Practice Problems - Exam 1 (Due Mon, May 19)

Math 1060Q - Summer 2014
Professor Hohn

1. Suppose f and g are the functions completely defined by the tables below:

x	$f(x)$
1	-2
-3	1
5	-4

x	$g(x)$
-4	1
-2	-3
1	5

Make a table of $f \circ g$ and a table of $g \circ f$.
2. Find the maximum value of $5-8 x-2 x^{2}$.
3. Let $f(x)=\frac{7 x+8}{x+4}$.
(a) Find the domain of f.
(b) Find the range of f.
(c) Find a formula for f^{-1}.
(d) Find the domain of f^{-1}.
(e) Find the range of f^{-1}.
4. Write $\frac{27^{100}}{9^{45}}$ as a power of 3 .
5. Give an example of a function that is neither even nor odd, and explain why it is neither.
6. Find a number t such that the line containing the points $(t,-5)$ and $(-3,5)$ is perpendicular to the line that contains the points $(-5,7)$ and $(1,11)$.
7. Simplify the expression $\left(\frac{\left(t^{3} w^{5}\right)^{-3}}{\left(t^{-3} w^{2}\right)^{4}}\right)^{-2}$.
8. Suppose $g(x)=3+\frac{x}{5 x-2}$. Find the formula for g^{-1}.
9. What is the minimum value of the function f defined by $f(x)=4 x^{2}-8 x+11$? The graph of f is a parabola. Find the vertex of the parabola.
10. Let $f(-1)=10, f(2)=4$, and $f(3)=2$. Make a table for $g(x)$ where $g(x)=5 f(3 x+2)-1$. Find the domain and range of $g(x)$.
11. Show that for every real number t, the point $(5-3 t, 7-4 t)$ is on the line containing the points $(2,3)$ and $(5,7)$.
12. Simplify $\left(\frac{x y^{-3}}{x^{5} y^{-10} z^{3}}\right)^{-3}$.
13. Find all real numbers x such that $2 x^{4}-20 x^{2}-22=0$.
14. Find two positive numbers whose difference equals 4 and whose product equals 15 .
15. Suppose f is a function with domain $[1,3]$ and range $[2,5]$. Define functions g and h by

$$
g(x)=4 f(x) \quad \text { and } \quad h(x)=f(3 x) .
$$

(a) What is the domain of g ?
(b) What is the range of g ?
(c) What is the domain of h ?
(d) What is the range of h?
16. Fill in the blank.
(a) Let $f(x)$ be a function and x be in the domain of f. Then $f^{-1}(f(x))=$ \qquad .
(b) The equation of the graph $g(x)$ that is obtained by horizontally stretching the graph of $f(x) 5$ units and by shifting down 7 units is \qquad .
(c) The degree of the polynomial $p(x)=4+6 x^{5}+3 x^{2}$ is \qquad .
(d) The function $g(x)=3 x^{3}+x$ is a function that is \qquad (even, odd, or neither).
(e) An example of a polynomial of degree four whose only zeros are $-3,4$, and 1 is
\qquad .

