Practice Problems - Exam 2 (Due Tue, May 27)

Math 1060Q – Summer 2014 Professor Hohn

1. True or false.

(a)
$$\frac{\ln 8}{\ln 2} = 4$$

2. Show that
$$2 - \log x = \log\left(\frac{100}{x}\right)$$
 for every positive x.

Solution: Using logarithm rules:

Т

$$\log\left(\frac{100}{x}\right) = \log(100) - \log(x) \qquad (\text{quotient rule})$$
$$= 2 - \log(x) \qquad (\text{since } 10^2 = 100)$$
hus, $\log\left(\frac{100}{x}\right) = 2 - \log x.$

3. Let $f(x) = \frac{3x^2 + 4x + 1}{2x^2 - 4x + 2}$. Find the vertical asymptotes, end behavior, holes, and zeros of f(x). Sketch f(x). **Solution:** First, we will factor our rational function so we can find vertical asymptotes, holes, and zeros.

$$f(x) = \frac{3x^2 + 4x + 1}{2x^2 - 4x + 2} = \frac{(3x+1)(x+1)}{2(x^2 - 2x + 1)} = \frac{(3x+1)(x+1)}{2(x-1)^2}$$

V.A.: To find vertical asymptotes, we are looking for the zeros of the polynomial in the denominator of f(x).

$$2(x-1)^2 = 0 \implies (x-1)^2 = 0 \implies x = 1$$

We have a vertical asymptote at x = 1.

E.B.: To find end behavior, we look at the leading term of the polynomial in the numerator and the leading term of the polynomial in the denominator.

$$f(x) = \frac{3x^2 + 4x + 1}{2x^2 - 4x + 2} = \frac{3x^2(1 + \frac{4}{3x} + \frac{1}{3x^2})}{2x^2(1 - \frac{4}{2x} + \frac{2}{2x^2})}$$

As $x \to \infty$, $f(x) \approx \frac{3x^2}{2x^2} = \frac{3}{2}$. Thus, as $x \to \infty$, $f(x) \to \frac{3}{2}$. Similarly, as $x \to -\infty$, $f(x) \approx \frac{3x^2}{2x^2} = \frac{3}{2}$. Thus, as $x \to -\infty$, $f(x) \to \frac{3}{2}$.

Holes: We do not have any holes.

Zeros: To find the zeros of f, we look at the zeros of the polynomial in the numerator of f.

$$(3x+1)(x+1) = 0 \implies 3x+1 = 0 \text{ or } x+1 = 0 \implies x = -\frac{1}{3}, -1$$

Thus, f intersects the x-axis at the points $(-\frac{1}{3}, 0)$ and (-1, 0).

Before sketching f, it is usually helpful to find the y-intercept.

$$f(0) = \frac{3 \cdot 0^2 + 4 \cdot 0 + 1}{2 \cdot 0^2 - 4 \cdot 0 + 2} = \frac{1}{2}$$

In addition, we will check a few points.

$$f(3) = \frac{27 + 12 + 1}{18 - 12 + 2} = \frac{40}{8} = 5$$

$$f(5) = \frac{3 \cdot 25 + 20 + 1}{2 \cdot 25 - 20 + 2} = \frac{96}{32} = 3$$

4. Find the smallest possible positive number x such that $16\sin^4 x - 16\sin^2 x + 3 = 0$.

Solution: Let $\sin^2 x = y$. Then,

$$16\sin^4 x - 16\sin^2 x + 3 = 16y^2 - 16y + 3$$

Now, we will factor our polynomial.

$$16y^2 - 16y + 3 = (4y - 3)(4y - 1) = 0$$

We have

$$4y - 3 = 0 \implies 4y = 3 \implies y = \frac{3}{4}.$$

Substituting $y = \sin^2 x$ into our solution for y, we have

$$\sin^2 x = \frac{3}{4} \implies \sin x = \pm \frac{\sqrt{3}}{2}.$$

And, we see that $x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$. Similarly,

$$4y - 1 = 0 \implies 4y = 1 \implies y = \frac{1}{4}.$$

Substituting $y = \sin^2 x$ into our solution for y, we have

$$\sin^2 x = \frac{1}{4} \implies \sin x = \pm \frac{1}{2}.$$

And, we see that $x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$. Thus, $x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$.

5. Find all numbers x such that $\frac{\ln(11x)}{\ln(4x)} = 2$.

Solution:

 $\frac{\ln(11x)}{\ln(4x)} = 2$ $\ln(11x) = 2(\ln(4x))$ $\ln(11x) = \ln((4x)^2)$ $\ln(11x) = \ln(16x^2)$ $11x = 16x^2$ $16x^2 - 11x = 0$ x(16x - 11) = 0

(multiplying both sides by $\ln(4x)$) (power rule) From our equation, we find that x = 0 or 16x - 11 = 0. So, $x = 0, \frac{11}{16}$. Now, since we worked with logarithms, we need to check our answers to make sure that they make sense in our equation. Notice that if we let x = 0, $\ln(11 \cdot 0) = \ln(0)$ which is undefined. That is, $x \neq 0$. Thus, our solutions is $x = \frac{11}{16}$.

- 6. Suppose a colony of 100 cells of the bacteria Precalcitis quadruples in size every two hours.
 - (a) Find a function that models the population growth of the colony of bacteria.

Solution: Since our function is an exponential function, it is of the form $f(x) = cb^x$. We are starting with 100 cells which means f(0) = 100. Because the bacteria quadruples in size every two hours, we know that f(2) = 400. Our goal is to use this information to find c and b in our equation $f(x) = cb^x$.

$$f(0) = 100 \implies cb^0 = 100 \implies c \cdot 1 = 100 \implies c = 100$$

$$f(2) = 400 \implies cb^2 = 400 \implies 100b^2 = 400 \implies b^2 = 4 \implies b = 2$$

Hence, $f(x) = 100 \cdot 2^x$.

(b) Approximately how many cells will be in the colony after five hours.

Solution: Using our equation above, $f(5) = 100 \cdot 2^5 = 100 \cdot 32 = 3200$. Thus, after five hours, the colony will have 3200 cells.

7. Find all numbers x that satisfy $\log_3(x+5) + \log_3(x-1) = 2$.

Solution:

 $\log_{3}(x+5) + \log_{3}(x-1) = 2$ $\log_{3}((x+5)(x-1)) = 2$ (product rule) $(x+5)(x-1) = 3^{2}$ $x^{2} + 4x - 5 = 9$ $x^{2} + 4x - 14 = 0$

Using the quadratic formula, we see that

$$x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot (-14)}}{2} \implies x = \frac{-4 \pm \sqrt{72}}{2} \implies x = -2 \pm \sqrt{18} \implies x = -2 \pm 3\sqrt{2}.$$

We are working with logarithms, so we need to check our answer to make sure that it makes sense. Notice that if we let $x = -2 - 3\sqrt{2}$ that $\log_3(x-1)$ is undefined. Thus, our only solution is $x = -2 + 3\sqrt{2}$.

8. Suppose a 19-foot ladder is leaning against a wall, making a 60° angle with the ground. How high up the wall is the end of the ladder?

Solution: Suppose we have the following triangle:

If the ladder is 19 feet long and is leaning against a wall at a 60° angle, then c = 19 and $u = 60^{\circ}$. We are looking for the length of side a.

We know that

$$\sin u = \frac{a}{c} \implies \sin(60^\circ) = \frac{a}{19} \implies 19\sin(60^\circ) = a \implies a = \frac{19\sqrt{3}}{2}$$

9. Suppose y is a number such that $\tan y = -\frac{2}{9}$. Evaluate $\tan(-y)$.

Solution: Since
$$f(y) = \tan(y)$$
 is an odd function, $f(-y) = -f(y)$. So,

$$f(-y) = \tan(-y) = -\tan(y) = -\left(-\frac{2}{9}\right).$$
Thus, $\tan(-y) = \frac{2}{9}$.

10. Create a table showing the endpoints of the radius of the unit circle corresponding to the angles $\frac{3\pi}{2}, \frac{5\pi}{3}, \frac{7\pi}{4}$, and $\frac{11\pi}{6}$.

Solution:

Angle	Point on unit circle
$\frac{3\pi}{2}$	(0,-1)
$\frac{5\pi}{3}$	$\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$
$\frac{7\pi}{4}$	$\left(\frac{\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}\right)$
$\frac{11\pi}{6}$	$\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$

11. Show that

$$\sin^2 \theta = \frac{\tan^2 \theta}{1 + \tan^2 \theta}$$

for all θ except odd multiples of $\frac{\pi}{2}$.

Solution: We will start with the right hand side and show that it is equal to the left hand side.

$$\frac{\tan^2 \theta}{1 + \tan^2 \theta} = \frac{\frac{\sin^2 \theta}{\cos^2 \theta}}{1 + \frac{\sin^2 \theta}{\cos^2 \theta}}$$
$$= \frac{\frac{\sin^2 \theta}{\cos^2 \theta}}{\frac{\cos^2 \theta}{\cos^2 \theta} + \frac{\sin^2 \theta}{\cos^2 \theta}}$$
$$= \frac{\frac{\sin^2 \theta}{\cos^2 \theta}}{\frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta}}$$
$$= \frac{\frac{\sin^2 \theta}{\cos^2 \theta}}{\frac{1}{\cos^2 \theta}}$$
$$= \frac{\sin^2 \theta}{\cos^2 \theta} \div \frac{1}{\cos^2 \theta}$$
$$= \frac{\sin^2 \theta}{\cos^2 \theta} \div \frac{\cos^2 \theta}{1}$$
$$= \sin^2 \theta$$

Thus,

$$\frac{\tan^2\theta}{1+\tan^2\theta} = \sin^2\theta$$

12. Use the figure to the right to solve the following:

Solution: First, we need to find c. From the Pythagorean Theorem, we know that $a^2 + b^2 = c^2$. Thus, $c^2 = 5^2 + 8^2$ and $c = \sqrt{89}$.

$$\sin u = \frac{\text{opposite}}{\text{hypotenuse}} \implies \sin u = \frac{a}{c} \implies \sin u = \frac{5}{\sqrt{89}}$$

(b) $\cot u$

Solution:

$$\cot u = \frac{\text{adjacent}}{\text{opposite}} \implies \cot u = \frac{b}{a} \implies \cot u = \frac{8}{5}$$

(c) $\sec v$

Solution:

$$\sec u = \frac{\text{hypotenuse}}{\text{adjacent}} \implies \sec u = \frac{c}{b} \implies \sec u = \frac{\sqrt{89}}{8}$$

13. Suppose $-\frac{\pi}{2} < \theta < 0$ and $\tan \theta = -3$. Evaluate

(a) $\cos\theta$

Solution: Suppose we have the following triangle:

Suppose that $u = \theta$ in the figure above. Since $\tan \theta = -3$ and $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$, we can deduce that a = -3 and b = 1. Notice that the negative is associated with the side a. This is because we are looking at a triangle that is in Quadrant IV.

We can use the Pythagorean Theorem to solve for side c.

$$c^{2} = (-3)^{2} + 1^{2} = 10 \implies c = \sqrt{10}$$

Then,

$$\cos \theta = \frac{b}{c} \implies \cos \theta = \frac{1}{\sqrt{10}}$$

(b) $\sin \theta$

Solution: From above, we know that $c = \sqrt{10}$. Thus,

$$\sin \theta = \frac{a}{c} \implies \sin \theta = -\frac{3}{\sqrt{10}}$$

14. Find the smallest number x such that $\tan e^x = 0$.

Solution: Let $y = e^x$. Then, we want to find y such that $\tan y = 0$. Thus, $y = 0, \pi, 2\pi, 3\pi, \ldots$ Substituting $y = e^x$ back into our solution for y, we see

$$e^x = 0$$
 or $e^x = \pi$ or $e^x = 2\pi$...

And, solving for x we find that

$$x = \ln(0)$$
 or $x = \ln(\pi)$ or $x = \ln(2\pi) \dots$

Notice that $\ln(0)$ does not exist, and since we are looking for the smallest x that makes sense, we have $x = \ln(\pi)$.

15. Suppose $-\frac{\pi}{2} < x < 0$ and $\cos x = \frac{5}{9}$. Evaluate $\sin x$ and $\tan x$.

Solution: Suppose we have the following triangle:

Suppose that u = x in the figure above. Since $\cos x = \frac{5}{9}$ and $\cos x = \frac{\text{adjacent}}{\text{hypotenuse}}$, we can deduce that b = 5 and c = 9. Notice that we are looking at a triangle that is in Quadrant IV, and hence, $\sin x$ and $\tan x$ will be negative.

We can use the Pythagorean Theorem to solve for side a.

$$a^{2} + 5^{2} = 9^{2} \implies a^{2} = 81 - 25 \implies a^{2} = 56 \implies a = -2\sqrt{14}$$

Then,

$$\sin x = \frac{a}{c} \implies \sin x = \frac{-2\sqrt{14}}{9}.$$

And,

$$\tan x = \frac{a}{b} \implies \tan x = \frac{-2\sqrt{14}}{5}.$$

- 16. Find exact values for the following
 - (a) $\sin\left(-\frac{3\pi}{2}\right)$

Solution: Using the unit circle,

$$\sin\left(-\frac{3\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) = 1.$$

(b) $\cos \frac{15\pi}{4}$

Solution: Using the unit circle,

$$\cos\left(\frac{15\pi}{4}\right) = \cos\left(\frac{15\pi}{4} - 2\pi\right) = \cos\left(\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2}.$$

(c) $\cos 360045^{\circ}$

Solution: Using the unit circle,

$$\cos 360045^{\circ} = \cos \left(360045^{\circ} - 360^{\circ} \cdot 1000 \right) = \cos 45^{\circ} = \frac{\sqrt{2}}{2}$$

(d) $\sin 300^{\circ}$

Solution: Using the unit circle,

$$\sin 300^{\circ} = \sin(-60^{\circ}) = \frac{-\sqrt{3}}{2}$$

17. Suppose an ant walks counterclockwise on the unit circle from the point (0, 1) to the endpoint of the radius that forms an angle of $\frac{5\pi}{4}$ radians with the positive horizontal axis. How far has the ant walked?

Solution: The ant started at (0,1) which corresponds with the endpoint of the radius that forms an angle of $\frac{\pi}{2}$. The ant walks until he/she reaches the endpoint of the radius that forms an angle of $\frac{5\pi}{4}$. Thus, the ant walked a total of $\frac{5\pi}{4} - \frac{\pi}{2} = \frac{3\pi}{4}$ radians. The ant walked three-eighths of the circle, and since the radius of the circle is 1, the ant walked $\frac{3\pi}{4}$.

- 18. Let $f(x) = 3 5e^{2x}$.
 - (a) Find the domain of f.

Solution: Since f is an exponential function, the domain of f is all real numbers.

 $(-\infty,\infty)$

(b) Find the range of f.

Solution: The range of f is equal to the domain of f^{-1} . The domain for f^{-1} is

 $(-\infty, 3).$

See explanation below.

(c) Find a formula for f^{-1} .

Solution: To find the inverse, first we set f(x) = y and then solve for x.

$$y = 3 - 5e^{2x}$$

$$y - 3 = -5e^{2x}$$

$$\frac{y - 3}{-5} = e^{2x}$$

$$\ln\left(\frac{3 - y}{5}\right) = 2x$$

$$\ln\left(\frac{3 - y}{5}\right) = 2x$$
(logarithm defn)
$$\frac{\ln\left(\frac{3 - y}{5}\right)}{2} = x$$
hus, $f^{-1}(y) = \frac{1}{2} \cdot \ln\left(\frac{3 - y}{5}\right)$.

(d) Find the domain of f^{-1} .

Th

Solution: Notice that f^{-1} has a logarithm and recall that the input of a logarithm must be positive. Thus,

$$\frac{3-y}{5} > 0 \implies 3-y > 0 \implies 3 > y.$$

The domain for f^{-1} is

$$(-\infty,3).$$

(e) Find the range of f^{-1} .

Solution: The range of f^{-1} is equal to the domain of f. The domain of f is all real numbers:

 $(-\infty,\infty).$

19. Suppose $\log_7 w = 3.1$ and $\log_7 z = 2.2$. Evaluate $\log_7 \left(\frac{49w^2}{z^3}\right)$.

Solution: First, we are going to expand $\log_7\left(\frac{49w^2}{z^3}\right)$. Then, we will substitute what we know (i.e. $\log_7 w = 3.1$ and $\log_7 z = 2.2$) into the equation.

$$\log_{7} \left(\frac{49w^{2}}{z^{3}}\right) = \log_{7} \left(49w^{2}\right) - \log_{7}(z^{3}) \qquad (\text{quotient rule})$$

$$= \log_{7}(7w)^{2} - 3\log z \qquad (\text{power rule})$$

$$= 2\log_{7}7w - 3\log z \qquad (\text{power rule})$$

$$= 2(\log_{7}7 + \log_{7}w) - 3\log z \qquad (\text{product rule})$$

$$= 2\log_{7}7 + 2\log_{7}w - 3\log z$$

$$= 2 \cdot 1 + 2 \cdot 3.1 - 3 \cdot 2.2$$

$$= 2 + 6.2 - 6.6$$

$$= 1.6$$

20. Find all numbers x such that $e^{4x} - 9e^{2x} - 22 = 0$.

Solution: Let
$$y = e^{2x}$$
. Then, $e^{4x} - 9e^{2x} - 22 = 0$ becomes $y^2 - 9y - 22 = 0$.
 $y^2 - 9y - 22 = 0 \implies (y - 11)(y + 2) = 0 \implies y = 11, -2$

Substituting e^{2x} for y, we have

$$e^{2x} = 11 \implies \ln 11 = 2x \implies x = \frac{\ln 11}{2}$$

and

$$e^{2x} = -2 \implies \ln(-2) = 2x$$

But, $\ln(-2)$ does not exist. Thus, our solution is $x = \frac{\ln 11}{2}$

21. Use the figure to the right to solve the following:

Suppose $\cos u = \frac{2}{3}$. Evaluate $\cos v$.

Solution: Notice that $\cos v = \cos(\frac{\pi}{2} - u) = \sin u$. Thus, we are looking for $\sin u$.

Since $\cos u = \frac{2}{3}$, we let b = 2 and c = 3. In order to find $\sin u$, we need to find a. Using the Pythagorean Theorem,

$$a^{2} + 2^{2} = 3^{2} \implies a^{2} = 9 - 4 \implies a^{2} = 5 \implies a = \sqrt{5}.$$
$$\sin u = \frac{a}{c} \implies \sin u = \frac{\sqrt{5}}{3}$$
Thus, $\cos v = \frac{\sqrt{5}}{2}.$

22. Find a formula for the inverse of the function f defined by $f(x) = 7 - 3\log_4(2x - 1)$.

Solution: First, we set f(x) = y, and then we solve for x.

$$\begin{split} y &= 7 - 3 \log_4(2x - 1) \\ y - 7 &= -3 \log_4(2x - 1) \\ \frac{y - 7}{-3} &= \log_4(2x - 1) \\ 4^{\frac{7 - y}{3}} &= 2x - 1 \end{split} \qquad \text{(by defn of logarithm)} \\ 4^{\frac{7 - y}{3}} + 1 &= 2x \\ \frac{1}{2} \left(4^{\frac{7 - y}{3}} + 1 \right) &= x \\ \text{Thus, } f^{-1}(y) &= \frac{1}{2} \left(4^{\frac{7 - y}{3}} + 1 \right). \end{split}$$