Practice Problems - Final: Part 2 (Due Thurs, May 29)

Math 1060Q - Summer 2014
Professor Hohn

1. Write $2^{8} \frac{4^{77}}{16^{28}}$ as a power of 4.
2. Find the smallest possible positive number x such that $16 \sin ^{4} x-16 \sin ^{2} x+3=0$.
3. Give an example of an odd function whose domain is the real numbers and whose range is $\left\{-\pi^{2}, 0, \pi^{2}\right\}$.
4. Let $f(x)=\frac{x^{4}-2 x^{2}-35}{2 x^{4}-8}$. Find the vertical asymptotes and end behavior of $f(x)$. What are the zeros of f ?
5. Calculate $\log \left(\frac{1}{2}\right)+\log \left(\frac{2}{3}\right)+\ldots+\log \left(\frac{99}{100}\right)$.
6. Evaluate $\cos \left(\tan ^{-1} 5\right)$.
7. High tide at La Jolla Cove occurs at 5 am and is 6.5 ft . Low tide occurs at 11 am and is -0.5 ft . A simple model for such tides could be a cosine function of the form $f(x)=a \cos (b x+c)+d$. Determine the values for $a>0, b, c$, and d for $f(x)$ where x represents the number of hours since midnight. Sketch $f(x)$.
8. Simplify each of the following expressions.
(a) $\sin ^{-1}\left(\cos \left(\frac{5 \pi}{6}\right)\right)$
(b) $\sin \left(\cos ^{-1} x\right)$
9. Solve for x in the following equations.
(a) $\log _{4} x+\log _{4}(x-3)=1$
(b) $e^{x}+2 e^{-x}=3$
10. Each year the local country club sponsors a tennis tournament. Play starts with 128 participants. During each round, half of the players are eliminated. How many players remain after 5 rounds?
11. Show that $\sin ^{2}(2 x)=4\left(\sin ^{2} x-\sin ^{4} x\right)$. Hint: Start on the left-hand side and use the double angle identity.
12. Sketch the graph of the function $4 \sin (2 x+1)+5$ on the interval $[-3 \pi, 3 \pi]$.
13. Let $f(x)=\frac{6 x+1}{5 x-9}$.
(a) Find the domain of f.
(b) Find the range of f.
(c) Find a formula for f^{-1}.
(d) Find the domain of f^{-1}.
(e) Find the range of f^{-1}.
