Practice Problems - Exam 2 (Due Tue, May 27)

Math 1060Q - Summer 2014
Professor Hohn

1. True or false.
(a) $\frac{\ln 8}{\ln 2}=4$
(a)
(b) $\cos \left(\frac{\pi}{3}\right)=\cos \left(\frac{5 \pi}{3}\right)$
(b) $\quad \mathbf{T}$
(c) $\sin (x+y)=\sin (x)+\sin (y)$
(c) $\quad \mathbf{F}$
(d) $\left(\log _{9} 3\right)\left(\log _{5} \frac{1}{25}\right)=-1$
(d) $\quad \mathbf{T}$
(e) $f(\theta)=\cos \theta$ is an even function.
(e) \qquad
2. Show that $2-\log x=\log \left(\frac{100}{x}\right)$ for every positive x.

Solution: Using logarithm rules:

$$
\begin{aligned}
& \log \left(\frac{100}{x}\right)=\log (100)-\log (x) \quad \text { (quotient rule) } \\
& =2-\log (x) \quad\left(\text { since } 10^{2}=100\right) \\
& \text { Thus, } \log \left(\frac{100}{x}\right)=2-\log x \text {. }
\end{aligned}
$$

3. Let $f(x)=\frac{3 x^{2}+4 x+1}{2 x^{2}-4 x+2}$. Find the vertical asymptotes, end behavior, holes, and zeros of $f(x)$. Sketch $f(x)$.

Solution: First, we will factor our rational function so we can find vertical asymptotes, holes, and zeros.

$$
f(x)=\frac{3 x^{2}+4 x+1}{2 x^{2}-4 x+2}=\frac{(3 x+1)(x+1)}{2\left(x^{2}-2 x+1\right)}=\frac{(3 x+1)(x+1)}{2(x-1)^{2}}
$$

V.A.: To find vertical asymptotes, we are looking for the zeros of the polynomial in the denominator of $f(x)$.

$$
2(x-1)^{2}=0 \Longrightarrow(x-1)^{2}=0 \Longrightarrow x=1
$$

We have a vertical asymptote at $x=1$.
E.B.: To find end behavior, we look at the leading term of the polynomial in the numerator and the leading term of the polynomial in the denominator.

$$
f(x)=\frac{3 x^{2}+4 x+1}{2 x^{2}-4 x+2}=\frac{3 x^{2}\left(1+\frac{4}{3 x}+\frac{1}{3 x^{2}}\right)}{2 x^{2}\left(1-\frac{4}{2 x}+\frac{2}{2 x^{2}}\right)}
$$

As $x \rightarrow \infty, f(x) \approx \frac{3 x^{2}}{2 x^{2}}=\frac{3}{2}$. Thus, as $x \rightarrow \infty, f(x) \rightarrow \frac{3}{2}$. Similarly, as $x \rightarrow-\infty$, $f(x) \approx \frac{3 x^{2}}{2 x^{2}}=\frac{3}{2}$. Thus, as $x \rightarrow-\infty, f(x) \rightarrow \frac{3}{2}$.

Holes: We do not have any holes.

Zeros: To find the zeros of f, we look at the zeros of the polynomial in the numerator of f.

$$
(3 x+1)(x+1)=0 \Longrightarrow 3 x+1=0 \quad \text { or } \quad x+1=0 \Longrightarrow x=-\frac{1}{3},-1
$$

Thus, f intersects the x-axis at the points $\left(-\frac{1}{3}, 0\right)$ and $(-1,0)$.
Before sketching f, it is usually helpful to find the y-intercept.

$$
f(0)=\frac{3 \cdot 0^{2}+4 \cdot 0+1}{2 \cdot 0^{2}-4 \cdot 0+2}=\frac{1}{2}
$$

In addition, we will check a few points.

$$
\begin{gathered}
f(3)=\frac{27+12+1}{18-12+2}=\frac{40}{8}=5 \\
f(5)=\frac{3 \cdot 25+20+1}{2 \cdot 25-20+2}=\frac{96}{32}=3
\end{gathered}
$$

Sketch:

Graph:

4. Find the smallest possible positive number x such that $16 \sin ^{4} x-16 \sin ^{2} x+3=0$.

Solution: Let $\sin ^{2} x=y$. Then,

$$
16 \sin ^{4} x-16 \sin ^{2} x+3=16 y^{2}-16 y+3
$$

Now, we will factor our polynomial.

$$
16 y^{2}-16 y+3=(4 y-3)(4 y-1)=0
$$

We have

$$
4 y-3=0 \Longrightarrow 4 y=3 \Longrightarrow y=\frac{3}{4}
$$

Substituting $y=\sin ^{2} x$ into our solution for y, we have

$$
\sin ^{2} x=\frac{3}{4} \Longrightarrow \sin x= \pm \frac{\sqrt{3}}{2}
$$

And, we see that $x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$. Similarly,

$$
4 y-1=0 \Longrightarrow 4 y=1 \Longrightarrow y=\frac{1}{4}
$$

Substituting $y=\sin ^{2} x$ into our solution for y, we have

$$
\sin ^{2} x=\frac{1}{4} \Longrightarrow \sin x= \pm \frac{1}{2}
$$

And, we see that $x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$.
Thus, $x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}, \frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$.
5. Find all numbers x such that $\frac{\ln (11 x)}{\ln (4 x)}=2$.

Solution:

$$
\begin{aligned}
\frac{\ln (11 x)}{\ln (4 x)} & =2 & & \\
\ln (11 x) & =2(\ln (4 x)) & & \text { (multiplying both sides by } \ln (4 x)) \\
\ln (11 x) & =\ln \left((4 x)^{2}\right) & & \text { (power rule) } \\
\ln (11 x) & =\ln \left(16 x^{2}\right) & & \\
11 x & =16 x^{2} & & \\
16 x^{2}-11 x & =0 & & \\
x(16 x-11) & =0 & &
\end{aligned}
$$

From our equation, we find that $x=0$ or $16 x-11=0$. So, $x=0, \frac{11}{16}$. Now, since we worked with logarithms, we need to check our answers to make sure that they make sense in our equation. Notice that if we let $x=0, \ln (11 \cdot 0)=\ln (0)$ which is undefined. That is, $x \neq 0$. Thus, our solutions is $x=\frac{11}{16}$.
6. Suppose a colony of 100 cells of the bacteria Precalcitis quadruples in size every two hours.
(a) Find a function that models the population growth of the colony of bacteria.

Solution: Since our function is an exponential function, it is of the form $f(x)=c b^{x}$. We are starting with 100 cells which means $f(0)=100$. Because the bacteria quadruples in size every two hours, we know that $f(2)=400$. Our goal is to use this information to find c and b in our equation $f(x)=c b^{x}$.

$$
\begin{aligned}
& f(0)=100 \Longrightarrow c b^{0}=100 \Longrightarrow c \cdot 1=100 \Longrightarrow c=100 \\
& f(2)=400 \Longrightarrow c b^{2}=400 \Longrightarrow 100 b^{2}=400 \Longrightarrow b^{2}=4 \Longrightarrow b=2
\end{aligned}
$$

Hence, $f(x)=100 \cdot 2^{x}$.
(b) Approximately how many cells will be in the colony after five hours.

Solution: Using our equation above, $f(5)=100 \cdot 2^{5}=100 \cdot 32=3200$. Thus, after five hours, the colony will have 3200 cells.
7. Find all numbers x that satisfy $\log _{3}(x+5)+\log _{3}(x-1)=2$.

Solution:

$$
\begin{aligned}
\log _{3}(x+5)+\log _{3}(x-1) & =2 \\
\log _{3}((x+5)(x-1)) & =2 \\
(x+5)(x-1) & =3^{2} \\
x^{2}+4 x-5 & =9 \\
x^{2}+4 x-14 & =0
\end{aligned} \quad \text { (product rule) }
$$

Using the quadratic formula, we see that

$$
x=\frac{-4 \pm \sqrt{4^{2}-4 \cdot 1 \cdot(-14)}}{2} \Longrightarrow x=\frac{-4 \pm \sqrt{72}}{2} \Longrightarrow x=-2 \pm \sqrt{18} \Longrightarrow x=-2 \pm 3 \sqrt{2}
$$

We are working with logarithms, so we need to check our answer to make sure that it makes sense. Notice that if we let $x=-2-3 \sqrt{2}$ that $\log _{3}(x-1)$ is undefined. Thus, our only solution is $x=-2+3 \sqrt{2}$.
8. Suppose a 19 -foot ladder is leaning against a wall, making a 60° angle with the ground. How high up the wall is the end of the ladder?

Solution: Suppose we have the following triangle:

If the ladder is 19 feet long and is leaning against a wall at a 60° angle, then $c=19$ and $u=60^{\circ}$. We are looking for the length of side a.
We know that

$$
\sin u=\frac{a}{c} \Longrightarrow \sin \left(60^{\circ}\right)=\frac{a}{19} \Longrightarrow 19 \sin \left(60^{\circ}\right)=a \Longrightarrow a=\frac{19 \sqrt{3}}{2}
$$

9. Suppose y is a number such that $\tan y=-\frac{2}{9}$. Evaluate $\tan (-y)$.

Solution: Since $f(y)=\tan (y)$ is an odd function, $f(-y)=-f(y)$. So,

$$
f(-y)=\tan (-y)=-\tan (y)=-\left(-\frac{2}{9}\right) .
$$

Thus, $\tan (-y)=\frac{2}{9}$.
10. Create a table showing the endpoints of the radius of the unit circle corresponding to the angles $\frac{3 \pi}{2}, \frac{5 \pi}{3}, \frac{7 \pi}{4}$, and $\frac{11 \pi}{6}$.

Solution:

Angle	Point on unit circle
$\frac{3 \pi}{2}$	$(0,-1)$
$\frac{5 \pi}{3}$	$\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
$\frac{7 \pi}{4}$	$\left(\frac{\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}\right)$
$\frac{11 \pi}{6}$	$\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$

11. Show that

$$
\sin ^{2} \theta=\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}
$$

for all θ except odd multiples of $\frac{\pi}{2}$.

Solution: We will start with the right hand side and show that it is equal to the left hand side.

$$
\begin{aligned}
\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta} & =\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}} \\
& =\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2} \theta}{\cos ^{2} \theta}+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}} \\
& =\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}} \\
& =\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{1}{\cos ^{2} \theta}} \\
& =\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \div \frac{1}{\cos ^{2} \theta} \\
& =\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \frac{\cos ^{2} \theta}{1} \\
& =\sin ^{2} \theta
\end{aligned}
$$

Thus,

$$
\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}=\sin ^{2} \theta
$$

12. Use the figure to the right to solve the following:

Suppose $a=5$ and $b=8$. Evaluate
(a) $\sin u$

Solution: First, we need to find c. From the Pythagorean Theorem, we know that $a^{2}+b^{2}=c^{2}$. Thus, $c^{2}=5^{2}+8^{2}$ and $c=\sqrt{89}$.

$$
\sin u=\frac{\text { opposite }}{\text { hypotenuse }} \Longrightarrow \sin u=\frac{a}{c} \Longrightarrow \sin u=\frac{5}{\sqrt{89}}
$$

(b) $\cot u$

Solution:

$$
\cot u=\frac{\text { adjacent }}{\text { opposite }} \Longrightarrow \cot u=\frac{b}{a} \Longrightarrow \cot u=\frac{8}{5}
$$

(c) $\sec v$

Solution:

$$
\sec u=\frac{\text { hypotenuse }}{\text { adjacent }} \Longrightarrow \sec u=\frac{c}{b} \Longrightarrow \sec u=\frac{\sqrt{89}}{8}
$$

13. Suppose $-\frac{\pi}{2}<\theta<0$ and $\tan \theta=-3$. Evaluate
(a) $\cos \theta$

Solution: Suppose we have the following triangle:

Suppose that $u=\theta$ in the figure above. Since $\tan \theta=-3$ and $\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$, we can deduce that $a=-3$ and $b=1$. Notice that the negative is associated with the side a. This is because we are looking at a triangle that is in Quadrant IV.
We can use the Pythagorean Theorem to solve for side c.

$$
c^{2}=(-3)^{2}+1^{2}=10 \Longrightarrow c=\sqrt{10}
$$

Then,

$$
\cos \theta=\frac{b}{c} \Longrightarrow \cos \theta=\frac{1}{\sqrt{10}}
$$

(b) $\sin \theta$

Solution: From above, we know that $c=\sqrt{10}$. Thus,

$$
\sin \theta=\frac{a}{c} \Longrightarrow \sin \theta=-\frac{3}{\sqrt{10}}
$$

14. Find the smallest number x such that $\tan e^{x}=0$.

Solution: Let $y=e^{x}$. Then, we want to find y such that $\tan y=0$. Thus, $y=0, \pi, 2 \pi, 3 \pi, \ldots$ Substituting $y=e^{x}$ back into our solution for y, we see

$$
e^{x}=0 \text { or } e^{x}=\pi \text { or } e^{x}=2 \pi \ldots
$$

And, solving for x we find that

$$
x=\ln (0) \text { or } x=\ln (\pi) \text { or } x=\ln (2 \pi) \ldots
$$

Notice that $\ln (0)$ does not exist, and since we are looking for the smallest x that makes sense, we have $x=\ln (\pi)$.
15. Suppose $-\frac{\pi}{2}<x<0$ and $\cos x=\frac{5}{9}$. Evaluate $\sin x$ and $\tan x$.

Solution: Suppose we have the following triangle:

Suppose that $u=x$ in the figure above. Since $\cos x=\frac{5}{9}$ and $\cos x=\frac{\text { adjacent }}{\text { hypotenuse }}$, we can deduce that $b=5$ and $c=9$. Notice that we are looking at a triangle that is in Quadrant IV, and hence, $\sin x$ and $\tan x$ will be negative.
We can use the Pythagorean Theorem to solve for side a.

$$
a^{2}+5^{2}=9^{2} \Longrightarrow a^{2}=81-25 \Longrightarrow a^{2}=56 \Longrightarrow a=-2 \sqrt{14}
$$

Then,

$$
\sin x=\frac{a}{c} \Longrightarrow \sin x=\frac{-2 \sqrt{14}}{9}
$$

And,

$$
\tan x=\frac{a}{b} \Longrightarrow \tan x=\frac{-2 \sqrt{14}}{5} .
$$

16. Find exact values for the following
(a) $\sin \left(-\frac{3 \pi}{2}\right)$

Solution: Using the unit circle,

$$
\sin \left(-\frac{3 \pi}{2}\right)=\sin \left(\frac{\pi}{2}\right)=1
$$

(b) $\cos \frac{15 \pi}{4}$

Solution: Using the unit circle,

$$
\cos \left(\frac{15 \pi}{4}\right)=\cos \left(\frac{15 \pi}{4}-2 \pi\right)=\cos \left(\frac{7 \pi}{4}\right)=\frac{\sqrt{2}}{2} .
$$

(c) $\cos 360045^{\circ}$

Solution: Using the unit circle,

$$
\cos 360045^{\circ}=\cos \left(360045^{\circ}-360^{\circ} \cdot 1000\right)=\cos 45^{\circ}=\frac{\sqrt{2}}{2} .
$$

(d) $\sin 300^{\circ}$

Solution: Using the unit circle,

$$
\sin 300^{\circ}=\sin \left(-60^{\circ}\right)=\frac{-\sqrt{3}}{2} .
$$

17. Suppose an ant walks counterclockwise on the unit circle from the point $(0,1)$ to the endpoint of the radius that forms an angle of $\frac{5 \pi}{4}$ radians with the positive horizontal axis. How far has the ant walked?

Solution: The ant started at $(0,1)$ which corresponds with the endpoint of the radius that forms an angle of $\frac{\pi}{2}$. The ant walks until he/she reaches the endpoint of the radius that forms an angle of $\frac{5 \pi}{4}$. Thus, the ant walked a total of $\frac{5 \pi}{4}-\frac{\pi}{2}=\frac{3 \pi}{4}$ radians. The ant walked three-eighths of the circle, and since the radius of the circle is 1 , the ant walked $\frac{3 \pi}{4}$.
18. Let $f(x)=3-5 e^{2 x}$.
(a) Find the domain of f.

Solution: Since f is an exponential function, the domain of f is all real numbers.

$$
(-\infty, \infty)
$$

(b) Find the range of f.

Solution: The range of f is equal to the domain of f^{-1}. The domain for f^{-1} is

$$
(-\infty, 3) .
$$

See explanation below.
(c) Find a formula for f^{-1}.

Solution: To find the inverse, first we set $f(x)=y$ and then solve for x.

$$
\begin{aligned}
y & =3-5 e^{2 x} \\
y-3 & =-5 e^{2 x} \\
\frac{y-3}{-5} & =e^{2 x} \\
\left.\frac{(3-y}{5}\right) & =2 x \\
\frac{\ln \left(\frac{3-y}{5}\right)}{2} & =x
\end{aligned}
$$

$$
\ln \left(\frac{3-y}{5}\right)=2 x \quad \quad \text { (logarithm defn) }
$$

Thus, $f^{-1}(y)=\frac{1}{2} \cdot \ln \left(\frac{3-y}{5}\right)$.
(d) Find the domain of f^{-1}.

Solution: Notice that f^{-1} has a logarithm and recall that the input of a logarithm must be positive. Thus,

$$
\frac{3-y}{5}>0 \Longrightarrow 3-y>0 \Longrightarrow 3>y
$$

The domain for f^{-1} is

$$
(-\infty, 3) .
$$

(e) Find the range of f^{-1}.

Solution: The range of f^{-1} is equal to the domain of f. The domain of f is all real numbers:

$$
(-\infty, \infty) .
$$

19. Suppose $\log _{7} w=3.1$ and $\log _{7} z=2.2$. Evaluate $\log _{7}\left(\frac{49 w^{2}}{z^{3}}\right)$.

Solution: First, we are going to expand $\log _{7}\left(\frac{49 w^{2}}{z^{3}}\right)$. Then, we will substitute what we know (i.e. $\log _{7} w=3.1$ and $\log _{7} z=2.2$) into the equation.

$$
\begin{array}{rlrl}
\log _{7}\left(\frac{49 w^{2}}{z^{3}}\right) & =\log _{7}\left(49 w^{2}\right)-\log _{7}\left(z^{3}\right) & & \text { (quotient rule) } \\
& =\log _{7}(7 w)^{2}-3 \log z & & \text { (power rule) } \\
& =2 \log _{7} 7 w-3 \log z & & \text { (power rule) } \\
& =2\left(\log _{7} 7+\log _{7} w\right)-3 \log z & & \text { (product rule) } \\
& =2 \log _{7} 7+2 \log _{7} w-3 \log z & & \\
& =2 \cdot 1+2 \cdot 3.1-3 \cdot 2.2 & & \\
& =2+6.2-6.6 & & \\
& =1.6 &
\end{array}
$$

20. Find all numbers x such that $e^{4 x}-9 e^{2 x}-22=0$.

Solution: Let $y=e^{2 x}$. Then, $e^{4 x}-9 e^{2 x}-22=0$ becomes $y^{2}-9 y-22=0$.

$$
y^{2}-9 y-22=0 \Longrightarrow(y-11)(y+2)=0 \Longrightarrow y=11,-2
$$

Substituting $e^{2 x}$ for y, we have

$$
e^{2 x}=11 \Longrightarrow \ln 11=2 x \Longrightarrow x=\frac{\ln 11}{2},
$$

and

$$
e^{2 x}=-2 \Longrightarrow \ln (-2)=2 x
$$

But, $\ln (-2)$ does not exist. Thus, our solution is $x=\frac{\ln 11}{2}$.
21. Use the figure to the right to solve the following:

Suppose $\cos u=\frac{2}{3}$. Evaluate $\cos v$.

Solution: Notice that $\cos v=\cos \left(\frac{\pi}{2}-u\right)=\sin u$. Thus, we are looking for $\sin u$.

Since $\cos u=\frac{2}{3}$, we let $b=2$ and $c=3$. In order to find $\sin u$, we need to find a. Using the Pythagorean Theorem,

$$
\begin{gathered}
a^{2}+2^{2}=3^{2} \Longrightarrow a^{2}=9-4 \Longrightarrow a^{2}=5 \Longrightarrow a=\sqrt{5} . \\
\sin u=\frac{a}{c} \Longrightarrow \sin u=\frac{\sqrt{5}}{3}
\end{gathered}
$$

Thus, $\cos v=\frac{\sqrt{5}}{3}$.
22. Find a formula for the inverse of the function f defined by $f(x)=7-3 \log _{4}(2 x-1)$.

Solution: First, we set $f(x)=y$, and then we solve for x.

$$
\begin{aligned}
y & =7-3 \log _{4}(2 x-1) \\
y-7 & =-3 \log _{4}(2 x-1) \\
\frac{y-7}{-3} & =\log _{4}(2 x-1) \\
4^{\frac{7-y}{3}} & =2 x-1 \quad \quad \text { (by defn of logarithm) } \\
4^{\frac{7-y}{3}}+1 & =2 x \\
\frac{1}{2}\left(4^{\frac{7-y}{3}}+1\right) & =x
\end{aligned}
$$

Thus, $f^{-1}(y)=\frac{1}{2}\left(4^{\frac{7-y}{3}}+1\right)$.

