Practice Problems - Exam 2 (Due Tue, May 27)

(a) _____

(b) _____

(c) _____

(d) _____

(e) _____

Math 1060Q – Summer 2014 Professor Hohn

1. True or false.

(a)
$$\frac{\ln 8}{\ln 2} = 4$$

(b)
$$\cos\left(\frac{\pi}{3}\right) = \cos\left(\frac{5\pi}{3}\right)$$

(c)
$$\sin(x+y) = \sin(x) + \sin(y)$$

(d)
$$(\log_9 3) \left(\log_5 \frac{1}{25} \right) = -1$$

(e)
$$f(\theta) = \cos \theta$$
 is an even function.

2. Show that
$$2 - \log x = \log\left(\frac{100}{x}\right)$$
 for every positive x.

3. Let $f(x) = \frac{3x^2 + 4x + 1}{2x^2 - 4x + 2}$. Find the vertical asymptotes, end behavior, holes, and zeros of f(x). Sketch f(x). 4. Find the smallest possible positive number x such that $16\sin^4 x - 16\sin^2 x + 3 = 0$.

5. Find all numbers x such that $\frac{\ln(11x)}{\ln(4x)} = 2$.

6. Suppose a colony of 100 cells of the bacteria Precalcitis quadruples in size every two hours.(a) Find a function that models the population growth of the colony of bacteria.

- (b) Approximately how many cells will be in the colony after five hours.
- 7. Find all numbers x that satisfy $\log_3(x+5) + \log_3(x-1) = 2$.

8. Suppose a 19-foot ladder is leaning against a wall, making a 60° angle with the ground. How high up the wall is the end of the ladder?

9. Suppose y is a number such that $\tan y = -\frac{2}{9}$. Evaluate $\tan(-y)$.

10. Create a table showing the endpoints of the radius of the unit circle corresponding to the angles $\frac{3\pi}{2}, \frac{5\pi}{3}, \frac{7\pi}{4}$, and $\frac{11\pi}{6}$.

11. Show that

$$\sin^2 \theta = \frac{\tan^2 \theta}{1 + \tan^2 \theta}$$

for all θ except odd multiples of $\frac{\pi}{2}$.

12. Use the figure to the right to solve the following:

(b) $\cot u$

(c) $\sec v$

13. Suppose $-\frac{\pi}{2} < \theta < 0$ and $\tan \theta = -3$. Evaluate (a) $\cos \theta$

(b) $\sin \theta$

14. Find the smallest number **x** such that $\tan e^x = 0$.

15. Suppose $-\frac{\pi}{2} < x < 0$ and $\cos x = \frac{5}{9}$. Evaluate $\sin x$ and $\tan x$.

16. Find exact values for the following

(a) $\sin(-\frac{3\pi}{2})$

(b) $\cos \frac{15\pi}{4}$

(c) $\cos 360045^{\circ}$

(d) $\sin 300^{\circ}$

17. Suppose an ant walks counterclockwise on the unit circle from the point (0, 1) to the endpoint of the radius that forms an angle of $\frac{5\pi}{4}$ radians with the positive horizontal axis. How far has the ant walked?

18. Let $f(x) = 3 - 5e^{2x}$.

- (a) Find the domain of f.
- (b) Find the range of f.
- (c) Find a formula for f^{-1} .

(d) Find the domain of f^{-1} .

(e) Find the range of f^{-1} .

19. Suppose $\log_7 w = 3.1$ and $\log_7 z = 2.2$. Evaluate $\log_7 \left(\frac{49w^2}{z^3}\right)$.

20. Find all numbers x such that $e^{4x} - 9e^{2x} - 22 = 0$.

21. Use the figure to the right to solve the following:

22. Find a formula for the inverse of the function f defined by $f(x) = 7 - 3\log_4(2x - 1)$.