Practice Problems - Exam 2 (Due Tue, May 27)

Math 1060Q - Summer 2014
Professor Hohn

1. True or false.
(a) $\frac{\ln 8}{\ln 2}=4$
\qquad
(b) $\cos \left(\frac{\pi}{3}\right)=\cos \left(\frac{5 \pi}{3}\right)$
(b) \qquad
(c) $\sin (x+y)=\sin (x)+\sin (y)$
(c) \qquad
(d) $\left(\log _{9} 3\right)\left(\log _{5} \frac{1}{25}\right)=-1$
(d) \qquad
(e) $f(\theta)=\cos \theta$ is an even function.
(e)
2. Show that $2-\log x=\log \left(\frac{100}{x}\right)$ for every positive x.
3. Let $f(x)=\frac{3 x^{2}+4 x+1}{2 x^{2}-4 x+2}$. Find the vertical asymptotes, end behavior, holes, and zeros of $f(x)$. Sketch $f(x)$.
4. Find the smallest possible positive number x such that $16 \sin ^{4} x-16 \sin ^{2} x+3=0$.
5. Find all numbers x such that $\frac{\ln (11 x)}{\ln (4 x)}=2$.
6. Suppose a colony of 100 cells of the bacteria Precalcitis quadruples in size every two hours.
(a) Find a function that models the population growth of the colony of bacteria.
(b) Approximately how many cells will be in the colony after five hours.
7. Find all numbers x that satisfy $\log _{3}(x+5)+\log _{3}(x-1)=2$.
8. Suppose a 19 -foot ladder is leaning against a wall, making a 60° angle with the ground. How high up the wall is the end of the ladder?
9. Suppose y is a number such that $\tan y=-\frac{2}{9}$. Evaluate $\tan (-y)$.
10. Create a table showing the endpoints of the radius of the unit circle corresponding to the angles $\frac{3 \pi}{2}, \frac{5 \pi}{3}, \frac{7 \pi}{4}$, and $\frac{11 \pi}{6}$.
11. Show that

$$
\sin ^{2} \theta=\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}
$$

for all θ except odd multiples of $\frac{\pi}{2}$.
12. Use the figure to the right to solve the following:

Suppose $a=5$ and $b=8$. Evaluate (a) $\sin u$

(b) $\cot u$
(c) $\sec v$
13. Suppose $-\frac{\pi}{2}<\theta<0$ and $\tan \theta=-3$. Evaluate
(a) $\cos \theta$
(b) $\sin \theta$
14. Find the smallest number x such that $\tan e^{x}=0$.
15. Suppose $-\frac{\pi}{2}<x<0$ and $\cos x=\frac{5}{9}$. Evaluate $\sin x$ and $\tan x$.
16. Find exact values for the following
(a) $\sin \left(-\frac{3 \pi}{2}\right)$
(b) $\cos \frac{15 \pi}{4}$
(c) $\cos 360045^{\circ}$
(d) $\sin 300^{\circ}$
17. Suppose an ant walks counterclockwise on the unit circle from the point $(0,1)$ to the endpoint of the radius that forms an angle of $\frac{5 \pi}{4}$ radians with the positive horizontal axis. How far has the ant walked?
18. Let $f(x)=3-5 e^{2 x}$.
(a) Find the domain of f.
(b) Find the range of f.
(c) Find a formula for f^{-1}.
(d) Find the domain of f^{-1}.
(e) Find the range of f^{-1}.
19. Suppose $\log _{7} w=3.1$ and $\log _{7} z=2.2$. Evaluate $\log _{7}\left(\frac{49 w^{2}}{z^{3}}\right)$.
20. Find all numbers x such that $e^{4 x}-9 e^{2 x}-22=0$.
21. Use the figure to the right to solve the following:

Suppose $\cos u=\frac{2}{3}$. Evaluate $\cos v$.

22. Find a formula for the inverse of the function f defined by $f(x)=7-3 \log _{4}(2 x-1)$.

