Solving Trig Equations, Part II

By now you can solve some basic trig equations - typically, equations that involve only one trig function and perhaps some algebra first to get it into the form "trig function $=$ a number," at which point you can use the unit circle to find your solutions. However, trig equations can get more complicated. They may involve multiple trig functions, or more complicated algebra. Here's a simple example that involves both:

$$
\sin x \cos x+\frac{\cos x}{2}=0
$$

Here we're dealing with both sine and cosine in the same equation. We still want to reduce it to the form "trig function $=$ a number," though, and our key to that is factoring. We can factor a cosine out of both terms in this equation:

$$
\cos x\left(\sin x+\frac{1}{2}\right)=0
$$

And then break this equation into two parts. Since it's of the form $A B=0$, we can split it up into $A=0$ or $B=0$:

$$
\cos x=0 \quad \text { or } \quad \sin x+\frac{1}{2}=0
$$

Then each of these is easy to solve. Let's restrict ourselves to the interval $[0,2 \pi]$ this time. If $\cos x=0$, then $x=\frac{\pi}{2}, \frac{3 \pi}{2}$, and if $\sin x=-\frac{1}{2}$, then $x=\frac{7 \pi}{6}, \frac{11 \pi}{6}$, so there are four possible solutions to this equation: $x=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$.

Sometimes, you may need to rewrite trig functions in terms of others:

$$
\begin{aligned}
& \cos x=\cot x \\
& \cos x-\cot x=0 \\
& \cos x-\frac{\cos x}{\sin x}=0 \\
& \cos x\left(1-\frac{1}{\sin x}\right)=0 \\
& \cos x=0 \quad \text { or } \quad 1-\frac{1}{\sin x}=0
\end{aligned}
$$

These reduce to $\cos x=0$ or $\sin x=1$, which gives us possible solutions $x=\frac{\pi}{2}, \frac{3 \pi}{2}$.
And sometimes, you may need to do other kinds of factoring:

$$
\begin{gathered}
\sin ^{2} x+\sin x-2=0 \\
(\sin x+2)(\sin x-1)=0 \\
\sin x+2=0 \quad \text { or } \quad \sin x-1=0
\end{gathered}
$$

The equation $\sin x=-2$ has no solutions, $\operatorname{since} \sin x$ is always a value between -1 and 1 . The equation $\sin x=1$ has solution $\frac{\pi}{2}$, and that is the only solution to this equation.

Now you try. Find all solutions to the following equations in the interval $[0,2 \pi]$.
(1) $2 \sin t \cos t=\sin t$
(2) $2 \sin ^{2} t+\sqrt{3} \sin t=0$
(3) $2 \cos ^{2} t+\cos t-1=0$
(4) $\sin t+\tan t=0$
(5) $\sin t=\cos t$
(6) $2 \sin ^{2} t-3 \sin t+1=0$
(7) $\tan t \sec t+\sqrt{2} \tan t=0$

