Name: \qquad

Score: \qquad /15

Worksheet 13 (Due Thurs, May 22)

Math 1060Q - Summer 2014
Professor Hohn

Three questions will be chosen randomly to be graded. You must show all of your work to receive full credit!

1. Evaluate the following expressions.
(a) $\log _{4} 64-\log _{4} 16$
(b) $\log _{5} 125+\log _{5} 5$
(c) $\log _{3} 81+\log _{5} 125$
(d) $\frac{\log _{2} 32}{\log _{2} 16}$
(e) $2 \log _{6} 36-\log _{6} \frac{1}{36}$
2. Rewrite the following expressions as logarithms of one quantity with coefficient 1 .
(a) $\frac{1}{2} \ln x+\ln 5$
(b) $\log _{2} x+4 \log _{2}(x+1)-\frac{1}{3} \log _{2}(x-1)$
(c) $5 \ln x+2 \ln 3-3 \ln \left(\frac{1}{y}\right)$
3. Use the rules of logarithms to expand the following expressions so that there are no logarithms of products, quotients, or powers.
(a) $\ln \sqrt[3]{x^{3} y}$
(b) $\log _{10} \frac{10}{4 x^{2}}$
(c) $\ln \left(\frac{x \sqrt{y}}{(1+x)^{3}}\right)$
4. Suppose $\ln (x)=2, \ln (y)=3$, and $\ln (z)=6$. Evaluate the following expressions.
(a) $\ln (x y z)$
(b) $\ln \left(x^{2} y\right)$
(c) $\ln \left(\frac{x^{3}}{\sqrt{z}}\right)$
