq 0 \\ -(x-2) & \text { if } x-2<0\end{cases}
$$

Rewritten,

$$
|x-2|= \begin{cases}x-2 & \text { if } x \geq 2 \\ -(x-2) & \text { if } x<2\end{cases}
$$

This means we have four cases:

1. $x \geq-3$ and $x \geq 2$ (that is, $x \geq 2$)
2. $x<-3$ and $x \geq 2$ (no such x exists, throw this case out)
3. $x \geq-3$ and $x<2$ (that is, $x \in[-3,2)$)
4. $x<-3$ and $x<2$ (that is, $x<-3$)

You can think of a number line divided into sections: $(-\infty,-3),[-3,2)$, and $[2, \infty)$.
Now, let's check each case.

Case 11. If $x \in[2, \infty)$, then $|x+3|=x+3$ and $|x-2|=x-2$. Let's plug that into our equation.

$$
\begin{aligned}
x+3-(x-2) & <1 \\
5 & <1
\end{aligned}
$$

This is not true for any $x \in(2, \infty)$. Hence, $x \notin(2, \infty)$.
Case 3. If $x \in[-3,2)$, then $|x+3|=x+3$ and $|x-2|=-(x-2)$. Let's plug that into our equation.

$$
\begin{aligned}
x+3+(x-2) & <1 \\
2 x+1 & <1 \\
2 x & <0 \\
x & <0
\end{aligned}
$$

Hence, for Case 3, if $x \in[-3,2)$, then x must also be less than 0 . Hence, $x \in[-3,0)$.
Case 4. If $x<-3$, then $|x+3|=-(x+3)$ and $|x-2|=-(x-2)$. Let's plug that into our equation.

$$
\begin{aligned}
-(x+3)+(x-2) & <1 \\
-3-2 & <1 \\
-5 & <1
\end{aligned}
$$

For Case 4, all $x \in(-\infty,-3)$ make our equation true. Hence, $x \in(-\infty,-3)$.
Therefore, $|x+3|-|x-2|<1$ when $x \in(\infty,-3)$ or $x \in[-3,2)$. That is, $x \in(-\infty, 0)$.

