Practice Problems - Exam 1 (Due Mon, May 19)

Math 1060Q - Summer 2014

Professor Hohn

1. Suppose f and g are the functions completely defined by the tables below:

x	$f(x)$			
1	-2			
-3	1			
5	-4	\quad	x	$g(x)$
---:	---:			
-4	1			
-2	-3			
1	5			

Make a table of $f \circ g$ and a table of $g \circ f$.

Solution:

$$
\begin{array}{r|cr|c}
\mathrm{x} & (f \circ g)(x) & \mathrm{x} & (g \circ f)(x) \\
\hline-4 & f(g(-4))=f(1)=-2 \\
& f(g) & g(f(1))=g(-2)=-3 \\
-2 & f(-2))=f(-3)=1 \\
1 & f(g(1))=f(5)=-4 & -3 & g(f(-3))=g(1)=5 \\
& 5 & g(f(5))=g(-4)=1
\end{array}
$$

2. Find the maximum value of $5-8 x-2 x^{2}$.

Solution: Notice that the coefficient in front of the x^{2} term is negative, and thus, our parabola will have a maximum value. To find this maximum value, we must first find the vertex of the parabola. A quick way to find the vertex is to rewrite our quadratic function in standard form $a(x-h)^{2}+k$.

$$
\begin{aligned}
5-8 x-2 x^{2} & =-2 x^{2}-8 x+5 \\
& =-2\left(x^{2}+4 x+\quad\right)+5 \\
& =-2\left(x^{2}+4 x+4-4\right)+5 \\
& =-2\left(x^{2}+4 x+4\right)-4(-2)+5 \\
& =-2(x+2)^{2}+8+5 \\
& =-2(x+2)^{2}+13
\end{aligned}
$$

The vertex is then $(-2,13)$ and the maximum value that this quadratic function will attain is 13 .
3. Let $f(x)=\frac{7 x+8}{x+4}$.
(a) Find the domain of f.

Solution: The x-values (or input values) that make sense for this function are all real numbers except for $x=-4$ (since we don't want to divide by zero). Thus, the domain of our function f is $(-\infty,-4) \cup(-4, \infty)$.
(b) Find the range of f.

Solution: Recall that the range of f is the same as the domain of f^{-1}. Thus, we only need to find the domain of f^{-1} (which is solved in the next part). From our f^{-1} function, the domain is all real numbers except $y=7$. In interval notation, our range is $(-\infty, 7) \cup(7, \infty)$.
(c) Find a formula for f^{-1}.

Solution: First, we set $y=\frac{7 x+8}{x+4}$, and then we solve for x to find the inverse function $f^{-1}(y)$.

$$
\begin{aligned}
y & =\frac{7 x+8}{x+4} \\
y(x+4) & =7 x+8 \\
x y+4 y & =7 x+8 \\
x y-7 x & =8-4 y \\
x(y-7) & =8-4 y \\
x & =\frac{8-4 y}{y-7}
\end{aligned}
$$

Thus, $f^{-1}(y)=\frac{8-4 y}{y-7}$.
(d) Find the domain of f^{-1}.

Solution: The domain of the function $f^{-1}(y)$ is all real numbers except $y=7$. In interval notation, our domain is $(-\infty, 7) \cup(7, \infty)$.
(e) Find the range of f^{-1}.

Solution: Recall that the range of f^{-1} is the domain of f. Hence, the range of f^{-1} is $(-\infty,-4) \cup(-4, \infty)$.
4. Write $\frac{27^{100}}{9^{45}}$ as a power of 3 .

Solution: We want to write the following as a power of 3 so we must first make 27 into a power of 3 and 9 into a power of 3 . Then, we will follow the rules of exponents to get our
final answer.

$$
\begin{aligned}
\frac{27^{100}}{9^{45}} & =\frac{\left(3^{3}\right)^{100}}{\left(3^{2}\right)^{45}} \\
& =\frac{3^{3 \cdot 100}}{3^{2 \cdot 45}} \\
& =\frac{3^{300}}{3^{90}} \\
& =3^{300} \cdot 3^{-90} \\
& =3^{300-90} \\
& =3^{210}
\end{aligned}
$$

Therefore, $\frac{27^{100}}{9^{45}}=3^{210}$.
5. Give an example of a function that is neither even nor odd, and explain why it is neither.

Solution: Recall that a function f is odd if $f(x)=-f(-x)$ and a function f is even if $f(x)=f(-x)$. So, we want to find a function f that is neither which means that we want to find a function f such that $f(x) \neq-f(-x)$ (not odd) and $f(x) \neq f(-x)$ (not even). Let $f(x)=x^{2}-5 x+1$. To show that f is not odd, we will show that $f(x) \neq-f(-x)$.

$$
-f(-x)=-\left((-x)^{2}-5(-x)+1\right)=-\left(x^{2}+5 x+1\right)=-x^{2}-5 x-1 \neq f(x)
$$

Since $-f(-x) \neq f(x), f$ is not odd.
Similarly,

$$
f(-x)=(-x)^{2}-5(-x)+1=x^{2}+5 x+1 \neq f(x) .
$$

Since $f(-x) \neq f(x), f$ is not even. Hence, f is a function that is neither even nor odd.
6. Find a number t such that the line containing the points $(t,-5)$ and $(-3,5)$ is perpendicular to the line that contains the points $(-5,7)$ and $(1,11)$.

Solution: First, we need to find the slope that is perpendicular to the line containing the points $(-5,7)$ and $(1,11)$. Then, we can create a line through the point $(-3,5)$, and finally find a number t on that line.
Slope through the points $(-5,7)$ and $(1,11)$:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{11-7}{1-(-5)}=\frac{4}{6}=\frac{2}{3} .
$$

The slope we want for our equation through the point $(-3,5)$ will be

$$
\hat{m}=-\frac{1}{m}=-\frac{3}{2}
$$

Since we have a slope and a point, we can use point-slope form for our line to get

$$
y-5=-\frac{3}{2}(x-(-3))
$$

So, we now have a line that is perpendicular to the points $(-5,7)$ and $(1,11)$ and through the point $(-3,5)$. To find t, we need to plug in $y=-5$ into our equation $y-5=-\frac{3}{2}(x+3)$.

$$
\begin{aligned}
-5-5 & =-\frac{3}{2}(t+3) \\
-10 & =-\frac{3 t}{2}-\frac{9}{2} \\
-10+\frac{9}{2} & =-\frac{3 t}{2} \\
-\frac{11}{2} & =-\frac{3 t}{2} \\
\frac{11}{3} & =t
\end{aligned}
$$

7. Simplify the expression $\left(\frac{\left(t^{3} w^{5}\right)^{-3}}{\left(t^{-3} w^{2}\right)^{4}}\right)^{-2}$.

Solution: We will simplify the expression using the rules of exponents.

$$
\begin{aligned}
\left(\frac{\left(t^{3} w^{5}\right)^{-3}}{\left(t^{-3} w^{2}\right)^{4}}\right)^{-2} & =\left(\frac{t^{-9} w^{-15}}{t^{-12} w^{8}}\right)^{-2} \\
& =\frac{t^{18} w^{30}}{t^{24} w^{-16}} \\
& =t^{18} w^{30} t^{-24} w^{16} \\
& =t^{-6} w^{46} \\
& =\frac{w^{46}}{t^{6}}
\end{aligned}
$$

8. Suppose $g(x)=3+\frac{x}{5 x-2}$. Find the formula for g^{-1}.

Solution: First, we set $y=3+\frac{x}{5 x-2}$, and then we solve for x to find the inverse function
$g^{-1}(y)$.

$$
\begin{aligned}
y & =3+\frac{x}{5 x-2} \\
y(5 x-2) & =3(5 x-2)+x \\
5 x y-2 y & =15 x-6+x \\
5 x y-2 y & =16 x-6 \\
5 x y-16 x & =2 y-6 \\
x(5 y-16) & =2 y-6 \\
x & =\frac{2 y-6}{5 y-16}
\end{aligned}
$$

Thus, $g^{-1}(y)=\frac{2 y-6}{5 y-16}$.
9. What is the minimum value of the function f defined by $f(x)=4 x^{2}-8 x+11$? The graph of f is a parabola. Find the vertex of the parabola.

Solution: The minimum (or maximum value) of a quadratic function occurs at the vertex of the parabola. Hence, we need to find the vertex of $f(x)=4 x^{2}-8 x+11$. The vertex is easiest to find when f is in standard form $\left(f(x)=a(x-h)^{2}+k\right)$. We will now rewrite our equation to be in that form.

$$
\begin{aligned}
f(x) & =4 x^{2}-8 x+11 \\
& =4\left(x^{2}-2 x\right)+11 \\
& =4\left(x^{2}-2 x+1-1\right)+11 \\
& =4\left(x^{2}-2 x+1\right)-1(4)+11 \\
& =4(x-1)^{2}-4+11 \\
& =4(x-1)^{2}+7
\end{aligned}
$$

Hence, the vertex is $(1,7)$ and the minimum value of this parabola is 7 .
10. Let $f(-1)=10, f(2)=4$, and $f(3)=2$. Make a table for $g(x)$ where $g(x)=5 f(3 x+2)-1$. Find the domain and range of $g(x)$.

Solution: First, let's draw a table for f.

x	$f(x)$
-1	10
2	4
3	2

We need to find the values that we can input into g for our x column. Since f only allows the inputs $-1,2,3, g$ must have inputs such that $3 x+2=-1,3 x+2=2$ and $3 x+2=3$. So,
the table for $g(x)$ would be:

$$
\begin{array}{r|c}
\mathrm{x} & g(x)=5 f(3 x+2)-1 \\
\hline-1 & g(-1)=5 f(3(-1)+2)-1=5 f(-1)-1=5 \cdot 10-1=49 \\
0 & g(0)=5 f(3(0)+2)-1=5 f(2)-1=5 \cdot 4-1=19 \\
\frac{1}{3} & g\left(\frac{1}{3}\right)=5 f\left(3\left(\frac{1}{3}\right)+2\right)-1=5 f(3)-1=5 \cdot 2-1=9
\end{array}
$$

The domain of g is $\left\{-1,0, \frac{1}{3}\right\}$ and the range of g is $\{49,19,9\}$.
11. Show that for every real number t, the point $(5-3 t, 7-4 t)$ is on the line containing the points $(2,3)$ and $(5,7)$.

Solution: First, we must find the line that passes through the points $(2,3)$ and $(5,7)$. Then, we will show that the point $(5-3 t, 7-4 t)$ is on that line.
The slope we are looking for is

$$
m=\frac{y_{2}-y_{2}}{x_{2}-x_{1}}=\frac{7-3}{5-2}=\frac{4}{3}
$$

Using point-slope form, we have the equation

$$
y-3=\frac{4}{3}(x-2) .
$$

Now, we need to show that the point $(5-3 t, 7-4 t)$ lies on the line $y-3=\frac{4}{3}(x-2)$. Our point lies on the line if we plug $x=5-3 t$ into our equation and we get $y=7-4 t$.

$$
\begin{aligned}
y-3 & =\frac{4}{3}((5-3 t)-2) \\
y-3 & =\frac{4}{3}(-3 t+3) \\
y-3 & =-\frac{12 t}{3}+\frac{12}{3} \\
y-3 & =-4 t+4 \\
y & =-4 t+7
\end{aligned}
$$

Thus, the point $(5-3 t, 7-4 t)$ is on the line containing the points $(2,3)$ and $(5,7)$.
12. Simplify $\left(\frac{x y^{-3}}{x^{5} y^{-10} z^{3}}\right)^{-3}$.

Solution:

$$
\begin{aligned}
\left(\frac{x y^{-3}}{x^{5} y^{-10} z^{3}}\right)^{-3} & =\frac{x^{-3} y^{9}}{x^{-15} y^{30} z^{-9}} \\
& =x^{-3} y^{9} x^{15} y^{-30} z^{9} \\
& =x^{12} y^{-21} z^{9} \\
& =\frac{x^{12} z^{9}}{y^{21}}
\end{aligned}
$$

13. Find all real numbers x such that $2 x^{4}-20 x^{2}-22=0$.

Solution: The equation $2 x^{4}-20 x^{2}-22=0$ looks similar to a quadratic equation; we will use this idea to help us solve. First, we will put $2 x^{4}-20 x^{2}-22=0$ into a quadratic form. Let $y=x^{2}$. Then, $x^{4}=\left(x^{2}\right)^{2}=y^{2}$. The equation $2 x^{4}-20 x^{2}-22=0$ is equivalent to $2 y^{2}-20 y-22=0$ where $y=x^{2}$. We want to find all x that satisfy the equation $2 x^{4}-20 x^{2}-22=0$, so we will first have to find all y that satisfy the equation $2 y^{2}-20 y-22=0$. We will use factoring to solve for y.

$$
\begin{aligned}
2 y^{2}-20 y-22 & =0 \\
2\left(y^{2}-10 y-11\right) & =0 \\
2(y-11)(y+1) & =0
\end{aligned}
$$

Thus, either $y-11=0$ or $y+1=0$. If $y-11=0$, then $y=11$. Similarly, if $y+1=0$ then $y=-1$. Recall that our goal was to find all x that satisfy our equation. Thus, we need to substitute $x^{2}=y$ back into our solutions.

$$
y=11 \Longrightarrow x^{2}=11 \Longrightarrow x= \pm \sqrt{11}
$$

So, two solutions to $2 x^{4}-20 x^{2}-22=0$ are $x=\sqrt{11}$ and $x=-\sqrt{11}$. Now, we need to apply the same idea to $y=-1$.

$$
y=-1 \Longrightarrow x^{2}=-1 \Longrightarrow x= \pm \sqrt{-1}
$$

But, we will not have a real number as a solution. Thus, it is not a solution to $2 x^{4}-20 x^{2}-22=$ 0 . Therefore, the solutions to $2 x^{4}-20 x^{2}-22=0$ are $x=\sqrt{11}$ and $x=-\sqrt{11}$.
14. Find two positive numbers whose difference equals 4 and whose product equals 15 .

Solution: Let x and y be the two unknown positive numbers. We know from above that $x-y=4$ and $x y=15$. Now, we must find x and y. Since $x-y=4, x=y+4$. We substitute that into the equation $x y=15$ to get the equation $(y+4) y=15$. Let's solve for y.

$$
\begin{aligned}
y(y+4) & =15 \\
y^{2}+4 y & =15 \\
y^{2}+4 y-15 & =0
\end{aligned}
$$

We will use the quadratic formula to solve for y.

$$
y=\frac{-4 \pm \sqrt{4^{2}-4(1)(-15)}}{2(1)} \Longrightarrow y=\frac{-4 \pm \sqrt{16+60}}{2} \Longrightarrow y=\frac{-4 \pm \sqrt{76}}{2}
$$

So, we have $y=-2+\frac{\sqrt{76}}{2}$ (notice that we are only using the positive solution because we were told y was positive). From our equations above, we know that $x=y+4$. Hence,

$$
x=y+4 \Longrightarrow x=-2+\frac{\sqrt{76}}{2}+4 \Longrightarrow x=2+\frac{\sqrt{76}}{2}
$$

The two numbers are then $2+\frac{\sqrt{76}}{2}$ and $-2+\frac{\sqrt{76}}{2}$. Let's verify our solution is correct.

$$
x-y=\left(2+\frac{\sqrt{76}}{2}\right)-\left(-2+\frac{\sqrt{76}}{2}\right) \Longrightarrow x+y=2+\frac{\sqrt{76}}{2}+2-\frac{\sqrt{76}}{2} \Longrightarrow x-y=4
$$

And, $x-y=4$. Now, we will check that $x y=15$.

$$
\begin{aligned}
x y & =\left(2+\frac{\sqrt{76}}{2}\right)\left(-2+\frac{\sqrt{76}}{2}\right) \Longrightarrow x y=-4+\left(\frac{\sqrt{76}}{2}\right)^{2} \Longrightarrow x y=-4+\frac{\sqrt{76}}{4} \\
& \Longrightarrow x y=-4+19 \Longrightarrow x y=15
\end{aligned}
$$

15. Suppose f is a function with domain $[1,3]$ and range $[2,5]$. Define functions g and h by

$$
g(x)=4 f(x) \quad \text { and } \quad h(x)=f(3 x) .
$$

(a) What is the domain of g ?

Solution: The equation $g(x)$ is vertically stretching $f(x)$ by a factor of 4 . This action does not effect the domain. Hence, the domain of g will be the same as $f: D_{g}=[1,3]$
(b) What is the range of g ?

Solution: The equation $g(x)$ is vertically stretching $f(x)$ by a factor of 4 . This action effects the range by a scale of 4 . Hence, the range of g will be the range of f multiplied by $4: R_{g}=[8,20]$.
(c) What is the domain of h ?

Solution: The equation $h(x)$ is horizontally stretching $f(x)$ by a factor of $\frac{1}{3}$. This action effects the domain by a scale of $\frac{1}{3}$. Hence, the domain of h will be the domain of f multiplied by $\frac{1}{3}: D_{h}=\left[\frac{1}{3}, 1\right]$.
(d) What is the range of h ?

Solution: The equation $h(x)$ is horizontally stretching $f(x)$ by a factor of $\frac{1}{3}$. This action does not effect the range. Hence, the range of h will be the same as $f: R_{h}=[2,5]$
16. Fill in the blank.
(a) Let $f(x)$ be a function and x be in the domain of f. Then $f^{-1}(f(x))=x$.
(b) The equation of the graph $g(x)$ that is obtained by horizontally stretching the graph of $f(x) 5$ units and by shifting down 7 units is $g(x)=f\left(\frac{1}{5} x\right)-7$.
(c) The degree of the polynomial $p(x)=4+6 x^{5}+3 x^{2}$ is 5 .
(d) The function $g(x)=3 x^{3}+x$ is a function that is odd (even, odd, or neither).
(e) An example of a polynomial of degree four whose only zeros are $-3,4$, and 1 is $p(x)=(x+3)(x-4)(x-1)^{2}$.

