Practice Problems - Exam 1 (Due Mon, May 19)

Math 1060Q – Summer 2014 Professor Hohn

1. Suppose f and g are the functions completely defined by the tables below:

x	f(x)	x	g(x)
1	-2	 -4	1
-3	1	 -2	-3
5	-4	 1	5

Make a table of $f \circ g$ and a table of $g \circ f$.

2. Find the maximum value of $5 - 8x - 2x^2$.

- 3. Let $f(x) = \frac{7x+8}{x+4}$. (a) Find the domain of f.
 - (b) Find the range of f.
 - (c) Find a formula for f^{-1} .

- (d) Find the domain of f^{-1} .
- (e) Find the range of f^{-1} .

4. Write
$$\frac{27^{100}}{9^{45}}$$
 as a power of 3.

5. Give an example of a function that is neither even nor odd, and explain why it is neither.

6. Find a number t such that the line containing the points (t, -5) and (-3, 5) is perpendicular to the line that contains the points (-5, 7) and (1, 11).

7. Simplify the expression
$$\left(\frac{(t^3w^5)^{-3}}{(t^{-3}w^2)^4}\right)^{-2}$$
.

8. Suppose $g(x) = 3 + \frac{x}{5x-2}$. Find the formula for g^{-1} .

9. What is the minimum value of the function f defined by $f(x) = 4x^2 - 8x + 11$? The graph of f is a parabola. Find the vertex of the parabola.

10. Let f(-1) = 10, f(2) = 4, and f(3) = 2. Make a table for g(x) where g(x) = 5f(3x + 2) - 1. Find the domain and range of g(x).

11. Show that for every real number t, the point (5-3t, 7-4t) is on the line containing the points (2,3) and (5,7).

12. Simplify
$$\left(\frac{xy^{-3}}{x^5y^{-10}z^3}\right)^{-3}$$
.

13. Find all real numbers x such that $2x^4 - 20x^2 - 22 = 0$.

14. Find two positive numbers whose difference equals 4 and whose product equals 15.

15. Suppose f is a function with domain [1,3] and range [2,5]. Define functions g and h by

$$g(x) = 4f(x)$$
 and $h(x) = f(3x)$.

(a) What is the domain of g?

(b) What is the range of g?

- (c) What is the domain of h?
- (d) What is the range of h?

16. Fill in the blank.

- (a) Let f(x) be a function and x be in the domain of f. Then $f^{-1}(f(x)) =$ _____.
- (b) The equation of the graph g(x) that is obtained by horizontally stretching the graph of f(x) 5 units and by shifting down 7 units is _____.
- (c) The degree of the polynomial $p(x) = 4 + 6x^5 + 3x^2$ is _____.
- (d) The function $g(x) = 3x^3 + x$ is a function that is _____(even, odd, or neither).
- (e) An example of a polynomial of degree four whose only zeros are -3, 4, and 1 is