\qquad

Score: \qquad

Practice Problems - Final: Part 3 (Due Fri, May 30)

Math 1060Q - Summer 2014

Professor Hohn

1. Simplify the expression $\left(\frac{\left(3 t^{9} w^{-5}\right)^{4}}{\left(t^{-3} w^{7}\right)^{5}}\right)^{-2}$.

Solution:

$$
\begin{aligned}
\left(\frac{\left(3 t^{9} w^{-5}\right)^{4}}{\left(t^{-3} w^{7}\right)^{5}}\right)^{-2} & =\left(\frac{3^{4} t^{36} w^{-20}}{t^{-15} w^{35}}\right)^{-2} \\
& =\frac{3^{-8} t^{-72} w^{40}}{t^{30} w^{-70}} \\
& =3^{-8} t^{-72-30} w^{40+70} \\
& =3^{-8} t^{-102} w^{110} \\
& =\frac{w^{110}}{3^{8} t^{102}}
\end{aligned}
$$

2. Suppose you go to the fair and decide to ride the Ferris Wheel. The Ferris Wheel has a 30 meter diameter and turns 3 revolutions per minute with its lowest point 1 meter off the ground. Assume your height h above the ground is a function of the form $h(x)=a \cos (b x+c)+d$, where $x=0$ represents the lowest point on the wheel and x is measured in seconds. Find the values of $a>0, b>0, c$, and d.

Solution: First, let us find the amplitude a. Notice that the Ferris Wheel is 30 meters in diameter and is also 1 meter off the ground. In total, the Ferris Wheel has a maximum height of 31 and a minimum height of 1 .

$$
a=\frac{\max -\min }{2} \Longrightarrow a=\frac{31-1}{2} \Longrightarrow a=\frac{30}{2} \Longrightarrow a=15
$$

Now, let us find the vertical shift d.

$$
d=\max -a \Longrightarrow d=31-15 \Longrightarrow d=16
$$

The period of the Ferris Wheel is 20 seconds (fast and furious!). Thus,

$$
p=\frac{2 \pi}{b} \Longrightarrow 20=\frac{2 \pi}{b} \Longrightarrow b=\frac{2 \pi}{20} \Longrightarrow b=\frac{\pi}{10} .
$$

Our equation so far is

$$
f(x)=15 \cos \left(\frac{\pi}{10} x+c\right)+16
$$

We can use the point $f(0)=1$ to help us solve for c.
$f(0)=15 \cos \left(\frac{\pi}{10} \cdot 0+c\right)+16 \Longrightarrow 1=15 \cos (c)+16 \Longrightarrow-15=15 \cos (c) \Longrightarrow-1=\cos (c)$
So, $c=\pi$. Then,

$$
f(x)=15 \cos \left(\frac{\pi}{10} x+\pi\right)+16
$$

Listing the variables: $a=15, b=\frac{\pi}{10}, c=\pi$, and $d=16$.
3. Show that $2-\log x=\log \left(\frac{100}{x}\right)$ for every positive x.

Solution: Using logarithm rules:

$$
\begin{aligned}
\log \left(\frac{100}{x}\right) & =\log (100)-\log (x) & & \text { (quotient rule) } \\
& =2-\log (x) & & \left(\text { since } 10^{2}=100\right)
\end{aligned}
$$

Thus, $\log \left(\frac{100}{x}\right)=2-\log x$.
4. Suppose $\frac{\pi}{2}<\theta<\pi$ and $\tan \theta=-4$. Evaluate
(a) $\cos \theta$

Solution: We can think of $\tan \theta$ as the ratio "opposite over adjacent."

Because we are in Quadrant II, the $\cos \theta$ will be negative and the $\sin \theta$ will be positive. The $\cos \theta$ can be thought of as the ratio "adjacent over hypotenuse" so we will find the hypotenuse first.

$$
c^{2}=4^{2}+(-1)^{2} \Longrightarrow c^{2}=16+1 \Longrightarrow c=\sqrt{17}
$$

Then, $\cos \theta=\frac{-1}{\sqrt{17}}$.
(b) $\sin \theta$

Solution: $\sin \theta=\frac{4}{\sqrt{17}}$.
5. Find exact values for the following
(a) $\sin \left(-\frac{3 \pi}{2}\right)$

Solution: $\sin \left(-\frac{3 \pi}{2}\right)=1$
(b) $\cos \frac{15 \pi}{4}$

Solution: The angle $\frac{15 \pi}{4}$ is in Quadrant IV, so $\cos \frac{15 \pi}{4}=\frac{\sqrt{2}}{2}$.
(c) $\cos 360045^{\circ}$

Solution: The angle 360045° is in Quadrant I, so $\cos 360045^{\circ}=\frac{\sqrt{2}}{2}$.
(d) $\sin 300^{\circ}$

Solution: The angle 300° is in Quadrant IV, so $\cos 300^{\circ}=\frac{-\sqrt{3}}{2}$.
6. Use the figure below to solve the following:

Suppose $a=3$ and $c=8$. Evaluate
(a) $\cos v$

Solution: The $\cos v=\frac{a}{c}$ which means $\cos v=\frac{3}{8}$.
(b) $\sin v$

Solution: The $\sin v=\frac{b}{c}$ which means we will find b first.

$$
8^{2}=3^{2}+b^{2} \Longrightarrow 64=9+b^{2} \Longrightarrow b^{2}=55 \Longrightarrow b=\sqrt{55}
$$

Thus, $\sin v=\frac{\sqrt{55}}{8}$.
(c) $\tan v$

Solution: The $\tan v=\frac{b}{a}$ which means $\tan v=\frac{\sqrt{55}}{3}$.
7. Evaluate $\cos \left(\cos ^{-1} \frac{2}{5}\right)$.

Solution: $\cos \left(\cos ^{-1} \frac{2}{5}\right)$ means $\cos (\theta)$ where $\theta=\cos ^{-1} \frac{2}{5}$. Then, we know $\cos \theta=\frac{2}{5}$. Since we are trying to find $\cos \theta$, we are done.

$$
\cos \left(\cos ^{-1} \frac{2}{5}\right)=\frac{2}{5}
$$

8. Find a number b such that $\cos x+\sin x=b \sin \left(x+\frac{\pi}{4}\right)$.

Solution: We will start with the right hand side.

$$
\begin{aligned}
b \sin \left(x+\frac{\pi}{4}\right) & =b\left(\sin x \cos \frac{\pi}{4}+\cos x \sin \frac{\pi}{4}\right) \\
& =b\left(\sin x \frac{\sqrt{2}}{2}+\cos x \frac{\sqrt{2}}{2}\right) \\
& =b \frac{\sqrt{2}}{2}(\sin x+\cos x)
\end{aligned}
$$

We want to find a b such that the right hand side looks like the left hand side. Thus,

$$
1=b \frac{\sqrt{2}}{2} \Longrightarrow b=\frac{2}{\sqrt{2}} \Longrightarrow b=\sqrt{2} .
$$

9. Show that $\frac{\sin x}{1-\cos x}=\frac{1+\cos x}{\sin x}$ for every x that is not an integer multiple of π.

Hint: Start on the left-hand side and multiply both the numerator and the denominator by $1+\cos x$.

Solution: We will start on the left hand side and show that it is equal to the right hand side.

$$
\begin{aligned}
\frac{\sin x}{1-\cos x} & =\frac{\sin x}{1-\cos x} \cdot \frac{1+\cos x}{1+\cos x} & & \text { (from the hint) } \\
& =\frac{\sin x(1+\cos x)}{(1-\cos x)(1+\cos x)} & & \\
& =\frac{\sin x(1+\cos x)}{\left(1-\cos ^{2} x\right)} & & \text { (from } \left.\cos ^{2}+\sin ^{2}=1\right) \\
& =\frac{\sin x(1+\cos x)}{\sin ^{2} x} & & \text { (cancelling } \left.\sin ^{x}\right)
\end{aligned}
$$

And, $\frac{\sin x}{1-\cos x}=\frac{1+\cos x}{\sin x}$.
10. For $f(x)=\frac{x-1}{x^{2}+1}$ and $g(x)=\frac{x+3}{x+4}$, find the formulas for the following.

Simplify your results as much as possible.
(a) $f \circ g$

Solution:

$$
\begin{aligned}
f \circ g & =f(g(x)) \\
& =f\left(\frac{x+3}{x+4}\right) \\
& =\frac{\frac{x+3}{x+4}-1}{\left(\frac{x+3}{x+4}\right)^{2}+1} \\
& =\frac{\frac{x+3}{x+4}-\frac{x+4}{x+4}}{\frac{(x+3)^{2}}{(x+4)^{2}}+\frac{(x+4)^{2}}{(x+4)^{2}}} \\
& =\frac{\frac{x+3-(x+4)}{x+4}}{\frac{(x+3)^{2}+(x+4)^{2}}{(x+4)^{2}}} \\
& =\frac{\frac{-1}{x+4}}{\frac{(x+3)^{2}+(x+4)^{2}}{(x+4)^{2}}} \\
& =\frac{-1}{x+4} \div \frac{(x+3)^{2}+(x+4)^{2}}{(x+4)^{2}} \\
& =\frac{-1}{x+4} \cdot \frac{(x+4)^{2}}{(x+3)^{2}+(x+4)^{2}} \\
& =\frac{-1(x+4)}{(x+3)^{2}+(x+4)^{2}} \\
& =\frac{-x-4}{x^{2}+6 x+9+x^{2}+8 x+16} \\
& =\frac{-x-4}{2 x^{2}+14 x+25}
\end{aligned}
$$

(b) $g \circ f$

Solution:

$$
\begin{aligned}
g \circ f & =g(f(x)) \\
& =g\left(\frac{x-1}{x^{2}+1}\right) \\
& =\frac{\frac{x-1}{x^{2}+1}+3}{\frac{x-1}{x^{2}+1}+4} \\
& =\frac{\frac{x-1}{x^{2}+1}+\frac{3\left(x^{2}+1\right)}{x^{2}+1}}{\frac{x-1}{x^{2}+1}+\frac{4\left(x^{2}+1\right)}{x^{2}+1}} \\
& =\frac{\frac{x-1+3\left(x^{2}+1\right)}{x^{2}+1}}{\frac{\left.x-4+4 x^{2}+1\right)}{x^{2}+1}} \\
& =\frac{x-1+3\left(x^{2}+1\right)}{x-1+4\left(x^{2}+1\right.} \\
& =\frac{\left.x-1+3 x^{2}+3\right)}{x-1+4 x^{2}+4} \\
& =\frac{3 x^{2}+x+2}{4 x^{2}+x+3}
\end{aligned}
$$

11. Evaluate the expression $\sin \left[\sec ^{-1}\left(\frac{5}{3}\right)+\tan ^{-1}\left(\frac{3}{4}\right)\right]$.

Solution: Let $\sec ^{-1}\left(\frac{5}{3}\right)=\theta$ and let $\tan ^{-1}\left(\frac{3}{4}\right)=\phi$. Then, we want to find $\sin (\theta+\phi)$.

$$
\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi
$$

Then, we need to find the $\cos \theta$ and $\sin \theta$ as well as the $\cos \phi$ and $\sin \phi$. Recall that $\sec ^{-1}\left(\frac{5}{3}\right)=\theta$. This means

$$
\sec \theta=\frac{5}{3} \Longrightarrow \frac{1}{\cos \theta}=\frac{5}{3} \Longrightarrow \cos \theta=\frac{3}{5}
$$

We can think of $\cos \theta$ as the ratio "adjacent over hypotenuse."

Notice that we have a $3-4-5$ triangle and $a=4$.

$$
\cos \theta=\frac{3}{5} \Longrightarrow \sin \theta=\frac{4}{5}
$$

Now, we will solve for $\cos \phi$ and $\sin \phi$.

We substitute our information into the equation for $\sin (\theta+\phi)$.

$$
\begin{aligned}
\sin (\theta+\phi) & =\sin \theta \cos \phi+\cos \theta \sin \phi \\
& =\frac{4}{5} \cdot \frac{4}{5}+\frac{3}{5} \cdot \frac{3}{5} \\
& =\frac{16}{25}+\frac{9}{25} \\
& =1
\end{aligned}
$$

12. Use the figure below to solve the following:

Suppose $b=3$ and $\sin v=\frac{1}{3}$.
Evaluate a.

Solution: Notice that we are dealing with a situation where we need to work with similar triangles. One triangle, call it Triangle 1 , has $b=3$, and we want to find a. The other triangle, call it Triangle 2, that is similar (the triangles have the same angles) has $b=1$ and $c=3$. Then, Triangle 2's missing side is

$$
a^{2}+1^{2}=3^{2} \Longrightarrow a^{2}=9-1 \Longrightarrow a=\sqrt{8}
$$

Since Triangle 1 and Triangle 2 are similar, the sides of Triangle 1 proportional to the sides of Triangle 2. Thus, we can think of Triangle 1 as Triangle 2 scaled by 3 . So, $a=3 \sqrt{8}$.
13. Let $g(x)$ be of the form $g(x)=a \cos (b x+c)+d$. Find the values for a, b, c, and d with $a>0$, $b>0$, and $0 \leqslant c \leqslant \pi$ so that g has range $[-3,4], g(0)=2$, and g has period 5 .

Solution: First, let us find the amplitude, a.

$$
a=\frac{\max -\min }{2} \Longrightarrow a=\frac{4-(-3)}{2} \Longrightarrow a=\frac{7}{2} .
$$

Now, let us find the vertical shift d :

$$
d=\max -a \Longrightarrow d=4-3.5 \Longrightarrow d=0.5
$$

We are told that the period of g is 5 . We will use this information to find b :

$$
p=\frac{2 \pi}{b} \Longrightarrow 5=\frac{2 \pi}{b} \Longrightarrow b=\frac{2 \pi}{5}
$$

The equation we have so far is

$$
g(x)=3.5 \cos \left(\frac{2 \pi}{5} x+c\right)+0.5
$$

Now, we will find c by using the information that $g(0)=2$.

$$
g(0)=3.5 \cos \left(\frac{2 \pi}{5} 0+c\right)+0.5 \Longrightarrow 2=3.5 \cos (c)+0.5 \Longrightarrow \frac{1.5}{3.5}=\cos (c)
$$

Solving for c,

$$
c=\cos ^{-1}\left(\frac{1.5}{3.5}\right) \Longrightarrow c=\cos ^{-1}\left(\frac{\frac{3}{2}}{\frac{7}{2}}\right) \Longrightarrow c=\cos ^{-1}\left(\frac{3}{7}\right)
$$

Thus, our equation is

$$
g(x)=3.5 \cos \left(\frac{2 \pi}{5} x+\cos ^{-1}\left(\frac{3}{7}\right)\right)+0.5
$$

Listing out the variables: $a=3.5, b=\frac{2 \pi}{5}, c=\cos ^{-1}\left(\frac{3}{7}\right)$, and $d=0.5$.

