Practice Problems - Final: Part 2 (Due Thurs, May 29)

Math 1060Q – Summer 2014 Professor Hohn

1. Write $2^8 \frac{4^{77}}{16^{28}}$ as a power of 4.

Solution: Since $4 = 2^2$ and $16 = 4^2$, then $2^8 = (2^2)^4 = 4^4$ and $16^{28} = (4^2)^{28} = 4^{56}$. So, $2^8 \frac{4^{77}}{16^{28}} = 4^4 \frac{4^{77}}{4^{56}} = 4^{77+4-56} = 4^{25}.$

2. Find the smallest possible positive number x such that $16\sin^4 x - 16\sin^2 x + 3 = 0$.

Solution: Let's set $y = \sin^2 x$, then we have

$$16y^2 - 16y + 3 = 0.$$

If you can factor this then you will see

$$16y^2 - 16y + 3 = 0 \implies (4y - 3)(4y - 1) = 0 \implies y = \frac{3}{4}, \frac{1}{4}$$

Using the quadratic formula, the roots of $16y^2 - 16y + 3$ are

$$y = \frac{16 \pm \sqrt{(-16)^2 - 4(16)(3)}}{2(16)} = \frac{1}{2} \pm \frac{1}{4} = \frac{1}{4}, \frac{3}{4}$$

Therefore, we are looking for the smallest positive x such that either

$$\sin^2 x = \frac{1}{4} \implies \sin x = \pm \frac{1}{2} \implies x = \frac{\pi}{6} + 2\pi k \text{ or } x = -\frac{\pi}{6} + 2\pi k.$$

or

 $\sin^2 x = \frac{3}{4} \implies \sin x = \pm \frac{\sqrt{3}}{2} \implies \text{ or } x = \frac{\pi}{3} + 2\pi k \text{ or } x = -\frac{\pi}{3} + 2\pi k.$

Of all these solutions, $x = \frac{\pi}{6}$ is the smallest positive one.

3. Give an example of an odd function whose domain is the real numbers and whose range is $\{-\pi^2, 0, \pi^2\}$.

Solution: We will construct a function whose domain is all real numbers and whose range is $\{-\pi^2, 0, \pi^2\}$.

$$f(x) = \begin{cases} -\pi^2 & \text{if } x < 0\\ 0 & \text{if } x = 0\\ \pi^2 & \text{if } x > 0 \end{cases}$$

Now, we will show that f is odd.

$$-f(-x) = \begin{cases} \pi^2 & \text{if } -x < 0\\ 0 & \text{if } x = 0\\ -\pi^2 & \text{if } -x > 0 \end{cases}$$

which is equal to f(x).

4. Let $f(x) = \frac{x^4 - 2x^2 - 35}{2x^4 - 8}$. Find the vertical asymptotes and end behavior of f(x). What are the zeros of f?

Solution: Factoring the numerator, we get

$$x^{4} - 2x^{2} - 35 = (x^{2} - 7)(x^{2} + 5) = (x + \sqrt{7})(x - \sqrt{7})(x^{2} + 5).$$

Factoring the denominator, we get

$$2x^4 - 8 = 2(x^4 - 4) = 2(x^2 + 2)(x^2 - 2) = 2(x^2 + 2)(x + \sqrt{2})(x - \sqrt{2})$$

Hence, rewriting the rational function, we find

$$\frac{x^4 - 2x^2 - 35}{2x^4 - 8} = \frac{(x + \sqrt{7})(x - \sqrt{7})(x^2 + 5)}{2(x^2 + 2)(x + \sqrt{2})(x - \sqrt{2})}$$

A vertical asymptote occurs when there is a zero in the denominator that is not a hole; these are $x = \sqrt{2}$ and $x = -\sqrt{2}$. The zeros of the function happen when there is a zero in the numerator which is not a hole; these are $x = \sqrt{7}$ and $x = -\sqrt{7}$. Finally, the end behavior acts the same as the ratio of the largest powered term in the numerator over the largest powered term in the denominator:

$$\lim_{x \to \infty} \frac{x^4 - 2x^2 - 35}{2x^4 - 8} = \lim_{x \to \infty} \frac{x^4}{2x^4} = \lim_{x \to \infty} \frac{1}{2}$$

and

$$\lim_{x \to -\infty} \frac{x^4 - 2x^2 - 35}{2x^4 - 8} = \lim_{x \to -\infty} \frac{x^4}{2x^4} = \lim_{x \to -\infty} \frac{1}{2}.$$

5. Calculate $\log(\frac{1}{2}) + \log(\frac{2}{3}) + \dots + \log(\frac{99}{100})$.

Solution: Let's write out the first few terms to discover the pattern:

$$\log(1/2) + \log(2/3) + \log(3/4) = (\log(1) - \log(2)) + (\log(2) - \log(3)) + (\log(3) - \log(4))$$
$$= \log(1) \underbrace{-\log(2) + \log(2)}_{=0} \underbrace{-\log(3) + \log(3)}_{=0} - \log(4) = \log(1) - \log(4).$$

If we kept writing out terms, we'd see that all we'd be left with after canceling terms are $\log(1) - \log(100) = -\log(100)$ (since $\log(1) = 0$). Also, $\log(100) = \log(10^2) = 2\log(10) = 2$. So, the answer is -2.

6. Evaluate $\cos(\tan^{-1} 5)$.

Solution: Let $\theta = \tan^{-1}(5)$. Then since $\tan(\theta) = 5$ which is the ratio of the "opposite over adjacent", we can picture a right triangle with opposite side having length 5 and adjacent side having length 1. In this case, the hypotenuse has length $\sqrt{5^2 + 1^2} = \sqrt{26}$. Now, since $\cos(\theta)$ is the ratio of "adjacent over hypotenuse", we have that $\cos(\theta) = 1/\sqrt{26}$.

7. High tide at La Jolla Cove occurs at 5 am and is 6.5 ft. Low tide occurs at 11 am and is -0.5 ft. A simple model for such tides could be a cosine function of the form $f(x) = a \cos(bx + c) + d$. Determine the values for a > 0, b, c, and d for f(x) where x represents the number of hours since midnight. Sketch f(x).

Solution:

First, let us find the amplitude, a. Notice that high tide is 6.5ft and low tide is -0.5ft. Hence,

$$a = \frac{\text{max-min}}{2} \implies a = \frac{6.5 - (-0.5)}{2} \implies a = \frac{7}{2}$$

Now, let us find the vertical shift d:

$$d = \max - a \implies d = 6.5 - 3.5 \implies d = 3.$$

High tide and low tide occur every 12 hours. Hence, the period is 12. We will use this information to find b:

$$p = \frac{2\pi}{b} \implies 12 = \frac{2\pi}{b} \implies b = \frac{2\pi}{12} \implies b = \frac{\pi}{6}.$$

The equation we have so far is

$$f(x) = 3.5 \cos\left(\frac{\pi}{6}x + c\right) + 3.$$

Now, we will find c by using the information that f(5) = 6.5.

$$f(5) = 3.5\cos\left(\frac{5\pi}{6} + c\right) + 3 \implies 6.5 = 3.5\cos\left(\frac{5\pi}{6} + c\right) + 3 \implies 1 = \cos\left(\frac{5\pi}{6} + c\right)$$

Solving for c,

$$\cos^{-1}(1) = \frac{5\pi}{6} + c \implies 0 = \frac{5\pi}{6} + c \implies c = -\frac{5\pi}{6}$$

Thus, our equation is

$$f(x) = 3.5 \cos\left(\frac{\pi}{6}x - \frac{5\pi}{6}\right) + 3.$$

Listing out the variables: $a = 3.5, b = \pi/6, c = -5\pi/6$, and d = 3.

- 8. Simplify each of the following expressions.
 - (a) $\sin^{-1}(\cos(\frac{5\pi}{6}))$

Solution: We have $\cos(5\pi/6) = -\sqrt{3}/2$. Then $\sin^{-1}(-\sqrt{3}/2) = \theta$ where $\sin(\theta) = -\frac{\sqrt{3}}{2} \implies \theta = -\frac{\pi}{3}$.

(b) $\sin(\cos^{-1}x)$

Solution: If $\theta = \cos^{-1} x$ then $\cos \theta = x$; which as a ratio of side of a right triangle means that the "adjacent over hypotenuse" equals x, so let's set the adjacent side length to x and the hypotenuse length equal to 1. Then, $\sin(\theta)$ will be the ratio of "opposite over hypotenuse". The opposite leg will have length $\sqrt{1^2 - x^2} = \sqrt{1 - x^2}$; therefore $\sin(\theta) = \frac{\sqrt{1-x^2}}{1} = \sqrt{1-x^2}$.

- 9. Solve for x in the following equations.
 - (a) $\log_4 x + \log_4(x-3) = 1$

Solution: First $\log_4 x + \log_4 (x - 3) = \log_4 (x \cdot (x - 3)) = \log_4 (x^2 - 3x)$. This reduces us to solving $\log_4 (x^2 - 3x) = 1$. We have

$$\log_4(x^2 - 3x) = 1 \implies 4^1 = x^2 - 3x \implies 0 = x^2 - 3x - 4 \implies 0 = (x - 4)(x + 1).$$

Then, x = 4, -1. Now, we must check our solutions to make sure they make sense. Notice that $\log(-1)$ is undefined. Thus, $x \neq -1$ and our solution is x = 4.

(b) $e^x + 2e^{-x} = 3$

Solution: First multiply through by e^x to get $e^{2x} + 2 = 3e^x$. Now, rearranging the terms yields $(e^x)^2 - 3e^x + 2 = 0$. Let $y = e^x$ and this equation is $y^2 - 3y + 2 = 0$. This factors to (y-2)(y-1) = 0 implying the solutions are y = 2 and y = 1. Therefore, we are looking for the solutions to $e^x = 2 \implies x = \ln 2$ and $e^x = 1 \implies x = 0$. Both solutions make sense in the original equation, so the solutions are $x = \ln 2$ and x = 0.

10. Each year the local country club sponsors a tennis tournament. Play starts with 128 participants. During each round, half of the players are eliminated. How many players remain after 5 rounds?

Solution: After the first round we have 128(.5) players left. After the second round we will have half of these, leaving $128(.5)(.5) = 128(.5)^2$ players. Continuing this way, we see that after 5 rounds we will have $128(.5)^5$ players, which is $128(.5)^5 = 128/32 = 4$.

11. Show that $\sin^2(2x) = 4(\sin^2 x - \sin^4 x)$. Hint: Start on the left-hand side and use the double angle identity.

Solution: We will start on the left hand side and show it is equal to the right hand side.

$$\sin^{2}(2x) = [\sin(2x)]^{2}$$

$$= [2\sin x \cos x]^{2} \qquad \text{(from the double angle formula)}$$

$$= 4\sin^{2} x \cos^{2} x$$

$$= 4\sin^{2} x (1 - \sin^{2} x) \qquad \text{(from the identity } \cos^{2} + \sin^{2} = 1$$

$$= 4\sin^{2} x - 4\sin^{4} x$$

Therefore, the left and right hand sides are equal.

12. Sketch the graph of the function $4\sin(2x+1) + 5$ on the interval $[-3\pi, 3\pi]$.

Solution: Done in class.

13. Let $f(x) = \frac{6x+1}{5x-9}$.

(a) Find the domain of f.

Solution: The only trouble with values x in $\frac{6x+1}{5x-9}$ is when $5x-9=0 \implies x=9/5$. So, the domain is $(-\infty, \frac{9}{5}) \cup (\frac{9}{5}, \infty).$

(b) Find the range of f.

Solution: Do parts c and d first. Using part d, the domain of f^{-1} is the range of f, so the range of f is

$$\left(-\infty,\frac{6}{5}\right)\cup\left(\frac{6}{5},\infty\right)$$

(c) Find a formula for f^{-1} .

Solution: Let y be such that $\frac{6x+1}{5x-9} = y$. Then,

$$6x + 1 = 5xy - 9y \implies x(6 - 5y) = -9y - 1 \implies x = \frac{-5y - 1}{-5y + 6}$$

 $0a_1 = 1$

Therefore, $f^{-1}(y) = \frac{-9y - 1}{-5y + 6}$.

(d) Find the domain of f^{-1} .

Solution: The only trouble with values of y in $\frac{-9y-1}{-5y+6}$ is when $-5y+6=0 \implies y=6/5$. So the domain of $f^{-1}(y)$ is

$$\left(-\infty,\frac{6}{5}\right)\cup\left(\frac{6}{5},\infty\right)$$

(e) Find the range of f^{-1} .

Solution: The range of f^{-1} is the domain of f, which from part a gives

$$(-\infty, \frac{9}{5}) \cup \left(\frac{9}{5}, \infty\right).$$