Practice Problems - Final: Part 1 (Due Wed, May 28)

Math 1060Q - Summer 2014
Professor Hohn

1. $<,>$, or $=$.
(a) $\tan \left(100^{\circ}\right) \quad \tan \left(1^{\circ}\right)$
(b) The solution x of $\log _{\sqrt{8}} x=\frac{8}{3}$
(c) The period of the function $f(x)=3 \sin (\pi x-5)+7$ The amplitude of the function $f(x)=3 \sin (\pi x-5)+7$
(d) $3 \log _{2} 3$
$2 \log _{5} 6$
(e) The period of $f(x)=4 \tan (3 x) \quad$ The period of $g(x)=4 \cos (3 x)$
2. Find all solutions to $\sin (2 x)+\cos x=0$ on the interval $[0,2 \pi)$.
3. Give an example of a function that is neither even nor odd, and explain why it is neither.
4. Where is the function $f(x)=\frac{\sqrt{\sin x}}{x^{2}-4 x+3}$ defined on the interval $[0,2 \pi]$? Write your answer as a union of intervals.
5. Find an exact expression for $\sin \left(75^{\circ}\right)$.
6. Find all real numbers x such that $12 x^{4}+5 x^{2}-2=0$.
7. Find the domain and range of $f(x)=\log (-x)$. What is the inverse function of $f(x)$? Find the domain and range of the inverse function of $f(x)$.
8. Prove the following identity

$$
\sin \theta \cos \theta=\frac{\tan \theta}{1+\tan ^{2} \theta} .
$$

9. Find the linear function, $y=m x+b$, that passes through the vertices of $y=x^{2}+4 x$ and $y=2(x+1)^{2}$.
10. A population of 8 frogs increases at an annual rate of 50% a year. How many frogs will there be in 4 years?
11. Suppose $\sin u=\frac{3}{7}$. Evaluate $\cos (2 u)$.
12. Suppose $9^{x}=4$. Evaluate $\left(\frac{1}{27}\right)^{2 x}$.
13. The function f is defined by $f(-3)=8, f(1)=4$, and $f(4)=-8$. Make a table for $g(x)$ where $g(x)=2 f(-5 x+1)-3$.
14. What is $\sin ^{-1}\left(\sin \left(\frac{3 \pi}{4}\right)\right)$?
15. What is the minimum value of the function f defined by $f(x)=9 x^{2}+30 x+18$?
16. Find an exact expression for $\sin \left(\frac{\pi}{8}\right)$.
