Practice Problems - Final: Part 3 (Due Fri, May 30)

Math 1060Q - Summer 2014
Professor Hohn

1. Simplify the expression $\left(\frac{\left(3 t^{9} w^{-5}\right)^{4}}{\left(t^{-3} w^{7}\right)^{5}}\right)^{-2}$.
2. Suppose you go to the fair and decide to ride the Ferris Wheel. The Ferris Wheel has a 30 meter diameter and turns 3 revolutions per minute with its lowest point 1 meter off the ground. Assume your height h above the ground is a function of the form $h(x)=a \cos (b x+c)+d$, where $x=0$ represents the lowest point on the wheel and x is measured in seconds. Find the values of $a>0, b>0, c$, and d.
3. Show that $2-\log x=\log \left(\frac{100}{x}\right)$ for every positive x.
4. Suppose $\frac{\pi}{2}<\theta<\pi$ and $\tan \theta=-4$. Evaluate
(a) $\cos \theta$
(b) $\sin \theta$
5. Find exact values for the following
(a) $\sin \left(-\frac{3 \pi}{2}\right)$
(b) $\cos \frac{15 \pi}{4}$
(c) $\cos 360045^{\circ}$
(d) $\sin 300^{\circ}$
6. Use the figure to the right to solve the following:

Suppose $a=3$ and $c=8$. Evaluate
(c) $\tan v$
(a) $\cos v$
(b) $\sin v$

7. Evaluate $\cos \left(\cos ^{-1} \frac{2}{5}\right)$.
8. Find a number b such that $\cos x+\sin x=b \sin \left(x+\frac{\pi}{4}\right)$.
9. Show that $\frac{\sin x}{1-\cos x}=\frac{1+\cos x}{\sin x}$ for every x that is not an integer multiple of π.
10. For $f(x)=\frac{x-1}{x^{2}+1}$ and $g(x)=\frac{x+3}{x+4}$, find the formulas for the following. Simplify your results as much as possible.
(a) $f \circ g$
(b) $g \circ f$
11. Evaluate the expression $\sin \left[\sec ^{-1}\left(\frac{5}{3}\right)+\tan ^{-1}\left(\frac{3}{4}\right)\right]$.
12. Use the figure to the right to solve the following:

Suppose $b=3$ and $\sin v=\frac{1}{3}$.
Evaluate a.

13. Let $g(x)$ be of the form $g(x)=a \cos (b x+c)+d$. Find the values for a, b, c, and d with $a>0$, $b>0$, and $0 \leqslant c \leqslant \pi$ so that g has range $[-3,4], g(0)=2$, and g has period 5 .

