Score: /15

Homework 3 (Due Thurs, May 15)

Math 1060Q - Summer 2014
Professor Hohn

Answer the following questions. Three questions will be chosen randomly to be graded.

1. Suppose $f(x)=3 x-5$
(a) Find the domain of f. Write your answer in interval notation.
(b) Find a formula for f^{-1}.
(c) Check your solution by verifying $f \circ f^{-1}=I$ and $f^{-1} \circ f=I$.
(d) Find the range of f. Write your answer in interval notation.
(e) Find the domain of f^{-1}. Write your answer in interval notation.
(f) Find the range of f^{-1}. Write your answer in interval notation.
2. Suppose $f(x)=\frac{1}{4 x-5}$
(a) Find the domain of f. Write your answer in interval notation.
(b) Find a formula for f^{-1}.
(c) Check your solution by verifying $f \circ f^{-1}=I$ and $f^{-1} \circ f=I$.
(d) Find the range of f. Write your answer in interval notation.
(e) Find the domain of f^{-1}. Write your answer in interval notation.
(f) Find the range of f^{-1}. Write your answer in interval notation.
3. Suppose $f(x)=\frac{2 x}{x+3}$
(a) Find the domain of f. Write your answer in interval notation.
(b) Find a formula for f^{-1}.
(c) Find the range of f. Write your answer in interval notation.
(d) Find the domain of f^{-1}. Write your answer in interval notation.
(e) Find the range of f^{-1}. Write your answer in interval notation.
4. Let $f(x)=\frac{10 x}{x^{2}+1}$.
(a) Find the domain of f. Write your answer using interval notation.
(b) Find the x - and y-intercepts of the graph of $y=f(x)$.
(c) Is f even, odd, or neither? Explain.
5. The complete graph of $y=f(x)$ is given below.

Let $g(x)=3-f\left(\frac{1-x}{2}\right)$. Sketch the graph of $y=g(x)$. From your graph, determine the domain and
range of g. List the intervals over which g is increasing and the intervals over which g is decreasing. List the local maximums and local minimums, if any.
6. Let $f(x)=x^{2}$. Find a formula for a function g whose graph is obtained from the graph of $y=f(x)$ after the following sequence of transformations:
(a) Shift left 3 units.
(b) Reflection across the y-axis.
(c) Shift down 1 unit.
(d) Vertical scaling by a factor of 2 .
(e) Reflection across the x-axis.
7. Suppose f and g are functions defined below.

x	$f(x)$
1	4
2	5
3	2
4	3

x	$g(x)$
2	3
3	2
4	4
5	1

(a) What is the domain of f ?
(b) What is the range of f ?
(c) Give the table of values for $g \circ f$.
(d) Give the table of values for f^{-1}.
(e) Give the table of values for g^{-1}.
(f) What is the domain of f^{-1} ?
(g) What is the range of f^{-1} ?
(h) Give the table of values for $g \circ g^{-1}$.
(i) Give the table of values for $(f \circ g)^{-1}$.
(j) Give the table of values for $f^{-1} \circ g^{-1}$.
8. Explain why an even function whose domain contains a nonzero number cannot be a one-to-one function.

